Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Leptin alleviates intestinal mucosal barrier injury and inflammation in obese mice with acute pancreatitis

Abstract

Background/Objectives

Obesity is an independent risk factor for severe acute pancreatitis (AP). Leptin plays an important role in energy homeostasis. It has been reported that leptin might also participate in the regulation of the intestinal mucosal barrier and inflammatory response. This study aimed to evaluate the effects of leptin on the intestinal mucosal barrier and inflammatory injury in obese mice with AP.

Subjects/Methods

AP was induced in leptin-deficient (ob/ob) or wild type (WT) mice by peritoneal injection of caerulein. The animals were divided into 4 groups: WT mice with or without exogenous leptin injection and ob/ob mice with or without leptin treatment. The inflammatory scoring of the pancreas and intestine were evaluated. Intestinal permeability, ileal interleukin (IL)-6 and IL-1β, proliferation, apoptosis and intestinal expression levels of claudin-1 and occludin were measured.

Results

Pancreatic pathologic scores (8.50 ± 0.96 vs. 3.78 ± 1.35, p < 0.001), pancreatic levels of IL-6 (8.34 ± 3.21 ng/mg vs. 4.99 ± 0.53 ng/mg, p = 0.022), intestinal oedema scores (2.25 ± 0.46 vs. 1.14 ± 0.69, p = 0.001) and intestinal permeability to FD4 (0.78 ± 0.06 μg/ml vs. 0.53 ± 0.11 μg/ml, p < 0.001) were significantly higher in ob/ob mice than those in WT mice. Leptin replacement in ob/ob mice greatly improved the intestinal permeability (FD4 0.66 ± 0.03 μg/ml, vs. 0.78 ± 0.06 μg/ml, p = 0.012), increased the ileal expression of claudin-1(1.07 ± 0.08 vs. 0.83 ± 0.07 relative densitometry, p = 0.001) and reduced intestinal IL-6 and IL-1β to levels comparable to those in WT mice. The pancreatic level of IL-6 in ob/ob mice treated with leptin was also significantly decreased relative to that of untreated ob/ob mice (4.45 ± 1.71 ng/mg vs. 8.34 ± 3.21 ng/mg, p = 0.010).

Conclusions

Obesity may aggravate intestinal inflammation and increase intestinal permeability under the condition of acute pancreatitis. Exogenous leptin supplementation was in favour of anti-inflammation and improvement of intestinal mucosal barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forsmark CE,Baillie J, AGA Institute Clinical Practice and Economics Committee; AGA Institute Governing Board AGA Institute technical review on acute pancreatitis. Gastroenterology. 2007;132:2022–44.

    Article  CAS  Google Scholar 

  2. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis–2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–11.

    Article  Google Scholar 

  3. Dellinger EP, Forsmark CE, Layer P, Levy P, Maravi-Poma E, Petrov MS, et al. Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann Surg. 2012;256:875–80.

    Article  Google Scholar 

  4. Yang Z, Dong L, Zhang Y, Yang C, Gou S, Li Y, et al. Prediction of severe acute pancreatitis using a decision tree model based on the revised atlanta classification of acute pancreatitis. PLoS One. 2015;10:e0143486.

    Article  Google Scholar 

  5. Sonika U, Goswami P, Thakur B, Yadav R, Das P, Ahuja V et al. Mechanism of increased intestinal permeability in acute pancreatitis: alteration in tight junction proteins. J Clin Gastroenterol. 2016. doi: 10.1097/mcg.0000000000000612

    Article  CAS  Google Scholar 

  6. Andersson R, Wang X, Sun Z, Deng X, Soltesz V, Ihse I. Effect of a platelet-activating factor antagonist on pancreatitis-associated gut barrier dysfunction in rats. Pancreas. 1998;17:107–19.

    Article  CAS  Google Scholar 

  7. Wu LM, Sankaran SJ, Plank LD, Windsor JA, Petrov MS. Meta-analysis of gut barrier dysfunction in patients with acute pancreatitis. Br J Surg. 2014;101:1644–56.

    Article  CAS  Google Scholar 

  8. Merilainen S, Makela J, Koivukangas V, Jensen HA, Rimpilainen E, Yannopoulos F, et al. Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis. Hepatogastroenterol. 2012;59:599–606.

    Google Scholar 

  9. Guo ZZ, Wang P, Yi ZH, Huang ZY, Tang CW. The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des. 2014;20:1051–62.

    Article  CAS  Google Scholar 

  10. Sadr-Azodi O, Orsini N, Andren-Sandberg A, Wolk A. Abdominal and total adiposity and the risk of acute pancreatitis: a population-based prospective cohort study. Am J Gastroenterol. 2013;108:133–9.

    Article  CAS  Google Scholar 

  11. Martinez J, Johnson CD, Sanchez-Paya J, de Madaria E, Robles-Diaz G, Perez-Mateo M. Obesity is a definitive risk factor of severity and mortality in acute pancreatitis: an updated meta-analysis. Pancreatol. 2006;6:206–9.

