Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and epigenetics

Identification of an episignature of human colorectal cancer associated with obesity by genome-wide DNA methylation analysis

ABSTRACT

Background

Obesity was established as a relevant modifiable risk factor in the onset and progression of colorectal cancer (CRC). This relationship could be mediated by an epigenetic regulation.

Objectives

The current work aimed to explore the effects of excess body weight on the DNA methylation profile of CRC using a genome-wide DNA methylation approach and to identify an epigenetic signature of obesity-related CRC.

Methods

Fifty-six CRC-diagnosed patients (50 years) were included in the study and categorized according to their body mass index (BMI) as non-obese (BMI ≤ 25 kg/m2) or overweight/obese (BMI > 25 kg/m2). Data from Infinium 450k array-based methylomes of 28 CRC tumor samples were coupled with information on BMI categories. Additionally, DNA methylation results were validated in 28 CRC tumor samples.

Results

The analysis revealed statistically significant differences at 299 CpG sites, and they were mostly characterized as changes towards CpG hypermethylation occurring in the obese group. The 152 identified genes were involved in inflammatory and metabolic functional processes. Among these genes, novel genes were identified as epigenetically regulated in CRC depending on adiposity. ZNF397OS and ZNF543 represented the top scoring associated events that were further validated in an independent cohort and exhibited strong correlation with BMI and excellent and statistically significant efficiency in the discrimination of obese from non-obese CRC patients (area under the curve >0.80; p < 0.05).

Conclusions

The present study identifies a potential epigenome mark of obesity-related CRC that could be useful for precision medicine in the management of this disease taking into account adiposity as a relevant risk factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr. 2012;10:22.

    Article  Google Scholar 

  2. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    Article  Google Scholar 

  3. Kyrgiou M, Kalliala I, Markozannes G, Gunter MJ, Paraskevaidis E, Gabra H, et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ. 2017;356:j477.

    Article  Google Scholar 

  4. Marmot M, et al. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research; 2007. https://www.wcrf.org/sites/default/files/english.pdf.

  5. Campbell PT, Newton CC, Dehal AN, Jacobs EJ, Patel AV, Gapstur SM. Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2012;30:42–52.

    Article  Google Scholar 

  6. Freisling H, Arnold M, Soerjomataram I, O’Doherty MG, Ordonez-Mena JM, Bamia C, et al. Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: meta-analysis of individual participant data of seven prospective cohorts in Europe. Br J Cancer. 2017;116:1486–97.

    Article  CAS  Google Scholar 

  7. Parekh N, Chandran U, Bandera EV. Obesity in cancer survival. Annu Rev Nutr. 2012;32:311–42.

    Article  CAS  Google Scholar 

  8. Zheng J, Zhao M, Li J, Lou G, Yuan Y, Bu S, Xi Y, et al. Obesity-associated digestive cancers: A review of mechanisms and interventions. Tumour Biol. 2017;39:1010428317695020. https://doi.org/10.1177/1010428317695020. Review.

    PubMed  Google Scholar 

  9. Crujeiras AB, Casanueva FF. Obesity and the reproductive system disorders: epigenetics as a potential bridge. Hum Reprod Update. 2015;21:249–61.

    Article  CAS  Google Scholar 

  10. Crujeiras AB, Diaz-Lagares A, Stefansson OA, Macias-Gonzalez M, Sandoval J, Cueva J, et al. Obesity and menopause modify the epigenomic profile of breast cancer. Endocr Relat Cancer. 2017;24:331–43.

    Article  Google Scholar 

  11. Crujeiras AB, Diaz-Lagares. A DNA methylation in obesity and associated diseases. In: Garcia-Gimenez JL, editor. Epigenetic biomarkers and diagnostics. Elsevier ed. Amsterdam: Elsevier; 2015. p. 313-29.

    Chapter  Google Scholar 

  12. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    Article  CAS  Google Scholar 

  13. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3:253–66.

    Article  CAS  Google Scholar 

  14. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36.

    Article  CAS  Google Scholar 

  15. Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56:140–8.

    Article  CAS  Google Scholar 

  16. Elliott EN, Kaestner KH. Epigenetic regulation of the intestinal epithelium. Cell Mol Life Sci. 2015;72:4139–56.

    Article  CAS  Google Scholar 

  17. Hagland HR, Berg M, Jolma IW, Carlsen A, Soreide K. Molecular pathways and cellular metabolism in colorectal cancer. Dig Surg. 2013;30:12–25.

    Article  CAS  Google Scholar 

  18. Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM, Sandoval J, Hervas D, Gomez A. et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl Res. 2016;178:13–24, e5.

    Article  CAS  Google Scholar 

  19. World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic. Geneva: World Health Organization; 2000.

    Google Scholar 

  20. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.

    Article  CAS  Google Scholar 

  21. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  Google Scholar 

  22. Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M, et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomark Prev. 2015;24:512–9.

    Article  CAS  Google Scholar 

  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  24. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Prim. 2017;3:17034.

    Article  Google Scholar 

  25. Crujeiras AB, Diaz-Lagares A, Carreira MC, Amil M, Casanueva FF. Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic Res. 2013;47:243–56.

    Article  CAS  Google Scholar 

  26. Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83.

    Article  CAS  Google Scholar 

  27. Funahashi Y, Yoshino Y, Yamazaki K, Mori Y, Mori T, Ozaki Y, et al. DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin Neurosci. 2017;71:28–35.

    Article  CAS  Google Scholar 

  28. Gao Y, Li Z, Guo X, Liu Y, Zhang K. DLX4 as a prognostic marker for hepatocellular carcinoma. Neoplasma. 2014;61:318–23.

