Epidemiology and Population Health

Metabolically healthy and unhealthy obesity phenotypes and risk of renal stone: a cohort study

Abstract

Background/Objectives

Although obesity is considered an independent risk factor of nephrolithiasis, little is known about the effect of obesity on nephrolithiasis according to metabolic health status. We investigated the association between body mass index (BMI) category and the incidence of nephrolithiasis in metabolically healthy and unhealthy individuals.

Subjects/Methods

The cohort consisted of 270,190 Korean adults free of nephrolithiasis at baseline, who were followed-up annually or biennially for a median of 4.1 years. Nephrolithiasis were determined based on ultrasonographic findings. Being metabolically healthy was defined as not having any metabolic syndrome component. A parametric Cox model was used to estimate the adjusted hazard ratios (HRs) with 95% confidence intervals (CIs).

Results

During 1,415,523.0 person-years of follow-up, 13,450 participants developed nephrolithiasis (incidence rate, 9.5 per 1000 person-years). Obesity was positively associated with an increased risk of incident nephrolithiasis in dose-response manner, but the association was stronger in metabolically healthy individuals. Among metabolically healthy individuals, the multivariable-adjusted HRs (95% CIs) for incident nephrolithiasis comparing BMIs 23–24.9, 25–29.9, and ≥30 with a BMI of 18.5–22.9 kg/m2 as the reference were 1.02 (0.95–1.10), 1.12 (1.03–1.22), and 1.72 (1.21–2.44), respectively, whereas corresponding HRs (95% CIs) in metabolically unhealthy individuals were 1.10 (1.04–1.17), 1.27 (1.20–1.34), and 1.36 (1.22–1.51), respectively. The association between obesity and incident nephrolithiasis was stronger in men and current smokers.

Conclusions

Obesity was associated with a higher incidence of nephrolithiasis in both metabolically healthy and unhealthy individuals, indicating obesity per se as an independent risk factor for nephrolithiasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol. 2018;2018:3068365.

    Article  Google Scholar 

  2. 2.

    Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, et al. Kidney stones. Nat Rev Dis Prim. 2016;2:16008.

    Article  Google Scholar 

  3. 3.

    Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12:e86–96.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Scales CD Jr., Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012;62:160–5.

    Article  Google Scholar 

  5. 5.

    Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367:333–44.

    CAS  Article  Google Scholar 

  6. 6.

    Parmar MS. Kidney stones. BMJ. 2004;328:1420–4.

    Article  Google Scholar 

  7. 7.

    Sakhaee K, Maalouf NM, Sinnott B. Clinical review. Kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab. 2012;97:1847–60.

    CAS  Article  Google Scholar 

  8. 8.

    Yoshimura E, Sawada SS, Lee IM, Gando Y, Kamada M, Matsushita M, et al. Body mass index and kidney stones: a cohort study of Japanese men. J Epidemiol. 2016;26:131–6.

    Article  Google Scholar 

  9. 9.

    Semins MJ, Shore AD, Makary MA, Magnuson T, Johns R, Matlaga BR. The association of increasing body mass index and kidney stone disease. J Urol. 2010;183:571–5.

    Article  Google Scholar 

  10. 10.

    Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293:455–62.

    CAS  Article  Google Scholar 

  11. 11.

    Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14:219–27.

    CAS  Article  Google Scholar 

  12. 12.

    Fruhbeck G, Toplak H, Woodward E, Halford JC, Yumuk V. Need for a paradigm shift in adult overweight and obesity management - an EASO position statement on a pressing public health, clinical and scientific challenge in Europe. Obes Facts. 2014;7:408–16.

    Article  Google Scholar 

  13. 13.

    Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.

    Article  Google Scholar 

  14. 14.

    Ho JS, Cannaday JJ, Barlow CE, Mitchell TL, Cooper KH, FitzGerald SJ. Relation of the number of metabolic syndrome risk factors with all-cause and cardiovascular mortality. Am J Cardiol. 2008;102:689–92.

    Article  Google Scholar 

  15. 15.

    Tsai SP, Wen CP, Chan HT, Chiang PH, Tsai MK, Cheng TY. The effects of pre-disease risk factors within metabolic syndrome on all-cause and cardiovascular disease mortality. Diabetes Res Clin Pract. 2008;82:148–56.

    Article  Google Scholar 

  16. 16.

    Kahn R, Buse J, Ferrannini E, Stern M, American Diabetes Association, European Association for the Study of Diabetes. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2005;28:2289–304.

    Article  Google Scholar 

  17. 17.

    Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112:3066–72.

    CAS  Article  Google Scholar 

  18. 18.

    Chang Y, Ryu S, Choi Y, Zhang Y, Cho J, Kwon M-J, et al. Metabolically healthy obesity and development of chronic kidney disease: a cohort study. Ann Intern Med. 2016;164:305–12.

    Article  Google Scholar 

  19. 19.