    Article  CAS  Google Scholar 

  12. FYC-hWX-bZR J. Incidence of severe acute pancreatitis in obese patients: a prospective multicenter controlled study. Chin J Pancreatol. 2010;10:3.

    Article  Google Scholar 

  13. Chen SM, Xiong GS, Wu SM. Is obesity an indicator of complications and mortality in acute pancreatitis? An updated meta-analysis. J Dig Dis. 2012;13:244–51.

    Article  Google Scholar 

  14. Krishna SG, Hinton A, Oza V, Hart PA, Swei E, El-Dika S, et al. Morbid obesity is associated with adverse clinical outcomes in acute pancreatitis: a propensity-matched study. Am J Gastroenterol. 2015;110:1608–19.

    Article  CAS  Google Scholar 

  15. Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palu G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G518–25.

    Article  CAS  Google Scholar 

  16. Steiner AA, Romanovsky AA. Leptin: at the crossroads of energy balance and systemic inflammation. Prog Lipid Res. 2007;46:89–107.

    Article  CAS  Google Scholar 

  17. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  Google Scholar 

  18. Fenton JI, Hursting SD, Perkins SN, Hord NG. Interleukin-6 production induced by leptin treatment promotes cell proliferation in an Apc (Min/+) colon epithelial cell line. Carcinogenesis. 2006;27:1507–15.

    Article  CAS  Google Scholar 

  19. Deng ZH Jr, Yan GT, Wang LH, Zhang JY, Xue H, Zhang K. Leptin relieves intestinal ischemia/reperfusion injury by promoting ERK1/2 phosphorylation and the NO signaling pathway. J Trauma Acute Care Surg. 2012;72:143–9.

    CAS  Google Scholar 

  20. Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefel WT, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44–56.

    Article  CAS  Google Scholar 

  21. Wang X, Wang B, Wu J, Wang G. Beneficial effects of growth hormone on bacterial translocation during the course of acute necrotizing pancreatitis in rats. Pancreas. 2001;23:148–56.

    Article  CAS  Google Scholar 

  22. Siegmund B, Lehr HA, Fantuzzi G. Leptin: a pivotal mediator of intestinal inflammation in mice. Gastroenterology. 2002;122:2011–25.

    Article  CAS  Google Scholar 

  23. Gao JH, Wen SL, Yang WJ, Lu YY, Tong H, Huang ZY, et al. Celecoxib ameliorates portal hypertension of the cirrhotic rats through the dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. PLoS One. 2013;8:e69309.

    Article  CAS  Google Scholar 

  24. Frossard JL, Lescuyer P, Pastor CM. Experimental evidence of obesity as a risk factor for severe acute pancreatitis. World J Gastroenterol. 2009;15:5260–5.

    Article  CAS  Google Scholar 

  25. Hall TC, Stephenson JS, Jones MJ, Ngu WS, Horsfield MA, Rajesh A, et al. Is abdominal fat distribution measured by axial CT imaging an indicator of complications and mortality in acute pancreatitis? J Gastrointest Surg. 2015;19:2126–31.

    Article  CAS  Google Scholar 

  26. Yasuda T, Takeyama Y, Ueda T, Shinzeki M, Sawa H, Nakajima T, et al. Breakdown of intestinal mucosa via accelerated apoptosis increases intestinal permeability in experimental severe acute pancreatitis. J Surg Res. 2006;135:18–26.

    Article  CAS  Google Scholar 

  27. Landahl P, Ansari D, Andersson R. Severe acute pancreatitis: gut barrier failure, systemic inflammatory response, acute lung injury, and the role of the mesenteric lymph. Surg Infect (Larchmt). 2015;16:651–6.

    Article  Google Scholar 

  28. Capurso G, Zerboni G, Signoretti M, Valente R, Stigliano S, Piciucchi M, et al. Role of the gut barrier in acute pancreatitis. J Clin Gastroenterol. 2012;46(Suppl):S46–51.

    Article  Google Scholar 

  29. Li H, Lelliott C, Hakansson P, Ploj K, Tuneld A, Verolin-Johansson M, et al. Intestinal, adipose, and liver inflammation in diet-induced obese mice. Metabolism. 2008;57:1704–10.

    Article  CAS  Google Scholar 

  30. Teixeira LG, Leonel AJ, Aguilar EC, Batista NV, Alves AC, Coimbra CC, et al. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis. 2011;10:204.

    Article  Google Scholar 

  31. Le Drean G, Segain JP. Connecting metabolism to intestinal barrier function: The role of leptin. Tissue Barriers. 2014;2:e970940.

    Article  Google Scholar 

  32. Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gomez-Reino JJ, et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13:100–9.

    Article  CAS  Google Scholar 

  33. Cui H, Lopez M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol. 2017;13:338–51.

    Article  CAS  Google Scholar 

  34. Drew JE, Farquharson AJ, Padidar S, Duthie GG, Mercer JG, Arthur JR, et al. Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine. Am J Physiol Gastrointest Liver Physiol. 2007;293:G682–91.

