Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Genetics and Epigenetics

GWAS for BMI: a treasure trove of fundamental insights into the genetic basis of obesity

Summary

Muller et al. [1] have provided a strong critique of the Genome-Wide Association Studies (GWAS) of body-mass index (BMI), arguing that the GWAS approach for the study of BMI is flawed, and has provided us with few biological insights. They suggest that what is needed instead is a new start, involving GWAS for more complex energy balance related traits. In this invited counter-point, we highlight the substantial advances that have occurred in the obesity field, directly stimulated by the GWAS of BMI. We agree that GWAS for BMI is not perfect, but consider that the best route forward for additional discoveries will likely be to expand the search for common and rare variants linked to BMI and other easily obtained measures of obesity, rather than attempting to perform new, much smaller GWAS for energy balance traits that are complex and expensive to measure. For GWAS in general, we emphasise that the power from increasing the sample size of a crude but easily measured phenotype outweighs the benefits of better phenotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Müller MJ, Geisler C, Blundell J, Dulloo A, Schutz Y, Krawczak M, et al. The case of GWAS of obesity: Does body weight control play by the rules? Int J Obesity. 2018.

  2. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    Article  CAS  Google Scholar 

  3. Barsh GS, Farooqi IS, O’Rahilly S. Genetics of body-weight regulation. Nature. 2000;404:644–51.

    Article  CAS  Google Scholar 

  4. Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature. 1994;372:425–32.

    Article  CAS  Google Scholar 

  5. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse Ob protein—evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.

    Article  CAS  Google Scholar 

  6. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70. Epub 1998/10/31

    Article  CAS  Google Scholar 

  7. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Ser B-Bio. 1953;140:578–92.

    Article  CAS  Google Scholar 

  8. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Morgan PJ, et al. Coexpression of leptin receptor and preproneuropeptide Y mRNA in arcuate nucleus of mouse hypothalamus. J Neuroendocrinol. 1996;8:733–5.

    Article  CAS  Google Scholar 

  9. Ahima RS, Prabakaran D, Mantzoros C, Qu DQ, Lowell B, MaratosFlier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    Article  CAS  Google Scholar 

  10. Boston BA, Blaydon KM, Varnerin J, Cone RD. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science. 1997;278:1641–4.

    Article  CAS  Google Scholar 

  11. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999;23:775–86.

    Article  CAS  Google Scholar 

  12. Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron. 1999;24:155–63.

    Article  CAS  Google Scholar 

  13. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  CAS  Google Scholar 

  14. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. New Engl J Med. 2003;349:941–8.

    Article  CAS  Google Scholar 

  15. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci USA. 1998;95:741–6.

    Article  CAS  Google Scholar 

  16. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.

    Article  CAS  Google Scholar 

  17. Mercer JG, Speakman JR. Hypothalamic neuropeptide mechanisms for regulating energy balance: from rodent models to human obesity. Neurosci Biobehav R. 2001;25:101–16.

    Article  CAS  Google Scholar 

  18. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387:903–8.

    Article  CAS  Google Scholar 

  19. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401. Epub 1998/04/16

    Article  CAS  Google Scholar 

  20. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med. 1999;341:879–84.

    Article  CAS  Google Scholar 

  21. Gibson WT, Farooqi IS, Moreau M, DePaoli AM, Lawrence E, O’Rahilly S, et al. Congenital leptin deficiency due to homozygosity for the Delta 133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocr Metab. 2004;89:4821–6.

    Article  CAS  Google Scholar 

  22. Jackson RS, Creemers JWM, Ohagi S, RaffinSanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16:303–6.

    Article  CAS  Google Scholar 

  23. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.

    Article  CAS  Google Scholar 

  24. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998;20:113–4.

    Article  CAS  Google Scholar 

  25. Yeo GSH, Farooqi IS, Aminian S, Halsall DJ, Stanhope RC, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20:111–2.

    Article  CAS  Google Scholar 

  26. Hinney A, Schmidt A, Nottebom K, Heibult O, Becker I, Ziegler A, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocr Metab. 1999;84:1483–6.

