Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physiology

The case of GWAS of obesity: does body weight control play by the rules?

Abstract

As yet, genome-wide association studies (GWAS) have not added much to our understanding of the mechanisms of body weight control and of the etiology of obesity. This shortcoming is widely attributed to the complexity of the issues. The appeal of this explanation notwithstanding, we surmise that (i) an oversimplification of the phenotype (namely by the use of crude anthropometric traits) and (ii) a lack of sound concepts of body weight control and, thus, a lack of a clear research focus have impeded better insights most. The idea of searching for polygenetic mechanisms underlying common forms of obesity was born out of the impressive findings made for monogenetic forms of extreme obesity. In the case of common obesity, however, observational studies on normal weight and overweight subjects never provided any strong evidence for a tight internal control of body weight. In addition, empirical studies of weight changes in normal weight and overweight subjects revealed an intra-individual variance that was similar to inter-individual variance suggesting the absence of tight control of body weight. Not least, this lack of coerciveness is reflected by the present obesity epidemic. Finally, data on detailed body composition highlight that body weight is too heterogeneous a phenotype to be controlled as a single entity. In summary GWAS of obesity using crude anthropometric traits have likely been misled by popular heritability estimates that may have been inflated in the first place. To facilitate more robust and useful insights into the mechanisms of internal control of human body weight and, consequently, the genetic basis of obesity, we argue in favor of a broad discussion between scientists from the areas of integrative physiologic and of genomics. This discussion should aim at better conceived studies employing biologically more meaningful phenotypes based on in depth body composition analysis. To advance the scientific community—including the editors of our top journals—needs a re-launch of future GWAS of obesity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Papandonatos GD, Pan Q, Pajewski NM, Delahanty LM, Peter I, Erar B, et al. Diabetes Prevention Program and the Look AHEAD Research Groups. Genetic Predisposition to Weight Loss and Regain with Lifestyle Intervention: Analyses from the Diabetes Prevention Program and the Look AHEAD Randomized Controlled Trials. Diabetes. 2015;64:4312–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Blundell J, Dulloo AG, Salvador J. Frühbeck G on behalf of the EASO SAB Working Group on BMI. Beyond BMI-phenotyping the obesities. Obes facts. 2014;7:322–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Müller MJ, Braun W, Enderle J, Bosy-Westphal A. Beyond BMI: conceptual issues related to overweight and obese patients. Obes facts. 2016;9:193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gonzales MC, Correira MITD, Heymsfield SB. A requiem for BMI in the clinical setting. Curr Op Clin Nutr Metab. 2017, https://doi.org/10.1097/MCO.0000000000000395

    Article  PubMed  Google Scholar 

  6. Ried JS, Jeff MJ, Chu AY, Bragg-Gresham JL, van Dongen J, Huffman JE. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat Commun. 2016;7:13357.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11:e1005378.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S. Correction: The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2016;12:e1006166.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lu Y, Day FR, Gustafsson S, Buchkovich ML, Na J, Bataille V, Cousminer DJ, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7:10495.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sung YJ, Pérusse L, Sarzynski MA, Fornage M, Sidney S, Sternfeld B, et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes. 2016;40:662–74.

    CAS  Article  Google Scholar 

  11. Fox CS, Liu Y, White CC, Feitosa M, Smith AV, Heard-Costa N, et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 2012;8:e1002695.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Zillikens MC, Demissie S, Hsu YH, Yerges-Armstrong LM, Chou WC, Stolk L, et al. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun. 2017;8:80 https://doi.org/10.1038/s41467-017-00031-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Livshits G, Malkan L, Moayyeri A, Spector TD, Hammond CI. Association of FTO gene variants with body composition in UK twins. Ann Hum Genet. 2012;76:333–41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Speakman JR. The ‘Fat mass and obesity related’ (FTO) gene: mechanisms of impact on obesity and energy balance. Curr Obes Rep. 2015;4:73–91.

    Article  PubMed  Google Scholar 

  16. C Bouchard, GA Bray (editors), Regulation of body weight, biological and behavioral mechanisms. Dahlem Workshop Reports, Life Sciences Research Report No 57, John Wiley & Sons, Chichester, UK, 1996.

