ABSTRACT

Background

Obesity was established as a relevant modifiable risk factor in the onset and progression of colorectal cancer (CRC). This relationship could be mediated by an epigenetic regulation.

Objectives

The current work aimed to explore the effects of excess body weight on the DNA methylation profile of CRC using a genome-wide DNA methylation approach and to identify an epigenetic signature of obesity-related CRC.

Methods

Fifty-six CRC-diagnosed patients (50 years) were included in the study and categorized according to their body mass index (BMI) as non-obese (BMI ≤ 25 kg/m2) or overweight/obese (BMI > 25 kg/m2). Data from Infinium 450k array-based methylomes of 28 CRC tumor samples were coupled with information on BMI categories. Additionally, DNA methylation results were validated in 28 CRC tumor samples.

Results

The analysis revealed statistically significant differences at 299 CpG sites, and they were mostly characterized as changes towards CpG hypermethylation occurring in the obese group. The 152 identified genes were involved in inflammatory and metabolic functional processes. Among these genes, novel genes were identified as epigenetically regulated in CRC depending on adiposity. ZNF397OS and ZNF543 represented the top scoring associated events that were further validated in an independent cohort and exhibited strong correlation with BMI and excellent and statistically significant efficiency in the discrimination of obese from non-obese CRC patients (area under the curve >0.80; p < 0.05).

Conclusions

The present study identifies a potential epigenome mark of obesity-related CRC that could be useful for precision medicine in the management of this disease taking into account adiposity as a relevant risk factor.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr. 2012;10:22.

  2. 2.

    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

  3. 3.

    Kyrgiou M, Kalliala I, Markozannes G, Gunter MJ, Paraskevaidis E, Gabra H, et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ. 2017;356:j477.

  4. 4.

    Marmot M, et al. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research; 2007. https://www.wcrf.org/sites/default/files/english.pdf.

  5. 5.

    Campbell PT, Newton CC, Dehal AN, Jacobs EJ, Patel AV, Gapstur SM. Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2012;30:42–52.

  6. 6.

    Freisling H, Arnold M, Soerjomataram I, O’Doherty MG, Ordonez-Mena JM, Bamia C, et al. Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: meta-analysis of individual participant data of seven prospective cohorts in Europe. Br J Cancer. 2017;116:1486–97.

  7. 7.

    Parekh N, Chandran U, Bandera EV. Obesity in cancer survival. Annu Rev Nutr. 2012;32:311–42.

  8. 8.

    Zheng J, Zhao M, Li J, Lou G, Yuan Y, Bu S, Xi Y, et al. Obesity-associated digestive cancers: A review of mechanisms and interventions. Tumour Biol. 2017;39:1010428317695020. https://doi.org/10.1177/1010428317695020. Review.

  9. 9.

    Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update. 2015;21:249–61.

  10. 10.

    Crujeiras AB, Diaz-Lagares A, Stefansson OA, Macias-Gonzalez M, Sandoval J, Cueva J, et al. Obesity and menopause modify the epigenomic profile of breast cancer. Endocr Relat Cancer. 2017;24:331–43.

  11. 11.

    Crujeiras AB, Diaz-Lagares. A DNA methylation in obesity and associated diseases. In: Garcia-Gimenez JL, editor. Epigenetic biomarkers and diagnostics. Elsevier ed. Amsterdam: Elsevier; 2015. p. 313-29.

  12. 12.

    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

  13. 13.

    Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66.

  14. 14.

    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.

  15. 15.

    Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56:140–8.

  16. 16.

    Elliott EN, Kaestner KH. Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci. 2015;72:4139–56.

  17. 17.

    Hagland HR, Berg M, Jolma IW, Carlsen A, Soreide K. Molecular pathways and cellular metabolism in colorectal cancer. Dig Surg. 2013;30:12–25.

  18. 18.

    Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM, Sandoval J, Hervas D, Gomez A. et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl Res. 2016;178:13–24, e5.

  19. 19.

