Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Age at menarche and adult body mass index: a Mendelian randomization study



Pubertal timing has psychological and physical sequelae. While observational studies have demonstrated an association between age at menarche and adult body mass index (BMI), confounding makes it difficult to infer causality.


The Mendelian randomization (MR) technique is not limited by traditional confounding and was used to investigate the presence of a causal effect of age at menarche on adult BMI. MR uses genetic variants as instruments under the assumption that they act on BMI only through age at menarche (no pleiotropy). Using a two-sample MR approach, heterogeneity between the MR estimates from individual instruments was used as a proxy for pleiotropy, with sensitivity analyses performed if detected. Genetic instruments and estimates of their association with age at menarche were obtained from a genome-wide association meta-analysis on 182,416 women. The genetic effects on adult BMI were estimated using data on 80,465 women from the UK Biobank. The presence of a causal effect of age at menarche on adult BMI was further investigated using data on 70,692 women from the GIANT Consortium.


There was evidence of pleiotropy among instruments. Using the UK Biobank data, after removing instruments associated with childhood BMI that were likely exerting pleiotropy, fixed-effect meta-analysis across instruments demonstrated that a 1 year increase in age at menarche reduces adult BMI by 0.38 kg/m2 (95% CI 0.25–0.51 kg/m2). However, evidence of pleiotropy remained. MR-Egger regression did not suggest directional bias, and similar estimates to the fixed-effect meta-analysis were obtained in sensitivity analyses when using a random-effect model, multivariable MR, MR-Egger regression, a weighted median estimator and a weighted mode-based estimator. The direction and significance of the causal effect were replicated using GIANT Consortium data.


MR provides evidence to support the hypothesis that earlier age at menarche causes higher adult BMI. Complex hormonal and psychological factors may be responsible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7.

    CAS  Article  Google Scholar 

  2. 2.

    Graber JA. Pubertal timing and the development of psychopathology in adolescence and beyond. Horm Behav. 2013;64:262–9.

    Article  Google Scholar 

  3. 3.

    Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes. 2013;37:1036–43.

    CAS  Article  Google Scholar 

  4. 4.

    Klump KL. Puberty as a critical risk period for eating disorders: a review of human and animal studies. Horm Behav. 2013;64:399–410.

    Article  Google Scholar 

  5. 5.

    Copeland W, Shanahan L, Miller S, Costello EJ, Angold A, Maughan B. Outcomes of early pubertal timing in young women: a prospective population-based study. Am J Psychiatry. 2010;167:1218–25.

    Article  Google Scholar 

  6. 6.

    He C, Zhang C, Hunter DJ, Hankinson SE, Buck Louis GM, Hediger ML, et al. Age at menarche and risk of type 2 diabetes: results from 2 large prospective cohort studies. Am J Epidemiol. 2010;171:334–44.

    Article  Google Scholar 

  7. 7.

    Lakshman R, Forouhi NG, Sharp SJ, Luben R, Bingham SA, Khaw KT, et al. Early age at menarche associated with cardiovascular disease and mortality. J Clin Endocrinol Metab. 2009;94:4953–60.

    CAS  Article  Google Scholar 

  8. 8.

    Pierce MB, Leon DA. Age at menarche and adult BMI in the Aberdeen children of the 1950s cohort study. Am J Clin Nutr. 2005;82:733–9.

    CAS  Article  Google Scholar 

  9. 9.

    Power C, Lake JK, Cole TJ. Body mass index and height from childhood to adulthood in the 1958 British born cohort. Am J Clin Nutr. 1997;66:1094–101.

    CAS  Article  Google Scholar 

  10. 10.

    Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS, et al. The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr. 2003;3:3.

    Article  Google Scholar 

  11. 11.

    Kivimäki M, Lawlor DA, Smith GD, Elovainio M, Jokela M, Keltikangas-Järvinen L, et al. Association of age at menarche with cardiovascular risk factors, vascular structure, and function in adulthood: the Cardiovascular Risk in Young Finns study. Am J Clin Nutr. 2008;87:1876–82.

    Article  Google Scholar 

  12. 12.

    James-Todd T, Tehranifar P, Rich-Edwards J, Titievsky L, Terry MB. The impact of socioeconomic status across early life on age at menarche among a racially diverse population of girls. Ann Epidemiol. 2010;20:836–42.

