Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and population health

Skinfold thickness measurements and mortality in white males during 27.7 years of follow-up

Abstract

Introduction

Obesity is a major risk factor for mortality from a range of causes. We investigated whether skinfold measurements were associated with mortality independently of variation in body mass index (BMI).

Methods

A prospective analysis of mortality in 870 apparently healthy adult Caucasian men participating in an occupational health cohort was undertaken. At baseline, skinfold measurements were taken at biceps, triceps, iliac and subscapular sites. Derived measurements included the sum of all four skinfolds and subscapular to triceps, subscapular to iliac and BMI to iliac ratios. All-cause mortality was analysed by Cox proportional hazards modelling and death in specific mortality subcategories by competing risks analysis.

Results

During a mean of 27.7 years follow up, there were 303 deaths (119 cancer, 101 arteriovascular, 40 infection, 43 other). In univariable analysis, BMI was associated with all-cause, cancer, arteriovascular and other mortality and subscapular skinfold with all-cause and arteriovascular mortality. On bivariable analysis, with inclusion of BMI, subscapular skinfold ceased to be a associated with mortality but iliac skinfold emerged as strongly, negatively associated with all-cause and arteriovascular mortality. In multivariable analysis, with inclusion of age, BMI, smoking, alcohol and exercise, iliac skinfold was negatively associated with all-cause (Hazard ratio HR 0.77, 95% confidence interval CI 0.66–0.90, p = 0.002), arteriovascular (HR 0.75, 95%CI 0.58,0.97, p = 0.02) and infection (HR 0.63, 95%CI 0.42,0.94, p = 0.02) death. Among obese participants (BMI ≥ 30 kg/m2), iliac skinfold of ≤9.7 mm was associated with a six-fold increase in all-cause mortality risk.

Conclusion

Low iliac skinfold thickness is an independent risk factor for all-cause mortality in adult white males with risk apparently concentrated among people who are obese.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–81.

    Article  Google Scholar 

  2. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156.

    Article  Google Scholar 

  3. Prospective Studies Collaboration, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  Google Scholar 

  4. He Y, Lam TH, Jiang B, Li LS, Sun DL, Wu L, et al. Changes in BMI before and during economic development and subsequent risk of cardiovascular disease and total mortality: a 35-year follow-up study in China. Diabetes Care. 2014;37:2540–7.

    Article  Google Scholar 

  5. Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Prac. 2010;89:309–19.

    Article  Google Scholar 

  6. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.

    Article  Google Scholar 

  7. Aune D, Norat T, Vatten LJ. Body mass index, abdominal fatness and the risk of gallbladder disease. Eur J Epidemiol. 2015;30:1009–19.

    Article  Google Scholar 

  8. Aune D, Norat T, Vatten LJ. Body mass index and the risk of gout: a systematic review and dose-response meta-analysis of prospective studies. Eur J Nutr. 2014;53:1591–601.

    Article  Google Scholar 

  9. Kip KE, Marroquin OC, Kelley DE, Johnson BD, Kelsey SF, Shaw LJ, et al. Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women’s Ischemia Syndrome Evaluation (WISE) study. Circulation. 2004;109:706–13.

    Article  Google Scholar 

  10. Kaur A, Johnston DG, Godsland IF. Does metabolic health in overweight and obesity persist?—Individual variation and cardiovascular mortality over two decades. Eur J Endocrinol. 2016;175:133–43.

    Article  CAS  Google Scholar 

  11. Bradshaw PT, Reynolds KR, Wagenknecht LE, Ndumele CE, Stevens J. Incidence of components of metabolic syndrome in the metabolically healthy obese over 9 years follow-up: the atherosclerosis risk in communities study. Int J Obes. 2017.

  12. Espinosa De Ycaza AE, Donegan D, Jensen MD. Long-term metabolic risk for the metabolically healthy overweight/obese phenotype. Int J Obes. 2017.

  13. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.

    Article  Google Scholar 

  14. Lassale C, Tzoulaki I, Moons KGM, Sweeting M, Boer J, Johnson L, et al. Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. Eur Heart J. 2017;39(5):397–406.

    Google Scholar 

  15. Cornier MA, Despres JP, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019.

    Article  Google Scholar 

  16. Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D, et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005;90:4145–50.

    Article  CAS  Google Scholar 

  17. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168:1617–24.

    Article  Google Scholar 

  18. Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity . 2013;21:E439–47.

    CAS  PubMed  Google Scholar 

  19. Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97:2482–8.

    Article  CAS  Google Scholar 

  20. Shimabukuro M, Kozuka C, Taira S, Yabiku K, Dagvasumberel M, Ishida M, et al. Ectopic fat deposition and global cardiometabolic risk: new paradigm in cardiovascular medicine. J Med Invest. 2013;60:1–14.

