Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model

Abstract

Background/objectives

Ghrelin, a stomach-derived hormone implicated in numerous behaviors including feeding, reward, stress, and addictive behaviors, acts by binding to the growth hormone secretagogue receptor (GHSR). Here, we present the development, verification, and initial characterization of a novel GHSR knockout (KO) Wistar rat model created with CRISPR genome editing.

Methods

Using CRISPR/Cas9, we developed a GHSR KO in a Wistar background. Loss of GHSR mRNA expression was histologically verified using RNAscope in wild-type (WT; n = 2) and KO (n = 2) rats. We tested the effects of intraperitoneal acyl-ghrelin administration on food consumption and plasma growth hormone (GH) concentrations in WT (n = 8) and KO (n = 8) rats. We also analyzed locomotion, food consumption, and body fat composition in these animals. Body weight was monitored from early development to adulthood.

Results

The RNAscope analysis revealed an abundance of GHSR mRNA expression in the hypothalamus, midbrain, and hippocampus in WTs, and no observed probe binding in KOs. Ghrelin administration increased plasma GH levels (p = 0.0067) and food consumption (p = 0.0448) in WT rats but not KOs. KO rats consumed less food overall at basal conditions and weighed significantly less compared with WTs throughout development (p = 0.0001). Compared with WTs, KOs presented higher concentrations of brown adipose tissue (BAT; p = 0.0322).

Conclusions

We have verified GHSR deletion in our KO model using histological, physiological, neuroendocrinological, and behavioral measures. Our findings indicate that GHSR deletion in rats is not only associated with a lack of response to ghrelin, but also associated with decreases in daily food consumption and body growth, and increases in BAT. This GHSR KO Wistar rat model provides a novel tool for studying the role of the ghrelin system in obesity and in a wide range of medical and neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kojima M, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660.

    Article  CAS  PubMed  Google Scholar 

  2. Gutierrez JA, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA. 2008;105:6320–6325.

    Article  CAS  PubMed  Google Scholar 

  3. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132:387–396.

    Article  CAS  PubMed  Google Scholar 

  4. Howard AD, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–977.

    Article  CAS  PubMed  Google Scholar 

  5. Muller TD, et al. Ghrelin. Mol Metab. 2015;4:437–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wren AM, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–4328.

    Article  CAS  PubMed  Google Scholar 

  7. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–913.

    Article  CAS  PubMed  Google Scholar 

  8. Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am J Physiol Endocrinol Metab. 2004;287:E297–E304.

    Article  CAS  PubMed  Google Scholar 

  9. Currie PJ, Mirza A, Fuld R, Park D, Vasselli JR. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. Am J Physiol Regul Integr Comp Physiol. 2005;289:R353–R358.

    Article  CAS  PubMed  Google Scholar 

  10. Schele E, Bake T, Rabasa C, Dickson SL. Centrally administered ghrelin acutely influences food choice in rodents. PLoS ONE. 2016;11:e0149456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cummings DE, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–1719.

    Article  CAS  PubMed  Google Scholar 

  12. Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology. 2006;147:23–30.

    Article  CAS  PubMed  Google Scholar 

  13. Castaneda TR, Tong J, Datta R, Culler M, Tschop MH. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol. 2010;31:44–60.

    Article  CAS  PubMed  Google Scholar 

  14. Howick K, Griffin BT, Cryan JF, Schellekens H. From belly to brain: targeting the ghrelin receptor in appetite and food intake regulation. Int J Mol Sci. 2017;18:2.

    Article  CAS  Google Scholar 

  15. Petersenn S, Rasch AC, Penshorn M, Beil FU, Schulte HM. Genomic structure and transcriptional regulation of the human growth hormone secretagogue receptor. Endocrinology. 2001;142:2649–2659.

    Article  CAS  PubMed  Google Scholar 

  16. Chow KB, et al. The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol. 2012;348:247–254.

    Article  PubMed  CAS  Google Scholar 

  17. Navarro G, et al. A significant role of the truncated ghrelin receptor GHS-R1b in ghrelin-induced signaling in neurons. J Biol Chem. 2016;291:13048–13062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melis MR, et al. Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neurosci Lett. 2002;329:339–343.

    Article  CAS  PubMed  Google Scholar 

  20. Papotti M, et al. Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab. 2000;85:3803–3807.

    CAS  PubMed  Google Scholar 

  21. Jerlhag E, et al. Requirement of central ghrelin signaling for alcohol reward. PNAS Proc Natl Acad Sci USA. 2009;106:11318–11323.

    Article  CAS  Google Scholar 

  22. Zhao TJ, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci USA. 2010;107:7467–7472.

    Article  CAS  PubMed  Google Scholar 

  23. Albarran-Zeckler RG, Sun Y, Smith RG. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice. Peptides. 2011;32:2229–2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang K, Zmuda E, Sleeman MW. Physiological role of ghrelin as revealed by the ghrelin and GOAT knockout mice. Peptides. 2011;32:2236–2241.

    Article  CAS  PubMed  Google Scholar 

  25. Sclafani A, Touzani K, Ackroff K. Ghrelin signaling is not essential for sugar or fat conditioned flavor preferences in mice. Physiol Behav. 2015;149:14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kouno T, et al. Reduced intake of carbohydrate prevents the development of obesity and impaired glucose metabolism in ghrelin O-acyltransferase knockout mice. Peptides. 2016;86:145–152.

    Article  CAS  PubMed  Google Scholar 

  27. Mear Y, Enjalbert A, Thirion S. GHS-R1a constitutive activity and its physiological relevance. Front Neurosci. 2013;7:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Mol Endocrinol. 2003;17:2201–2210.

