Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obesity-related acetylcholinesterase elevation is reversed following laparoscopic sleeve gastrectomy

Abstract

Background

Impaired sympathetic/parasympathetic response, expressed by elevated Acetylcholinesterase (AChE) is associated with obesity, metabolic syndrome and inflammation. However, the association between morbid obesity and AChE and the changes in cholinergic tone following bariatric laparoscopic sleeve gastrectomy (LSG) surgery-induced weight reduction were never analyzed.

Methods

Two studies are presented; the first (the “apparently healthy cohort”) was a cross-sectional study and the second (the “LSG cohort”) was a prospective-cohort study with 12 months of follow-up. The “apparently healthy cohort” included 1450 apparently healthy participants who volunteered to the Tel-Aviv Medical Center Inflammation Survey (TAMCIS) during a routine annual checkup visit. The “LSG cohort” included 77 morbid obese patients before and at 3, 6, and 12 months following LSG surgery. Main outcomes included anthropometric measurements, Hemoglobin A1c (HbA1C), serum AChE, insulin test and Homeostasis Model Assessment (HOMA).

Results

Among the TAMCIS participants, serum AChE activity increased with BMI in a dose-dependent manner until it reached a peak level at BMI of 30–35 kg/m², followed by a plateau. Following LSG, a significant decrease in AChE activity between baseline and 12 months post-surgery was found for men, but not for women (−122.2 ± 135.3, P < 0.001 vs. −21.8 ± 120.5, P = 0.258 nmol substrate hydrolyzed/min per ml, respectively). The reduction in AChE activity was negatively correlated with %excess weight loss (EWL) and positively correlated with %body fat reduction at 12 months post-surgery among women (r = −0.329, P = 0.034 and r = 0.350, P = 0.023, respectively). In men, AChE activity reduction was positively correlated with the HOMA reduction (r = 0.358, P = 0.048).

Conclusions

Obesity-related AChE resistance phenotype may be reversed following LSG and correlates with metabolic outcomes. Further long-term studies will be needed to validate and evaluate the beneficial effect of AChE reduction post bariatric surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonzalez-Muniesa P, et al. Obesity. Nat Rev Dis Prim. 2017;3:17034.

    Article  PubMed  Google Scholar 

  2. Runkel N, et al. Bariatric surgery. Dtsch Arzteblatt Int. 2011;108:341–6.

    Google Scholar 

  3. de Lima KV, Costa MJ, Goncalves Mda C, Sousa BS. Micronutrient deficiencies in the pre-bariatric surgery. Arq Bras De Cir Dig. 2013;26:63–6.

    Article  Google Scholar 

  4. Benaiges D, et al. Laparoscopic sleeve gastrectomy: more than a restrictive bariatric surgery procedure? World J Gastroenterol. 2015;21:11804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol. 2014;28:727–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic review and meta-analysis. Obes Surg. 2017;27:1345–57.

    Article  PubMed  Google Scholar 

  7. Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2006;1083:129–52.

    Article  CAS  PubMed  Google Scholar 

  8. Poirier P, Hernandez TL, Weil KM, Shepard TJ, Eckel RH. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes Res. 2003;11:1040–7.

    Article  PubMed  Google Scholar 

  9. Karason K, Molgaard H, Wikstrand J, Sjostrom L. Heart rate variability in obesity and the effect of weight loss. Am J Cardiol. 1999;83:1242–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ofek K, Soreq H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem-Biol Interact. 2013;203:113–9.

    Article  CAS  PubMed  Google Scholar 

  11. Shenhar-Tsarfaty S, Berliner S, Bornstein NM, Soreq H. Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease. J Mol Neurosci. 2014;53:298–305.

    Article  CAS  PubMed  Google Scholar 

  12. Myers MG Jr, Olson DP. Central nervous system control of metabolism. Nature. 2012;491:357–63.

    Article  CAS  PubMed  Google Scholar 

  13. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Metz CN, Tracey KJ. It takes nerve to dampen inflammation. Nat Immunol. 2005;6:756–57.

    Article  CAS  PubMed  Google Scholar 

  15. Borovikova LV, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  CAS  PubMed  Google Scholar 

  16. Soreq H, Seidman S. Acetylcholinesterase--new roles for an old actor. Nat Rev Neurosci. 2001;2:294–302.

    Article  CAS  PubMed  Google Scholar 

  17. Das UN. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit. 2007;13:Ra214–21.

    CAS  PubMed  Google Scholar 

  18. Kakinuma Y, et al. Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett. 2005;579:2111–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ando M, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005;112:164–70.

    Article  CAS  PubMed  Google Scholar 

  20. Dewland TA, Androne AS, Lee FA, Lampert RJ, Katz SD. Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. Am J Physiol Heart Circ Physiol. 2007;293:H86–92.

    Article  CAS  PubMed  Google Scholar 

  21. Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart. 2003;89:854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Canaani J, et al. Serum ache activities predict exercise heart rate parameters of asymptomatic individuals. Neurosci Med. 2010;1:43–9.

    Article  CAS  Google Scholar 

  23. Meydan C, Shenhar-Tsarfaty S, Soreq H. MicroRNA regulators of anxiety and metabolic disorders. Trends Mol Med. 2016;22:798–812.

    Article  CAS  PubMed  Google Scholar 

  24. Shenhar-Tsarfaty S, et al. Weakened cholinergic blockade of inflammation associates with diabetes-related depression. Mol Med. 2016;22:156–161.

  25. Arbel Y, et al. Decline in serum cholinesterase activities predicts 2-year major adverse cardiac events. Mol Med. 2014;20:38–45.