    Article  CAS  Google Scholar 

  29. Hollington P, Neufing P, Kalionis B, Waring P, Bentel J, Wattchow D, et al. Expression and localization of homeodomain proteins DLX4, HB9 and HB24 in malignant and benign human colorectal tissues. Anticancer Res. 2004;24:955–62.

    PubMed  CAS  Google Scholar 

  30. Kim JS, Park IS, Park HE, Kim SY, Yun JA, Jung CK, et al. alpha-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects. Neurol Sci. 2017;38:171–9.

    Article  Google Scholar 

  31. Li B, Li B, Sun H, Zhang H. The predicted target gene validation, function, and prognosis studies of miRNA-22 in colorectal cancer tissue. The journal Tumour Biol. 2017;39:1010428317692257.

    PubMed  Google Scholar 

  32. Li Z, Liu Q, Piao J, Hua F, Wang J, Jin G, et al. Clinicopathological implications of Tiam1 overexpression in invasive ductal carcinoma of the breast. BMC Cancer. 2016;16:681.

    Article  CAS  Google Scholar 

  33. Lind GE, Danielsen SA, Ahlquist T, Merok MA, Andresen K, Skotheim RI, et al. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Mol Cancer. 2011;10:85.

    Article  CAS  Google Scholar 

  34. Minard ME, Ellis LM, Gallick GE. Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastas-. 2006;23:301–13.

    Article  CAS  Google Scholar 

  35. Prigent A, Lionnet A, Corbille AG, Derkinderen P. [Neuropathology and pathophysiology of Parkinson’s disease: Focus on alpha-synuclein]. Presse Med. 2017;46(Part 1):182–6.

    Article  Google Scholar 

  36. Rotermund C, Truckenmuller FM, Schell H, Kahle PJ. Diet-induced obesity accelerates the onset of terminal phenotypes in alpha-synuclein transgenic mice. J Neurochem. 2014;131:848–58.

    Article  CAS  Google Scholar 

  37. Rothman SM, Griffioen KJ, Fishbein KW, Spencer RG, Makrogiannis S, Cong WN, et al. Metabolic abnormalities and hypoleptinemia in alpha-synuclein A53T mutant mice. Neurobiol Aging. 2014;35:1153–61.

    Article  CAS  Google Scholar 

  38. Tang H, Wei P, Duell EJ, Risch HA, Olson SH, Bueno-de-Mesquita HB, et al. Genes–environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis. Cancer Epidemiol Biomark Prev. 2014;23:98–106.

    Article  CAS  Google Scholar 

  39. Trinh B, Ko SY, Haria D, Barengo N, Naora H. The homeoprotein DLX4 controls inducible nitric oxide synthase-mediated angiogenesis in ovarian cancer. Mol Cancer. 2015;14:97.

    Article  CAS  Google Scholar 

  40. Zhang TJ, Zhou JD, Yang DQ, Wang YX, Yao DM, Ma JC, et al. Hypermethylation of DLX4 predicts poor clinical outcome in patients with myelodysplastic syndrome. Clin Chem Lab Med. 2016;54:865–71.

    PubMed  CAS  Google Scholar 

  41. Zhou JD, Zhang TJ, Wang YX, Yang DQ, Yang L, Ma JC, et al. DLX4 hypermethylation is a prognostically adverse indicator in de novo acute myeloid leukemia. Tumour Biol. 2016;37:8951–60.

    Article  CAS  Google Scholar 

  42. Xu D, Qu L, Hu J, Li G, Lv P, Ma D, et al. Transmembrane protein 106A is silenced by promoter region hypermethylation and suppresses gastric cancer growth by inducing apoptosis. J Cell Mol Med. 2014;18:1655–66.

    Article  CAS  Google Scholar 

  43. Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, Saigi M, Pajares MJ, Garcia D, et al. A novel epigenetic signature for early diagnosis in lung cancer. Clin Cancer Res. 2016;22:3361–71.

    Article  CAS  Google Scholar 

  44. Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW. Coordinate H3K9 and DNA methylation silencing of ZNFs in toxicant-induced malignant transformation. Epigenetics. 2013;8:1080–8.

    Article  CAS  Google Scholar 

  45. Stefansson OA, Moran S, Gomez A, Sayols S, Arribas-Jorba C, Sandoval J, et al. A DNA methylation-based definition of biologically distinct breast cancer subtypes. Mol Oncol. 2015;9:555–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank María Amil, Diana García, and Carles Arribas for their technical support, as well as Biobank of the Public Health System of Andalusia (BBSSPA) of the health counseling and the head of the Anatomical Pathology Department of the Hospital Complex of Specialties Virgen de la Victoria Malaga Spain.

Funding

This study was supported by “Centros de Investigacion Biomedica En Red” (CIBERobn) of the “Instituto de Salud Carlos III” (ISCIII), and grants from ISCIII (PI11/01661, PI14/01012, PI15/01114, PE13/00024) co-financed by the European Regional Development Fund (FEDER). DC-C was recipient of an FPU grant from Education Ministry, Madrid, Spain (13/04211). AD-L was funded by the ISCIII through a research contract "Rio Hortega" (CM14/00067) and "Juan Rodés" (JR17/00016), ABC and JS are “Miguel Servet” researchers (ISCIII, CP17/00088 and CP13/00055, respectively) and MM-G was recipient of the Nicolas Monarde program from the Servicio Andaluz de Salud, Junta de Andalucia, Spain (C-0029-2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana B. Crujeiras or Manuel Macias-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crujeiras, A.B., Morcillo, S., Diaz-Lagares, A. et al. Identification of an episignature of human colorectal cancer associated with obesity by genome-wide DNA methylation analysis. Int J Obes 43, 176–188 (2019). https://doi.org/10.1038/s41366-018-0065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0065-6

This article is cited by

Search

Quick links