Physiology

The vagus neurometabolic interface and clinical disease

Abstract

The nervous system both monitors and modulates body metabolism to maintain homoeostasis. In disease states such as obesity and diabetes, the neurometabolic interface is dysfunctional and contributes to clinical illness. The vagus nerve, in particular, with both sensory and motor fibres, provides an anatomical substrate for this interface. Its sensory fibres contain receptors for important circulating metabolic mediators, including leptin and cholecystokinin, and provide real-time information about these mediators to the central nervous system. In turn, efferent fibres within the vagus nerve participate in a brain-gut axis to regulate metabolism. In this review, we describe these vagus nerve-mediated metabolic pathways and recent clinical trials of vagus nerve stimulation for the management of obesity. These early studies suggest that neuromodulation approaches that employ electricity to tune neurometabolic circuits may represent a new tool in the clinical armamentarium directed against obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Roberto CA, Swinburn B, Hawkes C, Huang TT-K, Costa SA, Ashe M, et al. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet. 2015;385:2400–9.

    PubMed  Article  Google Scholar 

  2. 2.

    GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  3. 3.

    Emerging Risk Factors Collaboration, Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377:1085–95.

    Article  Google Scholar 

  4. 4.

    Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer--viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8.

    PubMed  Article  Google Scholar 

  5. 5.

    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.

    Article  Google Scholar 

  6. 6.

    International Diabetes Foundation. IDF Diabetes Atlas 7th edn. 2015. www.diabetesatlas.org accessed date April 30, 2018.

  7. 7.

    Rasgon NL, McEwen BS. Insulin resistance-a missing link no more. Mol Psychiatry. 2016;21:1648–52.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Carnethon MR, Jacobs DR, Sidney S, Liu K. CARDIA study. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care. 2003;26:3035–41.

    PubMed  Article  Google Scholar 

  9. 9.

    Carnethon MR, Golden SH, Folsom AR, Haskell W, Liao D. Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: the Atherosclerosis Risk in Communities study, 1987-98. Circulation. 2003;107:2190–5.

    PubMed  Article  Google Scholar 

  10. 10.

    Carnethon MR, Prineas RJ, Temprosa M, Zhang Z-M, Uwaifo G, Molitch ME, et al. The association among autonomic nervous system function, incident diabetes, and intervention arm in the Diabetes Prevention Program. Diabetes Care. 2006;29:914–9.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol. 2015;593:775–86.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Bernard C. Leçons de physiologie expérimentale appliquée à la médecine, faites au Collège de France 1855 edn (Bailère et Fils, Paris, 1855).

  13. 13.

    Banting FG, Best CH. Pancreatic extracts. 1922. J Lab Clin Med. 1990;115:254–72.

    PubMed  CAS  Google Scholar 

  14. 14.

    Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci. 2000;85:1–17.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Faipoux R, Tomé D, Gougis S, Darcel N, Fromentin G. Proteins activate satiety-related neuronal pathways in the brainstem and hypothalamus of rats. J Nutr. 2008;138:1172–8.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Mönnikes H, Lauer G, Arnold R. Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin-sensitive vagal afferents and CCK-A receptors in the rat. Brain Res. 1997;770:277–88.

    PubMed  Article  Google Scholar 

  17. 17.

    Andermann ML, Lowell BB. Toward a wiring diagram understanding of appetite control. Neuron. 2017;95:757–78.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Page AJ, Kentish SJ. Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterol Motil. 2017; 29. https://doi.org/10.1111/nmo.12973.

  19. 19.

    Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743–54.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Burdyga G, Spiller D, Morris R, Lal S, Thompson DG, Saeed S, et al. Expression of the leptin receptor in rat and human nodose ganglion neurones. Neuroscience. 2002;109:339–47.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS ONE. 2012;7:e32967.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Ayush E-A, Iwasaki Y, Iwamoto S, Nakabayashi H, Kakei M, Yada T. Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca(2+) signaling via glucagon receptors. Biochem Biophys Res Commun. 2015;456:727–32.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Kakei M, Yada T, Nakagawa A, Nakabayashi H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton Neurosci. 2002;102:39–44.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Burdyga G, Varro A, Dimaline R, Thompson DG, Dockray GJ. Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1289–97.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Daly DM, Park SJ, Valinsky WC, Beyak MJ. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011;589:2857–70.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Lankisch TO, Tsunoda Y, Lu Y, Owyang C. Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1002–8.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Li Y. Sensory signal transduction in the vagal primary afferent neurons. Curr Med Chem. 2007;14:2554–63.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Peiser C, Springer J, Groneberg DA, McGregor GP, Fischer A, Lang RE. Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus. Neurosci Lett. 2002;320:41–4.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Niijima A. Hepatoportal leptin sensors and their reflex effects on autonomic outflow in the rat. J Obes. 2011;2011:516842.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Peters JH, McKay BM, Simasko SM, Ritter RC. Leptin-induced satiation mediated by abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol. 2005;288:R879–84.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab. 2014;3:595–607.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Vahl TP, Tauchi M, Durler TS, Elfers EE, Fernandes TM, Bitner RD, et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology. 2007;148:4965–73.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Balkan B, Li X. Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1449–54.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Fujiwara K, Gotoh K, Chiba S, Masaki T, Katsuragi I, Kakuma T, et al. Intraportal administration of DPP-IV inhibitor regulates insulin secretion and food intake mediated by the hepatic vagal afferent nerve in rats. J Neurochem. 2012;121:66–76.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Krieger J-P, Arnold M, Pettersen KG, Lossel P, Langhans W, Lee SJ. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes. 2016;65:34–43.