    Article  PubMed  CAS  Google Scholar 

  26. Ben Assayag E, et al. Serum cholinesterase activities distinguish between stroke patients and controls and predict 12-month mortality. Mol Med. 2010;16:278–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sherf-Dagan S, et al. Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial. Int J Obes. 2017.

  28. Sherf Dagan S, et al. Inadequate protein intake after laparoscopic sleeve gastrectomy surgery is associated with a greater fat free mass loss. Surg Obes Relat Dis. 2017;13:101–9.

    Article  PubMed  Google Scholar 

  29. Sherf Dagan S, et al. Do bariatric patients follow dietary and lifestyle recommendations during the first postoperative year? Obes Surg. 2017;27:2258–71.

    Article  PubMed  Google Scholar 

  30. Toolabi K, Arefanian S, Golzarand M, Arefanian H. Effects of laparoscopic Roux-en-Y gastric bypass (LRYGB) on weight loss and biomarker parameters in morbidly obese patients: a 12-month follow-up. Obes Surg. 2011;21:1834–42.

    Article  PubMed  Google Scholar 

  31. Mirrakhimov AE, et al. Cut off values for abdominal obesity as a criterion of metabolic syndrome in an ethnic Kyrgyz population (Central Asian region). Cardiovasc Diabetol. 2012;11:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  33. Shenhar-Tsarfaty S, et al. Fear and C-reactive protein cosynergize annual pulse increases in healthy adults. Proc Natl Acad Sci USA. 2015;112:E467–71.

    Article  CAS  PubMed  Google Scholar 

  34. Birikh KR, Sklan EH, Shoham S, Soreq H. Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior. Proc Natl Acad Sci USA. 2003;100:283–8.

    Article  CAS  PubMed  Google Scholar 

  35. Cruz KJ, de Oliveira AR, Morais JB, Severo JS, Marreiro PhDD. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition. 2017;35:28–35.

    Article  CAS  PubMed  Google Scholar 

  36. Straznicky NE, Eikelis N, Lambert EA, Esler MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.

    Article  CAS  PubMed  Google Scholar 

  37. Grassi G, et al. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens. 2014;32:383–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

    PubMed  PubMed Central  Google Scholar 

  39. Sklan EH, et al. Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci USA. 2004;101:5512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young MT, Phelan MJ, Nguyen NT. A decade analysis of trends and outcomes of male vs female patients who underwent bariatric surgery. J Am Coll Surg. 2016;222:226–31.

    Article  PubMed  Google Scholar 

  41. Farinholt GN, Carr AD, Chang EJ, Ali MR. A call to arms: obese men with more severe comorbid disease and underutilization of bariatric operations. Surg Endosc. 2013;27:4556–63.

    Article  PubMed  Google Scholar 

  42. Stefanidis A, Oldfield BJ. Neuroendocrine mechanisms underlying bariatric surgery: Insights from human studies and animal models. J Neuroendocrinol. 2017;29.

  43. Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol. 2013;591:2357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson AH, et al. What variables are associated with successful weight loss outcomes for bariatric surgery after 1 year? Surg Obes Relat Dis. 2014;10:697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wimmelmann CL, Dela F, Mortensen EL. Psychological predictors of weight loss after bariatric surgery: a review of the recent research. Obes Res Clin Pract. 2014;8:e299–313.

    Article  PubMed  Google Scholar 

  46. Ruiz-Lozano T, et al. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin Nutr. 2016.

  47. Johnson Stoklossa C, Atwal S. Nutrition care for patients with weight regain after bariatric surgery. Gastroenterol Res Pract. 2013;2013:256145.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McGrice M, Don Paul K. Interventions to improve long-term weight loss in patients following bariatric surgery: challenges and solutions. Diabetes Metab Syndr Obes. 2015;8:263–74.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miras AD, et al. Psychological characteristics, eating behavior, and quality of life assessment of obese patients undergoing weight loss interventions. Scand J Surg. 2015;104:10–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lauti M, Kularatna M, Hill AG, MacCormick AD. Weight regain following sleeve gastrectomy-a systematic review. Obes Surg. 2016;26:1326–34.

    Article  PubMed  Google Scholar 

  51. Sheets CS, et al. Post-operative psychosocial predictors of outcome in bariatric surgery. Obes Surg. 2015;25:330–45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Heber D, et al. Endocrine and nutritional management of the post-bariatric surgery patient: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:4823–43.

    Article  CAS  PubMed  Google Scholar 

  53. Hood MM, et al. Managing severe obesity: understanding and improving treatment adherence in bariatric surgery. J Behav Med. 2016;39:1092–103.

    Article  PubMed  Google Scholar 

  54. Thibault R, Pichard C. Overview on nutritional issues in bariatric surgery. Curr Opin Clin Nutr Metab care. 2016;19:484–90.

    Article  CAS  PubMed  Google Scholar 

  55. Jones L, Cleator J, Yorke J. Maintaining weight loss after bariatric surgery: when the spectator role is no longer enough. Clin Obes. 2016;6:249–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

This study was supported (in part) by grant no. 3–10470 from the Chief Scientist Office of the Ministry of Health, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shani Shenhar-Tsarfaty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were approved by the institutional research committees in both participating hospitals and in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The LSG study was pre-registered in the NIH registration website (TRIAL no. NCT01922830).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenhar-Tsarfaty, S., Sherf-Dagan, S., Berman, G. et al. Obesity-related acetylcholinesterase elevation is reversed following laparoscopic sleeve gastrectomy. Int J Obes 43, 297–305 (2019). https://doi.org/10.1038/s41366-018-0014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0014-4

Search

Quick links