    Article  Google Scholar 

  13. 13.

    Davey Smith G, Ebrahim S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ. 2005;330:1076–9.

    Article  Google Scholar 

  14. 14.

    Sequeira ME, Lewis SJ, Bonilla C, Davey Smith G, Joinson C. Association of timing of menarche with depressive symptoms and depression in adolescence: Mendelian randomisation study. Br J Psychiatry. 2016;210:39–46.

    Article  Google Scholar 

  15. 15.

    Gill D, Del Greco MF, Rawson TM, Sivakumaran P, Brown A, Sheehan NA, et al. Age at menarche and time spent in education: a Mendelian randomization study. Behav Genet. 2017;47:480–5.

    CAS  Article  Google Scholar 

  16. 16.

    Gill D, Sheehan NA, Wielscher M, Shrine N, Amaral AFS, Thompson JR, et al. Age at menarche and lung function: a Mendelian randomization study. Eur J Epidemiol. 2017;32:701–10.

    Article  Google Scholar 

  17. 17.

    Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017;49:834–41.

    CAS  Article  Google Scholar 

  18. 18.

    Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet. 2013;29:66–73.

    CAS  Article  Google Scholar 

  19. 19.

    Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28:30–42.

    Article  Google Scholar 

  20. 20.

    Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36:1783–802.

    Article  Google Scholar 

  21. 21.

    Perry JR, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–7.

    CAS  Article  Google Scholar 

  22. 22.

    Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21:223–42.

    Article  Google Scholar 

  23. 23.

    Li B, Martin EB. An approximation to the F distribution using the chi-square distribution. Comput Stat Data Anal. 2002;40:21–6.

    Article  Google Scholar 

  24. 24.

    Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  Google Scholar 

  25. 25.

    Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2015;11:e1005378.

    Article  Google Scholar 

  26. 26.

    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    CAS  Article  Google Scholar 

  27. 27.

    Wald A. The fitting of straight lines if both variables are subject to error. Ann Math Stat. 1940;11:284–300.

    Article  Google Scholar 

  28. 28.

    Thompson JR, Minelli C, Del Greco MF. Mendelian randomization using public data from Genetic Consortia. Int J Biostat. 2016;12.

  29. 29.

    Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 2008;5:e177.

    Article  Google Scholar 

  30. 30.

    Del Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40.

    Article  Google Scholar 

  31. 31.

    Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  Google Scholar 

  32. 32.

    Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181:251–60.

    Article  Google Scholar 

  33. 33.

    Burgess S, Dudbridge F, Thompson SG. Re: “Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects”. Am J Epidemiol. 2015;181:290–1.

    Article  Google Scholar 

  34. 34.

    Felix JF, Bradfield JP, Monnereau C, van der Valk RJ, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25:389–403.

    CAS  Article  Google Scholar 

  35. 35.

    Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  Google Scholar 

  36. 36.

    Hartwig F, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  Google Scholar 

  37. 37.

    Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29:306–9.

    CAS  Article  Google Scholar 

  38. 38.

    Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol. 2013;42:1134–44.

    Article  Google Scholar 

  39. 39.

    Spiller W, Davies NM, Palmer TM. Software application profile: mrrobust-a tool for performing two-sample summary mendelian randomization analyses. bioRxiv. 2017.

  40. 40.

    Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45:1961–74.

    Article  Google Scholar 

  41. 41.

    Trikudanathan S, Pedley A, Massaro JM, Hoffmann U, Seely EW, Murabito JM, et al. Association of female reproductive factors with body composition: the Framingham Heart Study. J Clin Endocrinol Metab. 2013;98:236–44.

    CAS  Article  Google Scholar 

  42. 42.

    Mendle J, Turkheimer E, Emery RE. Detrimental psychological outcomes associated with early pubertal timing in adolescent girls. Dev Rev. 2007;27:151–71.

    Article  Google Scholar 

  43. 43.

    Björntorp P. Hormonal control of regional fat distribution. Hum Reprod. 1997;12s1:21–5.

    Article  Google Scholar 

  44. 44.

    de Ridder CM, Thijssen JH, Bruning PF, Van den Brande JL, Zonderland ML, Erich WB. Body fat mass, body fat distribution, and pubertal development: a longitudinal study of physical and hormonal sexual maturation of girls. J Clin Endocrinol Metab. 1992;75:442–6.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Apter D, Vihko R. Premenarcheal endocrine changes in relation to age at menarche. Clin Endocrinol. 1985;22:753–60.

