Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Metabolic effects of genetic variation in the human REPIN1 gene

Abstract

Background

Replication initiator 1 (Repin1) is a zinc finger protein highly expressed in liver and adipose tissue. The Repin1 resides within a quantitative trait locus (QTL) for body weight and triglyceride levels in the rat, and its hepatic deletion in mice results in improved insulin sensitivity and lower body weight. Here, we analyzed whether genetic variation within the Repin1 affects parameters of glucose and lipid metabolism.

Methods

We sequenced REPIN1 in 48 non-related Caucasian subjects. We discovered a 12 base pair deletion (12 bp del; rs3832490), which was subsequently genotyped in two well-characterized cohorts (N = 3013) to test for associations with metabolic traits. Functional consequences of the variant were investigated in HepG2 cells in vitro.

Results

In human cohorts, we show that the 12 bp del associates with improved glucose metabolism (lower fasting plasma glucose, fasting plasma insulin, and HOMA IR). Cells transfected with the plasmid carrying the 12 bp del variant are characterized by increased GLUT2 and fatty acid translocase CD36 expression and more lipid droplets.

Conclusion

Our data suggest that genetic variation in human REPIN1 plays a role in glucose and lipid metabolism by differentially affecting the expression of REPIN1 target genes including glucose and fatty acid transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  Google Scholar 

  2. Kovács P, Klöting I. Quantitative trait loci on chromosomes 1 and 4 affect lipid phenotypes in the rat. Arch Biochem Biophys. 1998;354:139–43.

    Article  Google Scholar 

  3. Klöting N, Wilke B, Klöting I. Triplet repeat in theRepin1 3′-untranslated region on rat chromosome 4 correlates with facets of the metabolic syndrome. Diabetes Metab Res Rev. 2007;23:406–10.

    Article  Google Scholar 

  4. Caddle MS, Dailey L, Heintz NH. RIP60, a mammalian origin-binding protein, enhances DNA bending near the dihydrofolate reductase origin of replication. Mol Cell Biol. 1990;10:6236–6243.

    Article  CAS  Google Scholar 

  5. Houchens CR, Montigny W, Zeltser L, Dailey L, Gilbert JM, Heintz NH. The dhfr oribeta-binding protein RIP60 contains 15 zinc fingers: DNA binding and looping by the central three fingers and an associated proline-rich region. Nucleic Acids Res. 2000;28:570–81.

    Article  CAS  Google Scholar 

  6. Ruschke K, Illes M, Kern M, Klöting I, Fasshauer M, Schön MR, et al. Repin1 maybe involved in the regulation of cell size and glucose transport in adipocytes. Biochem Biophys Res Commun. 2010;400:246–51.

    Article  CAS  Google Scholar 

  7. Kunath A, Hesselbarth N, Gericke M, Kern M, Dommel S, Kovacs P, et al. Repin1 deficiency improves insulin sensitivity and glucose metabolism in db/db mice by reducing adipose tissue mass and inflammation. Biochem Biophys Res Commun. 2016;478:398–402.

    Article  CAS  Google Scholar 

  8. Hesselbarth N, Kunath A, Kern M, Gericke M, Mejhert N, Rydén M, et al. Repin1 deficiency in adipose tissue improves whole-body insulin sensitivity, and lipid metabolism. Int J Obes (Lond). 2017;41:1815–23.

    Article  CAS  Google Scholar 

  9. Kern M, Kosacka J, Hesselbarth N, Bruckner J, Heiker JT, Flehmig G, et al. Liver-restricted repin1 deficiency improves whole-body insulin sensitivity, alters lipid metabolism, and causes secondary changes in adipose tissue in mice. Diabetes. 2014;63:3295–309.

    Article  CAS  Google Scholar 

  10. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  CAS  Google Scholar 

  11. Standards of medical care in diabetes--2010. Diabetes Care American Diabetes Association 2010;33 (Suppl 1):S11–61.

  12. Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3:25–38.