    Article  CAS  Google Scholar 

  35. Barrenetxe J, Villaro AC, Guembe L, Pascual I, Munoz-Navas M, Barber A, et al. Distribution of the long leptin receptor isoform in brush border, basolateral membrane, and cytoplasm of enterocytes. Gut. 2002;50:797–802.

    Article  CAS  Google Scholar 

  36. Aoun E, Chen J, Reighard D, Gleeson FC, Whitcomb DC, Papachristou GI. Diagnostic accuracy of interleukin-6 and interleukin-8 in predicting severe acute pancreatitis: a meta-analysis. Pancreatol. 2009;9:777–85.

    Article  CAS  Google Scholar 

  37. Lesina M, Wormann SM, Neuhofer P, Song L, Algul H. Interleukin-6 in inflammatory and malignant diseases of the pancreas. Semin Immunol. 2014;26:80–7.

    Article  CAS  Google Scholar 

  38. Lin J, Barb CR, Matteri RL, Kraeling RR, Chen X, Meinersmann RJ, et al. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig. Domest Anim Endocrinol. 2000;19:53–61.

    Article  CAS  Google Scholar 

  39. Sekizuka E, Grisham MB, Li M, Deitch EA, Granger DN. Inflammation-induced intestinal hyperemia in the rat: role of neutrophils. Gastroenterology. 1988;95:1528–34.

    Article  CAS  Google Scholar 

  40. Ligumsky M, Simon PL, Karmeli F, Rachmilewitz D. Role of interleukin 1 in inflammatory bowel disease–enhanced production during active disease. Gut. 1990;31:686–9.

    Article  CAS  Google Scholar 

  41. Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68:437–46.

    CAS  Google Scholar 

  42. Luan B, Goodarzi MO, Phillips NG, Guo X, Chen YD, Yao J, et al. Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation via activation of macrophage HDAC4. Cell Metab. 2014;19:1058–65.

    Article  CAS  Google Scholar 

  43. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394:897–901.

    Article  CAS  Google Scholar 

  44. Katiyar SK, Meeran SM. Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med. 2007;42:299–310.

    Article  CAS  Google Scholar 

  45. Gove ME, Rhodes DH, Pini M, van Baal JW, Sennello JA, Fayad R, et al. Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and hepatic inflammation in mice. J Leukoc Biol. 2009;85:491–6.

    Article  CAS  Google Scholar 

  46. Sanchez-Margalet V, Martin-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol. 2003;133:11–9.

    Article  CAS  Google Scholar 

  47. Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.

    Article  CAS  Google Scholar 

  48. Walsh SV, Hopkins AM, Chen J, Narumiya S, Parkos CA, Nusrat A. Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology. 2001;121:566–79.

    Article  CAS  Google Scholar 

  49. Jaffe T, Schwartz B. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int J Cancer. 2008;123:2543–56.

    Article  CAS  Google Scholar 

  50. Russo JM, Florian P, Shen L, Graham WV, Tretiakova MS, Gitter AH, et al. Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial purse-string wound closure. Gastroenterology. 2005;128:987–1001.

    Article  CAS  Google Scholar 

  51. Wang X, Wang B, Wu K, Xu M, Gong Z. Growth hormone downregulated the excessive apoptosis of ileal intestinal epithelial cells in rats during the early course of acute necrotizing pancreatitis. Pancreas. 2002;25:205–9.

    Article  Google Scholar 

  52. Sukhotnik I, Vadasz Z, Coran AG, Lurie M, Shiloni E, Hatoum OA, et al. Effect of leptin on intestinal re-growth following massive small bowel resection in rat. Pediatr Surg Int. 2006;22:9–15.

    Article  Google Scholar 

  53. Chan YC, Leung PS. Acute pancreatitis: animal models and recent advances in basic research. Pancreas. 2007;34:1–14.

    Article  Google Scholar 

  54. Bersudsky M, Luski L, Fishman D, White RM, Ziv-Sokolovskaya N, Dotan S, et al. Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut. 2014;63:598–609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (NSFC, 81300359, 81401949, U1702281, 81200285 and 81670551), Chinesisch-Deutsches Zentrum für Wissenschaftsförderung (GZ1065), The Science and Technology Support Program of Sichuan Province (2016SZ0041) and by the National Key R&D Program of China (2017YFA0205400). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of this manuscript. We would like to thank Associate Professor Rui Liu, technician Chong Zhao from the Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University; intermediate technician Sisi Wu, and technicians Yu Ding, Xuemei Chen and Guonian Zhu from the Core Facility, West China Hospital, Sichuan University, for their technical assistance.

Funding

This study was funded by the Natural Science Foundation of China (NSFC, 81300359, 81401949, U1702281, 81200285 and 81670551), Chinesisch-Deutsches Zentrum für Wissenschaftsförderung (GZ1065), the National Key R&D Program of China (2017YFA0205400), and The Science and Technology Support Program of Sichuan Province (2016SZ0041). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwei Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Wang, R., Wang, M. et al. Leptin alleviates intestinal mucosal barrier injury and inflammation in obese mice with acute pancreatitis. Int J Obes 42, 1471–1479 (2018). https://doi.org/10.1038/s41366-018-0125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0125-y

This article is cited by

Search

Quick links