    Article  CAS  Google Scholar 

  27. Clement K. Monogenic forms of obesity: from mice to human. Ann Endocrinol-Paris. 2000;61:39–49.

    CAS  Google Scholar 

  28. Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005;56:443.

    Article  CAS  Google Scholar 

  29. Friedman JM. Obesity in the new millennium. Nature. 2000;404:632–4.

    Article  CAS  Google Scholar 

  30. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  Google Scholar 

  31. Speakman JR. The ‘fat mass and obesity related’ (FTO) gene: mechanisms of impact on obesity and energy balance. Curr Obes Rep. 2015;4:73–91.

    Article  Google Scholar 

  32. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CNA. An obesity-associated FTO gene variant and increased energy intake in children. New Engl J Med. 2008;359:2558–66.

    Article  CAS  Google Scholar 

  33. Speakman JR. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes. 2008;32:1611.

    Article  CAS  Google Scholar 

  34. Timpson NJ, Emmett PM, Frayling TM, Rogers I, Hattersley AT, McCarthy MI, et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr. 2008;88:971–8.

    Article  CAS  Google Scholar 

  35. Wardle J, Carnell S, Haworth CMA, Farooqi IS, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocr Metab. 2008;93:3640–3.

    Article  CAS  Google Scholar 

  36. Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–72.

    Article  CAS  Google Scholar 

  37. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Bruning JC, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458:894–8. Epub 2009/02/24

    Article  CAS  Google Scholar 

  38. Cheung MK, Gulati P, O’Rahilly S, Yeo GSH. FTO expression is regulated by availability of essential amino acids. Int J Obes. 2013;37:744–7.

    Article  CAS  Google Scholar 

  39. Gulati P, Cheung MK, Antrobus R, Church CD, Harding HP, Tung YC, et al. Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci USA. 2013;110:2557–62. Epub 2013/01/30

    Article  CAS  Google Scholar 

  40. Gulati P, Yeo GS. The biology of FTO: from nucleic acid demethylase to amino acid sensor. Diabetologia. 2013;56:2113–21. Epub 2013/07/31

    Article  CAS  Google Scholar 

  41. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371.

    Article  CAS  Google Scholar 

  42. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–U53.

    Article  CAS  Google Scholar 

  43. Speakman JR. Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum Hered. 2013;75:57–79.

    Article  CAS  Google Scholar 

  44. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes & Endocrinol. 2018;6:223–36.

    Article  CAS  Google Scholar 

  45. Lee AWS, Hengstler H, Schwald K, Berriel-Diaz M, Loreth D, Kirsch M, et al. Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype. PLoS ONE. 2012;7:e41537.

    Article  CAS  Google Scholar 

  46. Rathjen T, Yan X, Kononenko NL, Ku MC, Song K, Ferrarese L, et al. Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nat Neurosci. 2017;20:1096.

    Article  CAS  Google Scholar 

  47. Yan X, Wang Z, Schmidt V, Gauert A, Willnow TE, Heinig M, et al. Cadm2 regulates body weight and energy homeostasis in mice. Mol Metab. 2018;8:180–8. Epub 2017/12/09

    Article  CAS  Google Scholar 

  48. Grarup N, Moltke I, Andersen MK, Dalby M, Vitting-Seerup K, Kern T, et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet. 2018;50:172–4. Epub 2018/01/10

    Article  CAS  Google Scholar 

  49. Saeed S, Bonnefond A, Tamanini F, Mirza MU, Manzoor J, Janjua QM, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat Genet. 2018;50:175–9. Epub 2018/01/10

    Article  CAS  Google Scholar 

  50. Siljee JE, Wang Y, Bernard AA, Ersoy BA, Zhang SM, Marley A, et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet. 2018;50:180.

    Article  CAS  Google Scholar 

  51. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Felix R, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–U401.

    Article  CAS  Google Scholar 

  52. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet. 2017;49:1458.

    Article  CAS  Google Scholar 

  53. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  Google Scholar 

  54. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.

    Article  CAS  Google Scholar 

  55. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13:135–45.

    Article  CAS  Google Scholar 

  56. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of SNP-based heritability. Nat Genet. 2017;49:1304–U243.