    PubMed  CAS  Google Scholar 

  36. 36.

    Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97:411–63.

  37. 37.

    Grabauskas G, Wu X, Lu Y, Heldsinger A, Song I, Zhou S-Y, et al. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol. 2015;593:3973–89.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Naznin F, Toshinai K, Waise TMZ, NamKoong C, Md Moin AS, Sakoda H, et al. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J Endocrinol. 2015;226:81–92.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Paulino G, Barbier de la Serre C, Knotts TA, Oort PJ, Newman JW, Adams SH, et al. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am J Physiol Endocrinol Metab. 2009;296:E898–903.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Kentish SJ, Vincent AD, Kennaway DJ, Wittert GA, Page AJ. High-fat diet-induced obesity ablates gastric vagal afferent circadian rhythms. J Neurosci. 2016;36:3199–207.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O’Donnell TA, et al. TRPV1 channels and gastric vagal afferent signalling in lean and high fat diet induced obese mice. PLoS ONE. 2015;10:e0135892.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Kentish SJ, O’Donnell TA, Frisby CL, Li H, Wittert GA, Page AJ. Altered gastric vagal mechanosensitivity in diet-induced obesity persists on return to normal chow and is accompanied by increased food intake. Int J Obes. 2014;38:636–42.

    Article  CAS  Google Scholar 

  43. 43.

    Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance--recent advances. Physiol Behav. 2011;104:621–3.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Duca FA, Bauer PV, Hamr SC, Lam TKT. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 2015;22:367–80.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Rasmussen BA, Breen DM, Luo P, Cheung GWC, Yang CS, Sun B, et al. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology. 2012;142:834–843.e3.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Darling RA, Zhao H, Kinch D, Li A-J, Simasko SM, Ritter S. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol. 2014;307:R35–43.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Hankir MK, Seyfried F, Hintschich CA, Diep T-A, Kleberg K, Kranz M, et al. Gastric bypass surgery recruits a gut PPAR-α-striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab. 2017;25:335–44.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Niijima A, Torii K, Uneyama H. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal: an electrophysiological study. Chem Senses. 2005;30(Suppl 1):i178–9.

    PubMed  Article  Google Scholar 

  49. 49.

