Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pediatrics

Genetic contribution to waist-to-hip ratio in Mexican children and adolescents based on 12 loci validated in European adults

Subjects

Abstract

Background/objectives

The prevalence of abdominal obesity in Mexican children has risen dramatically in the past decade. Genome-wide association studies (GWAS) for waist-to-hip ratio (WHR) performed predominantly in European descent adult  populations have identified multiple single-nucleotide polymorphisms (SNPs) with larger effects in women. The contribution of these SNPs to WHR in non-European children is unknown.

Subjects/methods

Mexican children and adolescents (N = 1421, 5–17 years) were recruited in Mexico City. Twelve GWAS SNPs were genotyped using TaqMan Open Array and analyzed individually and as a gene score (GS).

Results

Mexican boys and girls displayed 2.81 ± 0.29 and 3.10 ± 0.31 WHR standard deviations higher than children and adolescents from the United States. WHR was positively associated with TG (β = 0.733 ± 0.190, P = 1.1 × 10−4) and LDL-C (β = 0.491 ± 0.203, P = 1.6 × 10−2), and negatively associated with HDL-C (β = −0.652 ± 0.195, P = 8.0 × 10−4), independently of body mass index. The effect allele frequency (EAF) of 8 of 12 (67%) SNPs differed significantly (P < 4.17 × 10−3) in Mexican children and European adults, with no evidence of effect allele enrichment in both populations (4 depleted and 4 enriched; binomial test, P = 1). Ten out of 12 SNPs (83.3%) had effects that were directionally consistent with those reported in GWAS (P = 0.04). HOXC13 rs1443512 displayed the best fit when modeled recessively, and was significantly associated with WHR under a recessive mode of inheritance (β = 0.140 ± 0.06, P = 2.3 × 10−2). Significant interactions with sex were also observed for HOXC13 rs1443512 and the GS on WHR (P = 2.2 × 10−2 and 1.2 × 10−2, respectively). HOXC13 rs1443512 (β = 0.022 ± 0.012, P = 4.7 × 10−2) and the GS (β = 0.007 ± 0.003, P = 7.0 × 10−3) were significantly associated with WHR in girls only.

Conclusions

This study demonstrates that Mexican children are at high risk for abdominal obesity and detrimental lipid profiles. Our data support a partial transferability of sex-specific European GWAS WHR association signals in children and adolescents from the admixed Mexican population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    Article  Google Scholar 

  2. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr. 2012;10:22–22.

    Article  Google Scholar 

  3. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

    Article  Google Scholar 

  4. Aceves-Martins M, Llauradó E, Tarro L, Solà R, Giralt M. Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities. Glob Health Action. 2016;9:29625.

    Article  Google Scholar 

  5. Stern D, Piernas C, Barquera S, Rivera JA, Popkin BM. Caloric beverages were major sources of energy among children and adults in Mexico, 1999-2012. J Nutr. 2014;144:949–56.

    Article  CAS  Google Scholar 

  6. Okorodudu D, Jumean M, Montori VM, Romero-Corral A, Somers V, Erwin P, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34:791–9.

    Article  CAS  Google Scholar 

  7. National Obesity Observatory. Body mass index as a measure of obesity. http://www.thehealthwell.info/node/894434 (2009).

  8. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, et al. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab. 2010;95:1777–85.

    Article  CAS  Google Scholar 

  9. Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist: hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr. 2010;64:16–22.

    Article  CAS  Google Scholar 

  10. Semiz S, Ozgören E, Sabir N. Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity. Int J Obes. 2007;31:53–58.

    Article  CAS  Google Scholar 

  11. Wicklow BA, Becker A, Chateau D, Palmer K, Kozyrskij A, Sellers EA. Comparison of anthropometric measurements in children to predict metabolic syndrome in adolescence: Analysis of prospective cohort data. Int J Obes. 2015;39:1070–8.

    Article  CAS  Google Scholar 

  12. Schleinitz D, Bottcher Y, Bluher M, Kovacs P. The genetics of fat distribution. Diabetologia. 2014;57:1276–86.

    Article  CAS  Google Scholar 

  13. Randall JC, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL, et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9:e1003500.

    Article  CAS  Google Scholar 

  14. Wen W, Kato N, Hwang JY, Guo X, Tabara Y, Li H, et al. Genome-wide association studies in East Asians identify new loci for waist-hip ratio and waist circumference. Sci Rep. 2016;6:17958.

    Article  CAS  Google Scholar 

  15. Liu CT, Monda KL, Taylor KC, Lange L, Demerath EW, Palmas W, et al. Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genet. 2013;9:e1003681.