    World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic. Geneva: World Health Organization; 2000.

  20. 20.

    Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.

  21. 21.

    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

  22. 22.

    Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M, et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomark Prev. 2015;24:512–9.

  23. 23.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

  24. 24.

    Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Prim. 2017;3:17034.

  25. 25.

    Crujeiras AB, Diaz-Lagares A, Carreira MC, Amil M, Casanueva FF. Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic Res. 2013;47:243–56.

  26. 26.

    Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83.

  27. 27.

    Funahashi Y, Yoshino Y, Yamazaki K, Mori Y, Mori T, Ozaki Y, et al. DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin Neurosci. 2017;71:28–35.

  28. 28.

    Gao Y, Li Z, Guo X, Liu Y, Zhang K. DLX4 as a prognostic marker for hepatocellular carcinoma. Neoplasma. 2014;61:318–23.

  29. 29.

    Hollington P, Neufing P, Kalionis B, Waring P, Bentel J, Wattchow D, et al. Expression and localization of homeodomain proteins DLX4, HB9 and HB24 in malignant and benign human colorectal tissues. Anticancer Res. 2004;24:955–62.

  30. 30.

    Kim JS, Park IS, Park HE, Kim SY, Yun JA, Jung CK, et al. alpha-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects. Neurol Sci. 2017;38:171–9.

  31. 31.

    Li B, Li B, Sun H, Zhang H. The predicted target gene validation, function, and prognosis studies of miRNA-22 in colorectal cancer tissue. The journal Tumour Biol. 2017;39:1010428317692257.

  32. 32.

    Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G, et al. Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast. BMC Cancer. 2016;16:681.

  33. 33.

    Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, et al. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer. 2011;10:85.

  34. 34.

    Minard ME, Ellis LM, Gallick GE. Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastas-. 2006;23:301–13.

  35. 35.

    Prigent A, Lionnet A, Corbille AG, Derkinderen P. [Neuropathology and pathophysiology of Parkinson’s disease: Focus on alpha-synuclein]. Presse Med. 2017;46(Part 1):182–6.

  36. 36.

    Rotermund C, Truckenmuller FM, Schell H, Kahle PJ. Diet-induced obesity accelerates the onset of terminal phenotypes in alpha-synuclein transgenic mice. J Neurochem. 2014;131:848–58.

  37. 37.

    Rothman SM, Griffioen KJ, Fishbein KW, Spencer RG, Makrogiannis S, Cong WN, et al. Metabolic abnormalities and hypoleptinemia in alpha-synuclein A53T mutant mice. Neurobiol Aging. 2014;35:1153–61.

  38. 38.

    Tang H, Wei P, Duell EJ, Risch HA, Olson SH, Bueno-de-Mesquita HB, et al. Genes–environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis. Cancer Epidemiol Biomark Prev. 2014;23:98–106.

  39. 39.

    Trinh B, Ko SY, Haria D, Barengo N, Naora H. The homeoprotein DLX4 controls inducible nitric oxide synthase-mediated angiogenesis in ovarian cancer. Mol Cancer. 2015;14:97.

  40. 40.

    Zhang TJ, Zhou JD, Yang DQ, Wang YX, Yao DM, Ma JC, et al. Hypermethylation of DLX4 predicts poor clinical outcome in patients with myelodysplastic syndrome. Clin Chem Lab Med. 2016;54:865–71.

  41. 41.

    Zhou JD, Zhang TJ, Wang YX, Yang DQ, Yang L, Ma JC, et al. DLX4 hypermethylation is a prognostically adverse indicator in de novo acute myeloid leukemia. Tumour Biol. 2016;37:8951–60.

  42. 42.

    Xu D, Qu L, Hu J, Li G, Lv P, Ma D, et al. Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis. J Cell Mol Med. 2014;18:1655–66.

  43. 43.

    Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, Saigi M, Pajares MJ, Garcia D, et al. A novel epigenetic signature for early diagnosis in lung cancer. Clin Cancer Res. 2016;22:3361–71.