    Chang Y, Kim B-K, Yun KE, Cho J, Zhang Y, Rampal S, et al. Metabolically-healthy obesity and coronary artery calcification. J Am Coll Cardiol. 2014;63:2679–86.

    Article  Google Scholar 

  20. 20.

    Kim S, Chang Y, Yun KE, Jung HS, Lee SJ, Shin H, et al. Development of nephrolithiasis in asymptomatic hyperuricemia: a cohort study. Am J Kidney Dis. 2017;70:173–81.

    Article  Google Scholar 

  21. 21.

    World Health Organization. Regional Office for the Western Pacific. The Asia-Pacific perspective: redefining obesity and its treatment. Health Communications Australia: Sydney; 2000.

  22. 22.

    Levey AS, Coresh J, Greene T, Marsh J, Stevens LA, Kusek JW, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53:766–72.

    CAS  Article  Google Scholar 

  23. 23.

    Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH, et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012;307:1941–51.

    CAS  Article  Google Scholar 

  24. 24.

    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    CAS  Article  Google Scholar 

  25. 25.

    Schepens D, Verswijvel G, Kuypers D, Vanrenterghem Y. Images in Nephrology. Renal cortical nephrocalcinosis. Nephrol, Dial, Transplant. 2000;15:1080–2.

    CAS  Article  Google Scholar 

  26. 26.

    Mathiesen UL, Franzen LE, Aselius H, Resjo M, Jacobsson L, Foberg U, et al. Increased liver echogenicity at ultrasound examination reflects degree of steatosis but not of fibrosis in asymptomatic patients with mild/moderate abnormalities of liver transaminases. Dig Liver Dis. 2002;34:516–22.

    CAS  Article  Google Scholar 

  27. 27.

    Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002;21:2175–97.

    Article  Google Scholar 

  28. 28.

    Wong Y, Cook P, Roderick P, Somani BK. Metabolic syndrome and kidney stone disease: a systematic review of literature. J Endourol. 2016;30:246–53.

    Article  Google Scholar 

  29. 29.

    Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf). 2006;64:355–65.

    CAS  Google Scholar 

  30. 30.

    Khan SR. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol. 2014;3:256–76.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953.

    Article  Google Scholar 

  32. 32.

    Wollin DA, Skolarikos A, Preminger GM. Obesity and metabolic stone disease. Curr Opin Urol. 2017;27:422–7.

    Article  Google Scholar 

  33. 33.

    Lieske JC. New insights regarding the interrelationship of obesity, diet, physical activity, and kidney stones. J Am Soc Nephrol. 2014;25:211–2.

    Article  Google Scholar 

  34. 34.

    Heller HJ, Sakhaee K, Moe OW, Pak CY. Etiological role of estrogen status in renal stone formation. J Urol. 2002;168:1923–7.

    CAS  Article  Google Scholar 

  35. 35.

    Wardle J, Haase AM, Steptoe A. Body image and weight control in young adults: international comparisons in university students from 22 countries. Int J Obes (Lond). 2006;30:644–51.

    CAS  Article  Google Scholar 

  36. 36.

    Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care. 2001;4:499–502.

    CAS  Article  Google Scholar 

  37. 37.

    Akarken I, Tarhan H, Ekin RG, Cakmak O, Koc G, Ilbey YO, et al. Visceral obesity: A new risk factor for stone disease. Can Urol Assoc J. 2015;9:E795–9.

    Article  Google Scholar 

  38. 38.

    Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat Rev Endocrinol. 2015;11:90–100.

    CAS  Article  Google Scholar 

  39. 39.

    Pinnick KE, Nicholson G, Manolopoulos KN, McQuaid SE, Valet P, Frayn KN, et al. Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes. 2014;63:3785–97.

    CAS  Article  Google Scholar 

  40. 40.

    Kanno T, Kubota M, Sakamoto H, Nishiyama R, Okada T, Higashi Y, et al. The efficacy of ultrasonography for the detection of renal stone. Urology. 2014;84:285–8.

    Article  Google Scholar 

  41. 41.

    Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13:654.

    CAS  Article  Google Scholar 

  42. 42.

    Ganesan V, De S, Greene D, Torricelli FCM, Monga M. Accuracy of ultrasonography for renal stone detection and size determination: is it good enough for management decisions? BJU Int. 2017;119:464–9.

    Article  Google Scholar 

  43. 43.

    Sun Q, van Dam RM, Spiegelman D, Heymsfield SB, Willett WC, Hu FB. Comparison of dual-energy x-ray absorptiometric and anthropometric measures of adiposity in relation to adiposity-related biologic factors. Am J Epidemiol. 2010;172:1442–54.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yoosoo Chang or Seungho Ryu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Chang, Y., Yun, K.E. et al. Metabolically healthy and unhealthy obesity phenotypes and risk of renal stone: a cohort study. Int J Obes 43, 852–861 (2019). https://doi.org/10.1038/s41366-018-0140-z

Download citation

Search