    CAS  Article  Google Scholar 

  46. 46.

    Gallo MF, Lopez LM, Grimes DA, Carayon F, Schulz KF, Helmerhorst FM. Combination contraceptives: effects on weight. Cochrane Database Syst Rev. 2014:CD003987.

  47. 47.

    Taponen S, Martikainen H, Järvelin MR, Laitinen J, Pouta A, Hartikainen AL, et al. Hormonal profile of women with self-reported symptoms of oligomenorrhea and/or hirsutism: Northern Finland birth cohort 1966 study. J Clin Endocrinol Metab. 2003;88:141–7.

    CAS  Article  Google Scholar 

  48. 48.

    Bleil ME, Appelhans BM, Adler NE, Gregorich SE, Sternfeld B, Cedars MI. Pubertal timing, androgens, and obesity phenotypes in women at midlife. J Clin Endocrinol Metab. 2012;97:E1948–52.

    CAS  Article  Google Scholar 

  49. 49.

    Gallicchio L, Flaws JA, Smith RL. Age at menarche, androgen concentrations, and midlife obesity: findings from the Midlife Women’s Health Study. Menopause. 2016;23:1182–8.

    Article  Google Scholar 

  50. 50.

    Ibáñez L, Potau N, Marcos MV, De Zegher F. Adrenal hyperandrogenism in adolescent girls with a history of low birthweight and precocious pubarche. Clin Endocrinol. 2000;53:523–7.

    Article  Google Scholar 

  51. 51.

    Yen SS. The polycystic ovary syndrome. Clin Endocrinol. 1980;12:177–207.

    CAS  Article  Google Scholar 

  52. 52.

    Corbould A. Effects of androgens on insulin action in women: is androgen excess a component of female metabolic syndrome? Diabetes Metab Res Rev. 2008;24:520–32.

    CAS  Article  Google Scholar 

  53. 53.

    Preiss K, Brennan L, Clarke D. A systematic review of variables associated with the relationship between obesity and depression. Obes Rev. 2013;14:906–18.

    CAS  Article  Google Scholar 

  54. 54.

    Blaine B. Does depression cause obesity?: A meta-analysis of longitudinal studies of depression and weight control. J Health Psychol. 2008;13:1190–7.

    Article  Google Scholar 

  55. 55.

    Juvonen J, Lessard LM, Schacter HL, Suchilt L. Emotional implications of weight stigma across middle school: the role of weight-based peer discrimination. J Clin Child Adolesc Psychol. 2016;46:150–8.

    Article  Google Scholar 

  56. 56.

    Cavanagh SE, Riegle-Crumb C, Crosnoe R. Puberty and the education of girls. Soc Psychol Q. 2007;70:186–98.

    Article  Google Scholar 

  57. 57.

    Brown T, Summerbell C. Systematic review of school-based interventions that focus on changing dietary intake and physical activity levels to prevent childhood obesity: an update to the obesity guidance produced by the National Institute for Health and Clinical Excellence. Obes Rev. 2009;10:110–41.

    CAS  Article  Google Scholar 

  58. 58.

    Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: the organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav. 2009;55:597–604.

    CAS  Article  Google Scholar 

  59. 59.

    Steinberg L. A social neuroscience perspective on adolescent risk-taking. Dev Rev. 2008;28:78–106.

    Article  Google Scholar 

  60. 60.

    Casey BJ, Jones RM, Hare TA. The adolescent brain. Ann NY Acad Sci. 2008;1124:111–26.

    CAS  Article  Google Scholar 

Download references


This study has been performed using the UK Biobank Resource, and we thank the participants, field workers, and data managers for their contribution.

Author contributions

Conception of the study: DG and CFB. Design of the study protocol: DG, FDGM, JB, and CM. Analysis of the data: DG, FDGM, and CM. Drafting of the paper: DG, CFB, and PS. Interpretation of the findings and revision of the paper: All authors. DG, FDGM, and CM had access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. DG affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Author information



Corresponding author

Correspondence to Dipender Gill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gill, D., Brewer, C.F., Del Greco M, F. et al. Age at menarche and adult body mass index: a Mendelian randomization study. Int J Obes 42, 1574–1581 (2018).

Download citation

Further reading


Quick links