    Article  CAS  PubMed  Google Scholar 

  29. Bulbul M, et al. Food intake and interdigestive gastrointestinal motility in ghrelin receptor mutant rats. J Gastroenterol. 2011;46:469–478.

    Article  CAS  PubMed  Google Scholar 

  30. MacKay H, et al. Rats with a truncated ghrelin receptor (GHSR) do not respond to ghrelin, and show reduced intake of palatable, high-calorie food. Physiol Behav. 2016;163:88–96.

    Article  CAS  PubMed  Google Scholar 

  31. Clifford PS, et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol. 2012;17:956–963.

    Article  CAS  PubMed  Google Scholar 

  32. Clifford S, et al. Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice. Addict Biol. 2011;16:386–392.

    Article  CAS  PubMed  Google Scholar 

  33. Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacol (Berl). 2014;231:2725–2740.

    Article  CAS  Google Scholar 

  34. Spencer SJ, Emmerzaal TL, Kozicz T, Andrews ZB. Ghrelin’s role in the hypothalamic-pituitary-adrenal axis stress response: implications for mood disorders. Biol Psychiatry. 2015;78:19–27.

    Article  CAS  PubMed  Google Scholar 

  35. Wittekind DA, Kluge M. Ghrelin in psychiatric disorders—a review. Psychoneuroendocrinology. 2015;52:176–194.

    Article  CAS  PubMed  Google Scholar 

  36. Leggio L. Role of the ghrelin system in alcoholism: acting on the growth hormone secretagogue receptor to treat alcohol-related diseases. Drug News Perspect. 2010;23:157–166.

    Article  CAS  PubMed  Google Scholar 

  37. Zallar LJ, Farokhnia, Tunstall BJ, Vendruscolo LF, Leggio L. The role of ghrelin in addictions. International review of neurobiology. 2017;136:89–119.

  38. Parker CC, et al. Rats are the smart choice: rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology. 2014;76:250–258.

    Article  CAS  PubMed  Google Scholar 

  39. Vengeliene V. The role of ghrelin in drug and natural reward. Addict Biol. 2013;18:897–900.

    Article  CAS  PubMed  Google Scholar 

  40. Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9:1079–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clegg DJ, et al. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes. 2007;56:1051–1058.

    Article  CAS  PubMed  Google Scholar 

  42. Goldstein JL, et al. Surviving starvation: essential role of the ghrelin-growth hormone axis. Cold Spring Harb Symp Quant Biol. 2011;76:121–127.

    Article  CAS  PubMed  Google Scholar 

  43. Mann A, Thompson A, Robbins N, Blomkalns AL. Localization, identification, and excision of murine adipose depots. J Vis Exp. 2014;94:52174.

    Google Scholar 

  44. Azzout-Marniche D, et al. Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate:fat intake. Am J Physiol Regul Integr Comp Physiol. 2016;310:R1169–R1176.

    Article  PubMed  Google Scholar 

  45. Lima ML, et al. A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet. J Diabetes Res. 2016;2016:9127076.

    Article  PubMed  CAS  Google Scholar 

  46. Aslani S, et al. The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl Psychiatry. 2015;5:e684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z. A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes. 1981;30:1045–1050.

    Article  CAS  PubMed  Google Scholar 

  48. Kovacs P, Voigt B, Berg S, Vogt L, Kloting I. WOK.1W rats. A potential animal model of the insulin resistance syndrome. Ann N Y Acad Sci. 1997;827:94–99.

    Article  CAS  PubMed  Google Scholar 

  49. Aleixandre de Artinano A, Miguel Castro M. Experimental rat models to study the metabolic syndrome. Br J Nutr. 2009;102:1246–1253.

    Article  CAS  PubMed  Google Scholar 

  50. Vendruscolo JC et al. Compulsive-like sufentanil vapor self-administration in the rat. Neuropsychopharmacology. 2017. Article in press. Doi# below.DOI: 10.1038/npp.2017.172

  51. Richardson HN, Lee SY, O’Dell LE, Koob GF, Rivier CL. Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. Eur J Neurosci. 2008;28:1641–1653.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Holtz NA, Carroll ME. Cocaine self-administration punished by intravenous histamine in adolescent and adult rats. Behav Pharmacol. 2015;26:393–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cannon B., Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  54. Elattar S, Satyanarayana A. Can brown fat win the battle against white fat? J Cell Physiol. 2015;230:2311–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shuto Y, et al. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest. 2002;109:1429–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mano-Otagiri A, et al. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul Pept. 2010;160:81–90.

    Article  CAS  PubMed  Google Scholar 

  57. Chondronikola M, Porter C, Malagaris I, Nella AA, Sidossis LS. Brown adipose tissue is associated with systemic concentrations of peptides secreted from the gastrointestinal system and involved in appetite regulation. Eur J Endocrinol. 2017;177:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma X, et al. Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging. PloS ONE. 2011;6:e16391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin L, Sun Y. Thermogenic characterization of ghrelin receptor null mice. Methods Enzymol. 2012;514:355–370.

    Article  CAS  PubMed  Google Scholar 

  60. Lin L, et al. The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging. 2014;6:1019–1032.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Drug Abuse Intramural Research Program (L.J.Z., B.J.T., C.T.R., Y.J.Z., Z.B.Y., E.L.G., G.F.K., L.F.V., B.K.H., L.L), the National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (L.J.Z., Y.J.Z., M.H., L.L.), and the National Institute of Mental Health Intramural Research Program (J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Leggio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zallar, L.J., Tunstall, B.J., Richie, C.T. et al. Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes 43, 344–354 (2019). https://doi.org/10.1038/s41366-018-0013-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0013-5

This article is cited by

Search

Quick links