    Article  CAS  Google Scholar 

  16. Barquera S, Campos-Nonato I, Hernandez-Barrera L, Flores M, Durazo-Arvizu R, Kanter R, et al. Obesity and central adiposity in Mexican adults: results from the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex. 2009;51(Suppl 4):S595–603.

    PubMed  Google Scholar 

  17. Moreno-Estrada A, Gignoux CR, Fernandez-Lopez JC, Zakharia F, Sikora M, Contreras AV, et al. Human genetics. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science. 2014;344:1280–5.

    Article  CAS  Google Scholar 

  18. Vogelezang S, Monnereau C, Gaillard R, Renders CM, Hofman A, Jaddoe VW, et al. Adult adiposity susceptibility loci, early growth and general and abdominal fatness in childhood: the Generation R Study. Int J Obes. 2015;39:1001–9.

    Article  CAS  Google Scholar 

  19. Abadi A, Peralta-Romero J, Suarez F, Gomez-Zamudio J, Burguete-Garcia AI, Cruz M, et al. Assessing the effects of 35 European-derived BMI-associated SNPs in Mexican children. Obesity. 2016;24:1989–95.

    Article  Google Scholar 

  20. Flegal KM, Cole TJ. Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts. Natl Health Stat Report. 2013;63:1–4.

    Google Scholar 

  21. Sharma AK, Metzger DL, Daymont C, Hadjiyannakis S, Rodd CJ. LMS tables for waist-circumference and waist-height ratio Z-scores in children aged 5-19 y in NHANES III: association with cardio-metabolic risks. Pediatr Res. 2015;8:723–9.

    Article  Google Scholar 

  22. Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC, Deardorff J, Herrick RL, Succop PA, Hiatt RA, Kushi LH, Wolff MS. Onset of breast development in a longitudinal cohort. Pediatrics. 2013;134:1–9.

    Google Scholar 

  23. Herman-Giddens ME, Steffes J, Harris D, Slora E, Hussey M, Dowshen SA, Wasserman R, Serwint JR, Smitherman L, Reiter EO. Secondary sexual characteristics in boys: data from the pediatric research in office settings network. Pediatrics. 2012;130:1058–68.

    Article  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  Google Scholar 

  25. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27(Suppl 1):S5–S10.

    Google Scholar 

  26. Langlois C, Abadi A, Peralta-Romero J, Alyass A, Suarez F, Gomez-Zamudio J, et al. Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents. Sci Rep. 2016;6:36202.

    Article  CAS  Google Scholar 

  27. Heid IM. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010;42:949–60.

    Article  CAS  Google Scholar 

  28. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:e1003348.

    Article  CAS  Google Scholar 

  29. Janssens AC, Moonesinghe R, Yang Q, Steyerberg EW, van Duijn CM, Khoury MJ. The impact of genotype frequencies on the clinical validity of genomic profiling for predicting common chronic diseases. Genet Med. 2007;9:528–35.

    Article  Google Scholar 

  30. Robiou-du-Pont S, Bonnefond A, Yengo L, Vaillant E, Lobbens S, Durand E, et al. Contribution of 24 obesity-associated genetic variants to insulin resistance, pancreatic beta-cell function and type 2 diabetes risk in the French population. Int J Obes. 2013;37:980–5.

    Article  CAS  Google Scholar 

  31. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. New York, NY: Springer-Verlag New York Inc., 2002.

  32. Feise RJ. Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol. 2002;2:8.

    Article  Google Scholar 

  33. Team RC. R: A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing; 2014.

  34. Graffelman J. Exploring diallelic genetic markers: the hardyweinberg package. J Stat Softw. 2015;64:1–23.

    Article  Google Scholar 

  35. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–6.

    Article  CAS  Google Scholar 

  36. Gnatiuc L, Alegre-Diaz J, Halsey J, Herrington WG, Lopez-Cervantes M, Lewington S, et al. Adiposity and blood pressure in 110 000 Mexican adults. Hypertension. 2017;69:608–14.

    Article  CAS  Google Scholar 

  37. Vazquez G, Duval S, Jacobs DR Jr., Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev. 2007;29:115–28.

    Article  Google Scholar 

  38. Wells J. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.

    Article  Google Scholar 

  39. Simón Barquera IC-N, Hernández-Barrera Lucía, Flores Mario, Durazo-Arvizu Ramón. Rebecca Kanter, Juan A Rivera. Obesity and central adiposity in Mexican adults: results from the Mexican National Health and Nutrition Survey 2006. Salud pública Méx. 2009;51:595–603.