    Article  Google Scholar 

  21. Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, et al. Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care. 1999;22:1808–12.

    Article  CAS  Google Scholar 

  22. Graffy PM, Pickhardt PJ. Quantification of hepatic and visceral fat by CT and MR imaging: relevance to the obesity epidemic, metabolic syndrome and NAFLD. Br J Radiol. 2016;89:20151024.

    Article  Google Scholar 

  23. Menotti A, Lanti M, Maiani G, Kromhout D. Forty-year mortality from cardiovascular diseases and their risk factors in men of the Italian rural areas of the Seven Countries Study. Acta Cardiol. 2005;60:521–31.

    Article  Google Scholar 

  24. Donahue RP, Abbott RD. Central obesity and coronary heart disease in men. Lancet. 1987;2:1215.

    Article  CAS  Google Scholar 

  25. Yarnell JW, Patterson CC, Thomas HF, Sweetnam PM. Central obesity: predictive value of skinfold measurements for subsequent ischaemic heart disease at 14 years follow-up in the Caerphilly Study. Int J Obes Relat Metab Disord. 2001;25:1546–9.

    Article  CAS  Google Scholar 

  26. Imeson JD, Haines AP, Meade TW. Skinfold thickness, body mass index and ischaemic heart disease. J Epidemiol Community Health. 1989;43:223–7.

    Article  CAS  Google Scholar 

  27. Oppert JM, Charles MA, Thibult N, Guy-Grand B, Eschwege E, Ducimetiere P. Anthropometric estimates of muscle and fat mass in relation to cardiac and cancer mortality in men: the Paris Prospective Study. Am J Clin Nutr. 2002;75:1107–13.

    Article  CAS  Google Scholar 

  28. Tanne D, Medalie JH, Goldbourt U. Body fat distribution and long-term risk of stroke mortality. Stroke. 2005;36:1021–5.

    Article  Google Scholar 

  29. Freedman DS, Williamson DF, Croft JB, Ballew C, Byers T. Relation of body fat distribution to ischemic heart disease. The National Health and Nutrition Examination Survey I (NHANES I) Epidemiologic Follow-up Study. Am J Epidemiol. 1995;142:53–63.

    Article  CAS  Google Scholar 

  30. van Lenthe FJ, van Mechelen W, Kemper HC, Twisk JW. Association of a central pattern of body fat with blood pressure and lipoproteins from adolescence into adulthood. The Amsterdam Growth and Health Study. Am J Epidemiol. 1998;147:686–93.

    Article  Google Scholar 

  31. Hariri AA, Oliver NS, Johnston DG, Stevenson JC, Godsland IF. Adiposity measurements by BMI, skinfolds and dual energy X-ray absorptiometry in relation to risk markers for cardiovascular disease and diabetes in adult males. Dis Markers. 2013;35:753–64.

    Article  Google Scholar 

  32. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.

    Article  CAS  Google Scholar 

  33. Kim J, Meade T, Haines A. Skinfold thickness, body mass index, and fatal coronary heart disease: 30 year follow up of the Northwick Park heart study. J Epidemiol Community Health. 2006;60:275–9.

    Article  Google Scholar 

  34. Willett W. Anthropometric measures and body composition. In: Willett W, Hu F (eds.) Nutritional epidemiology. 3rd ed. Oxford: Oxford University Press; 2013. p. 529 Chapter 9.

    Google Scholar 

  35. Ludescher B, Machann J, Eschweiler GW, Vanhofen S, Maenz C, Thamer C, et al. Correlation of fat distribution in whole body MRI with generally used anthropometric data. Invest Radiol. 2009;44:712–9.

    Article  Google Scholar 

  36. Bouchi R, Takeuchi T, Akihisa M, Ohara N, Nakano Y, Nishitani R, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.

    Article  Google Scholar 

  37. Demura S, Sato S. Suprailiac or abdominal skinfold thickness measured with a skinfold caliper as a predictor of body density in Japanese adults. Tohoku J Exp Med. 2007;213:51–61.

    Article  Google Scholar 

Download references

Acknowledgements

The HDDRISC study was initiated the late Professor Victor Wynn, who directed it for much of its course. Data acquisition was sustained by many clinical, scientific, technical, nursing and administrative staff, to each of whom we extend our thanks.

Funding

Data acquisition for the HDDRISC study was funded by the Heart Disease and Diabetes Research Trust and the Rosen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wann Jia Loh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, W.J., Johnston, D.G., Oliver, N. et al. Skinfold thickness measurements and mortality in white males during 27.7 years of follow-up. Int J Obes 42, 1939–1945 (2018). https://doi.org/10.1038/s41366-018-0034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0034-0

Search

Quick links