  44. 44.

    Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW. Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics. 2013;8:1080–8.

  45. 45.

    Stefansson OA, Moran S, Gomez A, Sayols S, Arribas-Jorba C, Sandoval J, et al. A DNA methylation-based definition of biologically distinct breast cancer subtypes. Mol Oncol. 2015;9:555–68.

Download references

Acknowledgements

We thank María Amil, Diana García, and Carles Arribas for their technical support, as well as Biobank of the Public Health System of Andalusia (BBSSPA) of the health counseling and the head of the Anatomical Pathology Department of the Hospital Complex of Specialties Virgen de la Victoria Malaga Spain.

Funding

This study was supported by “Centros de Investigacion Biomedica En Red” (CIBERobn) of the “Instituto de Salud Carlos III” (ISCIII), and grants from ISCIII (PI11/01661, PI14/01012, PI15/01114, PE13/00024) co-financed by the European Regional Development Fund (FEDER). DC-C was recipient of an FPU grant from Education Ministry, Madrid, Spain (13/04211). AD-L was funded by the ISCIII through a research contract "Rio Hortega" (CM14/00067) and "Juan Rodés" (JR17/00016), ABC and JS are “Miguel Servet” researchers (ISCIII, CP17/00088 and CP13/00055, respectively) and MM-G was recipient of the Nicolas Monarde program from the Servicio Andaluz de Salud, Junta de Andalucia, Spain (C-0029-2014).

Author information

Author notes

  1. These authors contributed equally: Manuel Macias-Gonzalez, Felipe F. Casanueva, Francisco J. Tinahones.

Affiliations

  1. Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela University (USC), Santiago de Compostela, Spain

    • Ana B. Crujeiras
    •  & Felipe F. Casanueva
  2. CIBERobn Fisiopatologia de la Nutricion y Obesidad (CB06/03), Madrid, Spain

    • Ana B. Crujeiras
    • , Sonsoles Morcillo
    • , Daniel Castellano-Castillo
    • , Manuel Macias-Gonzalez
    • , Felipe F. Casanueva
    •  & Francisco J. Tinahones
  3. Unidad de Gestion Clinica Endocrinologia y Nutricion, Instituto de Investigacion Biomédica de Malaga (IBIMA), Complejo Hospitalario de Malaga (Virgen de la Victoria), Universidad de Malaga, Malaga, Spain

    • Sonsoles Morcillo
    • , Daniel Castellano-Castillo
    • , Manuel Macias-Gonzalez
    •  & Francisco J. Tinahones
  4. Translational Medical Oncology (Oncomet), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), CIBERONC, Santiago de Compostela, Spain

    • Angel Diaz-Lagares
  5. Laboratory of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, Spain

    • Juan Sandoval
  6. Unidad de Gestion Clinica de Oncologia Integral. Complejo Hospitalario de Malaga (Virgen de la Victoria), Servicio Andaluz de Salud, Malaga, Spain

    • Esperanza Torres
  7. Biostatistics Unit, Medical Research Institute La Fe, Valencia, Spain

    • David Hervas
  8. Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet, Barcelona, Spain

    • Sebastian Moran
    •  & Manel Esteller
  9. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

    • Manel Esteller

Authors

  1. Search for Ana B. Crujeiras in:

  2. Search for Sonsoles Morcillo in:

  3. Search for Angel Diaz-Lagares in:

  4. Search for Juan Sandoval in:

  5. Search for Daniel Castellano-Castillo in:

  6. Search for Esperanza Torres in:

  7. Search for David Hervas in:

  8. Search for Sebastian Moran in:

  9. Search for Manel Esteller in:

  10. Search for Manuel Macias-Gonzalez in:

  11. Search for Felipe F. Casanueva in:

  12. Search for Francisco J. Tinahones in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Ana B. Crujeiras or Manuel Macias-Gonzalez.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41366-018-0065-6