    Google Scholar 

  40. Stryjecki C, Peralta-Romero J, Alyass A, Karam-Araujo R, Suarez F, Gomez-Zamudio J, et al. Association between PPAR-gamma2 Pro12Ala genotype and insulin resistance is modified by circulating lipids in Mexican children. Sci Rep. 2016;6:24472.

    Article  CAS  Google Scholar 

  41. Bibiloni Mdel M, Salas R, Novelo HI, Villarreal JZ, Sureda A, Tur JA. Serum lipid levels and dyslipidaemia prevalence among 2-10 year-old Northern Mexican children. PLoS ONE. 2015;10:e0119877.

    Article  CAS  Google Scholar 

  42. Klimentidis YC, Miller GF, Shriver MD. The relationship between European genetic admixture and body composition among Hispanics and Native Americans. Am J Human Biol. 2009;21:377–83.

    Article  CAS  Google Scholar 

  43. WD HammerLD, Litt, Killen IF, Hayward JD, Miner C, Vosti B, Taylor C. CB. Impact of pubertal development on body fat distribution among white, Hispanic, and Asian female adolescents. J Pediatr. 1991;118:975–80.

    Article  Google Scholar 

  44. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S et al. The influence of age and sex on genetic associations with adult body size and shape: A large-scale genome-wide interaction study. PLoS Genet. 2015;11:e1005378.

  45. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–208.

    Article  CAS  Google Scholar 

  46. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008;4:e1000008.

    Article  CAS  Google Scholar 

  47. Wermter AK, Scherag A, Meyre D, Reichwald K, Durand E, Nguyen TT, et al. Preferential reciprocal transfer of paternal/maternal DLK1 alleles to obese children: first evidence of polar overdominance in humans. Eur J Hum Genet. 2008;16:1126–34.

    Article  CAS  Google Scholar 

  48. Hoggart CJ, Venturini G, Mangino M, Gomez F, Ascari G, Zhao JH, et al. Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet. 2014;10:e1004508.

    Article  CAS  Google Scholar 

  49. Tukiainen T, Pirinen M, Sarin AP, Ladenvall C, Kettunen J, Lehtimaki T, et al. Chromosome X-wide association study identifies Loci for fasting insulin and height and evidence for incomplete dosage compensation. PLoS Genet. 2014;10:e1004127.

    Article  CAS  Google Scholar 

  50. Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet. 2012;44:302–6.

    Article  CAS  Google Scholar 

  51. Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res. 2015;25:775–91.

    Article  CAS  Google Scholar 

  52. Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–33.

    Article  CAS  Google Scholar 

  53. van Vliet-Ostaptchouk JV, den Hoed M, Luan J, Zhao JH, Ong KK, van der Most PJ, et al. Pleiotropic effects of obesity-susceptibility loci on metabolic traits: a meta-analysis of up to 37,874 individuals. Diabetologia. 2013;56:2134–46.

    Article  Google Scholar 

  54. Kasus-Jacobi A, Perdereau D, Auzan C, Clauser E, Van Obberghen E, Mauvais-Jarvis F, et al. Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem. 1998;273:26026–35.

    Article  CAS  Google Scholar 

  55. Perichart-Perera O, Balas-Nakash M, Schiffman-Selechnik E, Barbato-Dosal A, Vadillo-Ortega F. Obesity increases metabolic syndrome risk factors in school-aged children from an urban school in Mexico city. J Am Diet Assoc. 2007;107:81–91.

    Article  Google Scholar 

  56. Stryjecki C, Alyass A, Meyre D Ethnic and population differences in the genetic predisposition to human obesity. Obes Rev. 2017;19:62–80.

    Article  Google Scholar 

  57. Graff M, North KE, Richardson AS, Young KL, Mazul AL, Highland HM, Mohlke KL, Lange LA, Lange EM, Mullan Harris K, Gordon-Larsen P. BMI loci and longitudinal BMI from adolescence to young adulthood in an ethnically diverse cohort. Int J Obes. 2017; 41: 759–68.

    Article  Google Scholar 

  58. Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond, Engl: 1979). 2016;130:943–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the study participants and the reviewers for their helpful comments. We thank Carolina Stryjecki for her technical assistance. D.M. is supported by a Tier 2 Canada Research Chair in Genetics of Obesity. This work was supported by Fundación IMSS A.C. and by the National Council of Science and Technology (CONACYT-México) with the grant SALUD-2013-C01-201471 (FONSEC SSA/IMSS/ISSSTE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Cruz or David Meyre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcotte, M., Abadi, A., Peralta-Romero, J. et al. Genetic contribution to waist-to-hip ratio in Mexican children and adolescents based on 12 loci validated in European adults. Int J Obes 43, 13–22 (2019). https://doi.org/10.1038/s41366-018-0055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0055-8

This article is cited by

Search

Quick links