    Article  CAS  Google Scholar 

  57. Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JP. The power of meta-analysis in genome-wide association studies. Annu Rev Genom Hum Genet. 2013;14:441–65. Epub 2013/06/04

    Article  CAS  Google Scholar 

  58. Allison DB, Heshka S, Neale MC, Tishler PV, Heymsfield SB. Genetic, environmental, and phenotypic links between body mass index and blood pressure among women. Am J Med Genet. 1995;55:335–41. Epub 1995/01/30

    Article  CAS  Google Scholar 

  59. Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes. 1996;20:501–6.

    CAS  Google Scholar 

  60. Dhurandhar EJ, Vazquez AI, Argyropoulos GA, Allison DB. Even modest prediction accuracy of genomic models can have large clinical utility. Front Genet. 2014;5:417.

    Article  Google Scholar 

  61. Willer CJ, Speliotes EK, Loos RJF, Li SX, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.

    Article  CAS  Google Scholar 

  62. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32:959–66.

    Article  CAS  Google Scholar 

  63. Kilpelainen TO, Zillikens MC, Stancakova A, Finucane FM, Ried JS, Langenberg C, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet. 2011;43:753–U58.

    Article  CAS  Google Scholar 

  64. Chu AY, Deng X, Fisher VA, Drong A, Zhang Y, Feitosa MF, et al. Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation. Nat Genet. 2017;49:125–30.

    Article  CAS  Google Scholar 

  65. Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its components: implications for body weight regulation. Am J Clin Nutr. 2012;95:989–94.

    Article  Google Scholar 

  66. Lin XC, Eaton CB, Manson JE, Liu SM. The genetics of physical activity. Curr Cardiol Rep. 2017;19:119.

    Article  Google Scholar 

  67. Benjamin DJ, Cesarini D, van der Loos MJHM, Dawes CT, Koellinger PD, PKE Magnusson, et al. The genetic architecture of economic and political preferences. Proc Natl Acad Sci USA. 2012;109:8026–31.

    Article  CAS  Google Scholar 

  68. Koenig LB, McGue M, Krueger RF, Bouchard TJ Jr.. Genetic and environmental influences on religiousness: findings for retrospective and current religiousness ratings. J Personal. 2005;73:471–88. Epub 2005/03/05

    Article  Google Scholar 

  69. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical-twins. New Engl J Med. 1990;322:1477–82.

    Article  CAS  Google Scholar 

  70. Stunkard AJ, Harris JR, Pedersen NL, Mcclearn GE. The body-mass index of twins who have been reared apart. New Engl J Med. 1990;322:1483–7.

    Article  CAS  Google Scholar 

  71. Elks CE, den Hoed M, Zhao JH, Sharp SJ, Wareham NJ, Loos RJ, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol. 2012;3:29. Epub 2012/05/31

    Article  Google Scholar 

  72. Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur YM, Cozen W, et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106:457–66.

    Article  CAS  Google Scholar 

  73. Turcot V, Lu YC, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50:26.

    Article  CAS  Google Scholar 

  74. Wang G, Speakman John R. Analysis of positive selection at single nucleotide polymorphisms associated with body mass index does not support the 'thrifty gene' hypothesis. Cell Metab. 2016;24:531–41. Epub 2016/09/27

    Article  Google Scholar 

  75. Minster RL, Hawley NL, Su CT, Sun G, Kershaw EE, Cheng H, et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat Genet. 2016;48:1049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors declare no conflicts of interest. JRS is supported by a Wolfson merit professorship from the UK Royal Society and a grant from the National Science Foundation of China microevolution program (NSFC 91731303). RJFL is supported by the NIH (R01DK110113, U01HG007417, R01DK101855, and R01DK107786). DBA is supported by NIH Grants R25DK099080 and R25HL124208. The opinions are those of the authors and not necessarily the NIH or any other organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Speakman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speakman, J.R., Loos, R.J.F., O’Rahilly, S. et al. GWAS for BMI: a treasure trove of fundamental insights into the genetic basis of obesity. Int J Obes 42, 1524–1531 (2018). https://doi.org/10.1038/s41366-018-0147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0147-5

Search

Quick links