  17. Müller MJ, Langemann D, Gehrke I, Later W, Heller M, Glüer CC, et al. Effect of constitution on mass of individual organs and their association with metabolic rate in humans--a detailed view on allometric scaling. PLoS ONE. 2011;6:e22732.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schuna JM Jr, Peterson CM, Thomas DM, Heo M, Hong S, Choi W, Heymsfield SB. Scaling of adult regional body mass and body composition as a whole to height: relevance to body shape and body mass index. Am J Hum Biol. 2015;27:372–9.

    Article  PubMed  Google Scholar 

  19. Bergman RN. A better index of body adiposity. Obesity. 2012;20:1135.

    Article  PubMed  Google Scholar 

  20. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7:e39504.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Thomas DM, Bredlau K, Bosy-Westphal A, Müller MJ, Shen W, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21:2264–71.

    Article  PubMed  Google Scholar 

  22. Katzmarzyk PT, Bouchard C. Where is the beef? Waist circumference is more highly correlated with BMI and total body fat than with abdominal visceral fat in children. Int J Obes. 2014;38:753–4.

    CAS  Article  Google Scholar 

  23. Bouchard C. BMI, fat mass, abdominal adiposity and visceral fat: where is the ‘beef’? Int J Obes. 2007;31:1552–3.

    CAS  Article  Google Scholar 

  24. Bosy-Westphal A, Danielzik S, Geisler C, Onur S, Korth O, Selberg O, et al. Use of height3: waist circumference3 as an index for metabolic risk assessment? Br J Nutr. 2006;95:1212–20.

    CAS  Article  PubMed  Google Scholar 

  25. Soileau L, Bautista D, Johnson C, Gao C, Zhang K, Li X, et al. Automated anthropometric phenotyping with novel Kinect-based three-dimensional imaging method: comparison with a reference laser imaging system. Eur J Clin Nutr. 2016;70:475–81.

    CAS  Article  PubMed  Google Scholar 

  26. He W, Li Q, Yang M, Jiao J, Ma X, Zhou Y, et al. Lower BMI cutoffs to define overweight and obesity in China. Obesity. 2015;23:684–91.

    Article  PubMed  Google Scholar 

  27. Katzmarzyk PT, Bray GA, Greenway FL, Johnson WD, Newton RL Jr, Ravussin E, et al. Ethnic-specific BMI and waist circumference thresholds. Obesity. 2011;19:1272–8.

    CAS  Article  PubMed  Google Scholar 

  28. Schutz Y. Balance. In: Caballero B, Allen L, Prentice A, editors. Encyclopedia of human nutrition, 2nd edn. 2005; Vol. 2, pp. 115–25.

  29. Leibel R. Molecular physiology of weight regulation in mice and humans. Int J Obes. 2008;32(Suppl 7):S98–S108.

    CAS  Article  Google Scholar 

  30. Müller MJ, Enderle J, Bosy-Westphal A. Changes in energy expenditure with weight gain and weight loss in humans. Curr Obes Rep. 2016;5:413–23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pourhassan M, Bosy-Westphal A, Schautz B, Braun W, Glüer CC, Müller MJ. Impact of body composition during weight change on resting energy expenditure and homeostasis model assessment index in overweight nonsmoking adults. Am J Clin Nutr. 2014;99:779–91.

    CAS  Article  PubMed  Google Scholar 

  32. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL. The Biology of Human Starvation. Minneapolis: The University of Minnesota Press; 1950.

    Book  Google Scholar 

  33. Dulloo AG, Jaquet J. The control of partitioning between protein and fat during human starvation: its internal determinants and biological significance. Br J Nutr. 1999;82:339–56.

    CAS  Article  PubMed  Google Scholar 

  34. Hall KD. Modeling metabolic adaptations and energy regulation in ⎕humans. Annu Rev Nutr. 2012;32:35–54.

    CAS  Article  PubMed  Google Scholar 

  35. Hopkins M, Blundell JE. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci. 2016;130:1615–28.

    CAS  Article  Google Scholar 

  36. Müller MJ. From BMI to functional body composition. Eur J Clin Nutr. 2013;67:1119–21.

    Article  PubMed  Google Scholar 

  37. Müller MJ, Braun W, Pourhassan M, Geisler C, Bosy-Westphal A. Application of standards and models in body composition analysis. Proc Nutr Soc. 2016;75:181–7.