    de Lartigue G, Lur G, Dimaline R, Varro A, Raybould H, Dockray GJ. EGR1 is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons. Endocrinology. 2010;151:3589–99.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Peters JH, Simasko SM, Ritter RC. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol Behav. 2006;89:477–85.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Kentish S, Li H, Philp LK, O’Donnell TA, Isaacs NJ, Young RL, et al. Diet-induced adaptation of vagal afferent function. J Physiol. 2012;590:209–21.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1:53–61.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376–82.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Mighiu PI, Yue JTY, Filippi BM, Abraham MA, Chari M, Lam CKL, et al. Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med. 2013;19:766–72.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Lin HV, Plum L, Ono H, Gutiérrez-Juárez R, Shanabrough M, Borok E, et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes. 2010;59:337–46.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Kimura K, Tanida M, Nagata N, Inaba Y, Watanabe H, Nagashimada M, et al. Central insulin action activates Kupffer cells by suppressing hepatic vagal activation via the nicotinic alpha 7 acetylcholine receptor. Cell Rep. 2016;14:2362–74.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab. 2006;3:267–75.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, et al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest. 2011;121:3713–23.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Matsuhisa M, Yamasaki Y, Shiba Y, Nakahara I, Kuroda A, Tomita T, et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism. 2000;49:11–6.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    López-Soldado I, Fuentes-Romero R, Duran J, Guinovart JJ. Effects of hepatic glycogen on food intake and glucose homeostasis are mediated by the vagus nerve in mice. Diabetologia. 2017;60:1076–83.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Kalia M. Brain stem localization of vagal preganglionic neurons. J Auton Nerv Syst. 1981;3:451–81.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Jansen AS, Hoffman JL, Loewy AD. CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 1997;766:29–38.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Ionescu E, Rohner-Jeanrenaud F, Berthoud HR, Jeanrenaud B. Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology. 1983;112:904–10.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Daniel PM, Henderson JR. The effect of vagal stimulation on plasma insulin and glucose levels in the baboon. J Physiol. 1967;192:317–27.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Frohman LA, Ezdinli EZ, Javid R. Effect of vagotomy and vagal stimulation on insulin secretion. Diabetes. 1967;16:443–8.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116:1802–12.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Kaneto A, Kosaka K, Nakao K. Effects of stimulation of the vagus nerve on insulin secretion. Endocrinology. 1967;80:530–6.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Lausier J, Diaz WC, Roskens V, LaRock K, Herzer K, Fong CG, et al. Vagal control of pancreatic ß-cell proliferation. Am J Physiol Endocrinol Metab. 2010;299:E786–93.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Edvell A, Lindström P. Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol. 1998;274:E1034–9.

    PubMed  CAS  Google Scholar 

  70. 70.

    Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science. 2008;322:1250–4.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Yamamoto J, Imai J, Izumi T, Takahashi H, Kawana Y, Takahashi K, et al. Neuronal signals regulate obesity induced β-cell proliferation by FoxM1 dependent mechanism. Nat Commun. 2017;8:1930.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes. 2004;53:1714–20.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Lee KC, Miller RE. The hepatic vagus nerve and the neural regulation of insulin secretion. Endocrinology. 1985;117:307–14.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280:339–49.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62:3341–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Nielsen J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 2017;25:572–9.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Geng J, Nielsen J. In silico analysis of human metabolism: reconstruction, contextualization and application of genome-scale models. Curr Opin Syst Biol. 2017;2:29–38.

    Article  Google Scholar 

  80. 80.

    Lee S, Zhang C, Kilicarslan M, Piening BD, Bjornson E, Hallström BM, et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 2016;24:172–84.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Wu H, Tremaroli V, Bäckhed F. Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab. 2015;26:758–70.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol. 2017;35:81–9.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Kral JG. Vagotomy for treatment of severe obesity. Lancet. 1978;1:307–8.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Johnston D, Wilkinson AR. Highly selective vagotomy without a drainage procedure in the treatment of duodenal ulcer. Br J Surg. 1970;57:289–96.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Amdrup E, Jensen HE. Selective vagotomy of the parietal cell mass preserving innervation of the undrained antrum. A preliminary report of results in patients with duodenal ulcer. Gastroenterology. 1970;59:522–7.

    PubMed  CAS  Google Scholar 

  86. 86.

    Hoffmann J, Jensen HE, Christiansen J, Olesen A, Loud FB, Hauch O. Prospective controlled vagotomy trial for duodenal ulcer. Results after 11-15 years. Ann Surg. 1989;209:40–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Burneo JG, Faught E, Knowlton R, Morawetz R, Kuzniecky R. Weight loss associated with vagus nerve stimulation. Neurology. 2002;59:463–4.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Pardo JV, Sheikh SA, Kuskowski MA, Surerus-Johnson C, Hagen MC, Lee JT, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes. 2007;31:1756–9.

    Article  CAS  Google Scholar 

  89. 89.

    Tweden KS, Anvari M, Bierk MD, Billington CJ, Camillen M, Honda CN, et al. Vagal blocking for obesity control (VBLOC): concordance of effects of very high frequency blocking current at the neural and organ levels using two preclinical models. Gastroenterology. 2006;130:A148.

    Google Scholar 

  90. 90.

    Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H, Brancatisano R, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:245683.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Camilleri M, Toouli J, Herrera MF, Kulseng B, Kow L, Pantoja JP, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143:723–31.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Camilleri M, Toouli J, Herrera MF, Kow L, Pantoja JP, Billington CJ, et al. Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device. Surg Obes Relat Dis. 2009;5:224–9.

    PubMed  Article  Google Scholar 

  93. 93.

    Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, et al. The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg. 2012;22:1771–82.

    PubMed  Article  Google Scholar 

  94. 94.

    Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014;312:915–22.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Shikora SA, Wolfe BM, Apovian CM, Anvari M, Sarwer DB, Gibbons RD, et al. Sustained weight loss with vagal nerve blockade but not with sham: 18-month results of the ReCharge trial. J Obes. 2015;2015:365604.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Morton JM, Shah SN, Wolfe BM, Apovian CM, Miller CJ, Tweden KS, et al. Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge study. Obes Surg. 2016;26:983–9.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, et al. Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the ReCharge trial. Obes Surg. 2017;27:169–76.

    PubMed  Article  Google Scholar 

  98. 98.

    Laskiewicz J, Królczyk G, Zurowski G, Sobocki J, Matyja A, Thor PJ. Effects of vagal neuromodulation and vagotomy on control of food intake and body weight in rats. J Physiol Pharmacol. 2003;54:603–10.

    PubMed  CAS  Google Scholar 

  99. 99.

    Laskiewicz J, Królczyk G, Zurowski D, Enck P, Thor PJ. Capasaicin induced deafferentation enhances the effect of electrical vagal nerve stimulation on food intake and body mass. J Physiol Pharmacol. 2004;55:155–63.

    PubMed  CAS  Google Scholar 

  100. 100.

    Val-Laillet D, Biraben A, Randuineau G, Malbert CH. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite. 2010;55:245–52.

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat. 2002;15:35–7.

    PubMed  Article  Google Scholar 

  102. 102.

    Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624–36.

    PubMed  Article  Google Scholar 

  103. 103.

    Yakunina N, Kim SS, Nam E-C. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20:290–300.

    PubMed  Article  Google Scholar 

  104. 104.

    He W, Wang X-Y, Zhou L, Li Z-M, Jing X-H, Lv Z-L, et al. Transcutaneous auricular vagus nerve stimulation for pediatric epilepsy: study protocol for a randomized controlled trial. Trials. 2015;16:371.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J Affect Disord. 2016;195:172–9.

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Huang F, Dong J, Kong J, Wang H, Meng H, Spaeth RB, et al. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement Altern Med. 2014;14:203.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Johannessen H, Revesz D, Kodama Y, Cassie N, Skibicka KP, Barrett P, et al. Vagal blocking for obesity control: a possible mechanism-of-action. Obes Surg. 2017;27:177–85.

    PubMed  Article  Google Scholar 

  108. 108.

    Chae J-H, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, et al. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res. 2003;37:443–55.

    PubMed  Article  Google Scholar 

  109. 109.

    Agurs-Collins TD, Kumanyika SK, Ten Have TR, Adams-Campbell LL. A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects. Diabetes Care. 1997;20:1503–11.

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Boulé NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.

    PubMed  Article  Google Scholar 

  111. 111.

    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386:964–73.

    PubMed  Article  Google Scholar 

  113. 113.

    Starup-Linde J, Gejl M, Borghammer P, Knop FK, Gregersen S, Rungby J, et al. Vagotomy and subsequent development of diabetes - a nested case-control study. Metabolism. 2016;65:954–60.

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R, Kow L, et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg. 2016;26:1021–8.

    PubMed  Article  Google Scholar 

  115. 115.

    Sathananthan M, Ikramuddin S, Swain JM, Shah M, Piccinini F, Dalla Man C, et al. The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects. Diabetes Metab Syndr Obes. 2014;7:305–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  116. 116.

    Malbert C-H, Picq C, Divoux J-L, Henry C, Horowitz M. Obesity-associated alterations in glucose metabolism are reversed by chronic bilateral stimulation of the abdominal vagus nerve. Diabetes. 2017;66:848–57.

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Gram DX, Ahrén B, Nagy I, Olsen UB, Brand CL, Sundler F, et al. Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci. 2007;25:213–23.

    PubMed  Article  Google Scholar 

  118. 118.

    Suri A, Szallasi A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci. 2008;29:29–36.

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Diepenbroek C, Quinn D, Stephens R, Zollinger B, Anderson S,Pan A, et al. Validation and characterization of a novel method for selective vagal deafferentation of the gut. Am J Physiol Gastrointest Liver Physiol. 2017;313:G342–G352.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  120. 120.

    Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13:399–400.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Miguel F. Herrera and Juan P. Pantoja for technical and methodological discussion regarding clinical aspects of gastric electrical stimulation, and Jesse Roth and Valentin Pavlov for critical reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ethan Steinberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masi, E.B., Valdés-Ferrer, S.I. & Steinberg, B.E. The vagus neurometabolic interface and clinical disease. Int J Obes 42, 1101–1111 (2018). https://doi.org/10.1038/s41366-018-0086-1

Download citation

Further reading

Search