    Article  Google Scholar 

  13. Tönjes A, Koriath M, Schleinitz D, Dietrich K, Böttcher Y, Rayner NW, et al. Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum Mol Genet. 2009;18:4662–8.

    Article  Google Scholar 

  14. Tönjes A, Zeggini E, Kovacs P, Böttcher Y, Schleinitz D, Dietrich K, et al. Association of FTO variants with BMI and fat mass in the self-contained population of Sorbs in Germany. Eur J Hum Genet. 2010;18:104–10.

    Article  Google Scholar 

  15. Veeramah KR, Tönjes A, Kovacs P, Gross A, Wegmann D, Geary P, et al. Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur J Hum Genet. 2011;19:995–1001.

    Article  Google Scholar 

  16. Krowczynska AM, Coutts M, Makrides S, Brawerman G. The mouse homologue of the human acidic ribosomal phosphoprotein PO: a highly conserved polypeptide that is under translational control. Nucleic Acids Res. 1989;17:6408.

    Article  CAS  Google Scholar 

  17. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–38.

    Article  CAS  Google Scholar 

  18. Miquilena-Colina ME, Lima-Cabello E, Sanchez-Campos S, Garcia-Mediavilla MV, Fernandez-Bermejo M, Lozano-Rodriguez T, et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut. 2011;60:1394–402.

    Article  CAS  Google Scholar 

  19. Krammer J, Digel M, Ehehalt F, Stremmel W, Fuellekrug J, Ehehalt R. Overexpression of CD36 and Acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci. 2011;8:599–614.

    Article  CAS  Google Scholar 

  20. Contreras AV, Torres N, Tovar AR. PPAR-alpha as a key nutritional and environmental sensor for metabolic adaptation. Adv Nutr. 2013;4:439–52.

    Article  CAS  Google Scholar 

  21. Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501:177–81.

    Article  CAS  Google Scholar 

  22. White UA, Stephens JM. Transcriptional factors that promote formation of white adipose tissue. Mol Cell Endocrinol. 2010;318:10–4.

    Article  CAS  Google Scholar 

  23. Diraison F, Parton L, Ferré P, Foufelle F, Briscoe CP, Leclerc I, et al. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J. 2004;378:769–78.

    Article  CAS  Google Scholar 

  24. Borup A, Christensen PM, Nielsen LB, Christoffersen C. Apolipoprotein M in lipid metabolism and cardiometabolic diseases. Curr Opin Lipidol. 2015;26:48–55.

    Article  CAS  Google Scholar 

  25. Xu N, Nilsson-Ehle P, Ahrén B. Correlation of apolipoprotein M with leptin and cholesterol in normal and obese subjects. J Nutr Biochem. 2004;15:579–82.

    Article  CAS  Google Scholar 

  26. The Genotype-Tissue Expression (GTEx) project. GTEx Consortium Nat Genet. 2013;45:580–5.

  27. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all those who participated in the studies. We would like to acknowledge excellent technical assistance by Ines Müller, Beate Gutsmann, Manuela Quandt, and Viola Döbel. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB 1052 “Obesity mechanisms’, projects B01, B03, B04, C01), from the Deutsche Diabetes Stiftung (DDS- Funktionelle Charakterisierung Adipositas- und Typ 2 Diabetes-assoziierter Varianten im Repin1-Gen), Deutsche Diabetes Gesellschaft (DDG 934300-003) and Deutsches Zentrum für Diabetesforschung (DZD 8200601). IFB Adiposity Diseases is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501 (AD2-060E, AD2-06E95, AD2-06E99). The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Kovacs or Nora Klöting.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, J., Berger, C., Weidle, K. et al. Metabolic effects of genetic variation in the human REPIN1 gene. Int J Obes 43, 821–831 (2019). https://doi.org/10.1038/s41366-018-0123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0123-0

This article is cited by

Search

Quick links