    Article  PubMed  Google Scholar 

  38. Speakman JR. If body fatness is under physiological regulation, then how come we have an obesity epidemic. Physiology. 2014;29:88–98.

    CAS  Article  PubMed  Google Scholar 

  39. Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;16:603–34.

    Article  Google Scholar 

  40. Hill JO. Can a small-changes approach help to address the obesity epidemic? A report of the joint task force of the American Society of Nutrition, Institute of Food Technologies and International Food Information Council. Am J Clin Nutr. 2009; 477–84.

    Article  PubMed  Google Scholar 

  41. Speakman JR, Levitsky DA, Allison DB, Bray MS, de Castro JM, Clegg DJ, et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech. 2011;4:733–45.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Edholm OG, Fletcher JG, Widdowson EM, McChance RA. The energy expenditure and food intake of individual men. Br J Nutr. 1955;9:286–300.

    CAS  Article  PubMed  Google Scholar 

  43. Dulloo AG, Jacquet J, Girardier L. Autoregulation of body composition during weight recovery in human: the Minnesota Experiment revisited. Int J Obes. 1996;20:393–405.

    CAS  Google Scholar 

  44. Dulloo AG, Jacquet J, Girardier L. Poststarvation hyperphagia and body fat over-shooting in humans: a role for feedback signals from lean and fat tissues. Am J Clin Nutr. 1997;65:717–23.

    CAS  Article  PubMed  Google Scholar 

  45. Dulloo AG, Jaquet J, Miles-Chan JL, Schutz Y. Passive and active roles of fat-free mass in the control of energy intake and body composition regulation. Eur J Clin Nutr. 2016;71:353–7. https://doi.org/10.1038/ejcn2016.256.

    Article  PubMed  Google Scholar 

  46. Lissner L, Habicht JP, Strupp BJ, Haas JD, Roe DA. Body composition and energy intake: Do overweight women overeat or underreport? Am J Clin Nutr. 1989;49:320–5.

    CAS  Article  PubMed  Google Scholar 

  47. Blundell JE, Finlayson G, Gibbons C, Caudwell P, Hopkins M. The biology of appetite control: Do resting metabolic rate and fat-free mass drive energy intake? Physiol Behav. 2015;152(Pt B):473–8.

    CAS  Article  PubMed  Google Scholar 

  48. Heymsfield SB, Gonzalez MC, Shen W, Redman L, Thomas D. Weight loss is one-fourth fat free mass: A critical review and critique of this widely cited rule. Obes Rev. 2014;15:310–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA. Quantification of the effect of energy imbalance on body weight. Lancet. 2011;378:826–37.

    Article  PubMed  Google Scholar 

  50. Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, Goele K, et al. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese patients. Int J Obes. 2013;37:1371–7.

    CAS  Article  Google Scholar 

  51. Bouchard C (editor), The genetics of obesity. Boca Raton, USA: CRC Press; 1994.

  52. Segal NL, Allison DB. Twins and virtual twins: bases of relative body weight revisited. Int J Obes. 2001;26:437–41.

    Article  Google Scholar 

  53. Segal NL, Feng R, McGuire SA, Allison DB, Miller S. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings. Int J Obes. 2009;33:37–41.

    CAS  Article  Google Scholar 

  54. Bouchard C. Defining the genetic architecture of the predis-position to obesity: a challenging but insurmountable task. Am J Clin Nutr. 2010;91:5–6.

    CAS  Article  PubMed  Google Scholar 

  55. Poehlman ET, Depres JP, Marcotte M, Tremblay A, Theriault G, Bouchard C. Genotype-dependency of adaptation of adipose tissue metabolism after short-term overfeeding. Am J Physiol. 1986;250:E480–5.

    CAS  Article  PubMed  Google Scholar 

  56. Bouchard C, Tremblay A, Depres JP, Nadeau A, Lupien PJ, Theriault G, et al. The response to long-term overfeeding in identical twins. New Engl J Med. 1990;322:1477–82.

    CAS  Article  PubMed  Google Scholar 

  57. Bouchard C, Tremblay A, Depres JP, Theriault G, Nadeau A, Lupien PJ, Moorjani S. The response to exercise with constant energy intake in identical twins. Obes Res. 1994;2:400–10.

    CAS  Article  PubMed  Google Scholar 

  58. Poehlman ET, Tremblay A, Marcotte M, Perusse L, Theriault G, Bouchard C. Heredity and changes in body composition and adipose tissue metabolism after short-term exercise-training. Eur J Appl Physiol. 1987;56:398–402.

    CAS  Article  Google Scholar 

  59. Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102:807–19.

    Article  PubMed  Google Scholar 

  60. Mistry SK, Puthussery S. Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: a systematic review of evidence. Public Health. 2015;129:200–9.

    CAS  Article  PubMed  Google Scholar 

  61. Plachta-Danielzik S, Landsberg B, Johannsen M, Lange D, Müller MJ. Determinants of the prevalence and incidence of overweight in children and adolescence. Public Health Nutr. 2010;13:1870–81.

    Article  PubMed  Google Scholar 

  62. Müller MJ, Bosy-Westphal A, Heymsfield SB. Is there evidence for a set point that regulates human body weight? F1000 Med Rep. 2010;2:59 https://doi.org/10.3410/M2-59

    Article  PubMed  PubMed Central  Google Scholar 

  63. Swinburn BA, Jolley D, Kremer PJ, Salbe AD, Ravussin E. Estimating the effects of energy imbalance on changes in body weight in children. Am J Clin Nutr. 2006;83:859–63.

    CAS  Article  PubMed  Google Scholar 

  64. Müller MJ, Geisler C. From the past to future: From energy expenditure to energy intake to energy expenditure. Eur J Clin Nutr. 2016;71:678 https://doi.org/10.1038/ejcn.2016.231.

    Article  Google Scholar 

  65. Bray MS, Loos RJ, McCaffery JM, Ling C, Franks PW, Weinstock GM, et al. Conference Working Group. NIH working group report-using genomic information to guide weight management: From universal to precision treatment. Obesity. 2016;24:14–22.

    Article  PubMed  Google Scholar 

  66. Ronn T, Volkov P, Davegardth, Dayeh T, Hall E, Olsson AH, Nilsson E, Tornberg A, Dekker Nitert M, Eriksson KF, Jones HA, Groop L, Ling C. A six months exercise intervention influences genome-wide DNA-methylation pattern in human adipose tissue. PLoS Genet. 2013;9:e1003572.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81–86.

    CAS  Article  PubMed  Google Scholar 

  68. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, et al. Intrahepatic fat, not visceral fat, is linked with complications of obesity. Proc Nat Acad Sci. 2009;106:15430–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Haufe S, Engeli S, Budziarek P, Utz W, Schulz-Menger J, Hermsdorf M, et al. Cardiorespiratory fitness and insulin sensitivity in overweight or obese subjects may be linked through intrahepatic lipid content. Diabetes. 2010;59:1640–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Haufe S, Engeli S, Kast P, Böhnke J, Utz W, Haas V, et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504–14.

    CAS  Article  PubMed  Google Scholar 

  71. Bosy-Westphal A, Geisler C, Onur S, Korth O, Selberg O, Schrezenmeir J, Müller MJ. Value of body fat assessment vs anthropometric obesity indices in the assessment of metablic risk factors. Int J Obes. 2006;30:475–83.

    CAS  Article  Google Scholar 

  72. Sokal A. Beyond the Hoax. Science, philosophy and culture.. Oxford, UK: Oxford University Press; 2008.

    Google Scholar 

  73. Foresight. Tackling Obesities: Future Choices—Obesity System Atlas. In: Vandenbroeck P, Goossens J, Marshall C, editors. UK: Government Office for Science; 2007.

Download references

Acknowledgements

The study was funded by a grant of the German Ministry of Education and Research (BMBF 0315681), BMBF Competence Network Obesity (CNO), and the German Research Foundation (DFG Bo 3296/1-1 and DFG Mü 714/ 8-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred J. Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, M.J., Geisler, C., Blundell, J. et al. The case of GWAS of obesity: does body weight control play by the rules?. Int J Obes 42, 1395–1405 (2018). https://doi.org/10.1038/s41366-018-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0081-6

This article is cited by

Search

Quick links