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DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA
methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have
been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct
cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA
methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level
Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge
matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent
feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained
through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that
the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data
obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing.
Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby
reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation
data analysis and enhance DNA methylation data resources.
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INTRODUCTION
DNA methylation – i.e., the addition of a methyl group to the 5’
end of cytosine at CpG sites – is a type of epigenetic modification
conserved across prokaryotes and eukaryotes1. In eukaryotes, DNA
hypermethylation near transcription start sites (TSSs) and around
promoters has been reported to suppress gene expression by
preventing the binding of transcription factors and other
transcriptional regulators, thus contributing to the formation of
cell- and tissue-specific gene expression patterns during embry-
ogenesis and cell differentiation2. The relationship between gene
expression and DNA methylation patterns has also been
extensively explored in the cancer research field3. Comprehensive
DNA methylation analysis methods include methylated DNA
immunoprecipitation (MeDIP), the Illumina HumanMethylation
BeadChip, reduced-representation bisulfite sequencing (RRBS),
and whole-genome bisulfite sequencing (WGBS)4,5. The

methylated DNA data acquired on these platforms are registered
in the Gene Expression Omnibus (GEO) and Sequence Read
Archive (SRA), with Illumina HumanMethylation BeadChip analysis
data being the most commonly registered and published. As of
April 15, 2023, the HumanMethylation450 BeadChip (HM450) has
been used to generate 114,799 samples registered in the GEO
database, making it a widely used tool in the fields of
developmental biology and cancer research.
In HM450 data analysis, raw data are generally normalized by

preprocessing, followed by comparative and clustering analyses.
Several preprocessing methods have been proposed to date, with
different researchers and projects adopting different preprocessing
methods6–8. Therefore, when performing DNA methylation analysis
using public data, it is necessary to preprocess the raw data first.
However, preprocessing DNA methylation data from hundreds to
thousands of samples requires considerable computational power,
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thus making cross-dataset analysis difficult. In addition, some datasets
registered in GEO are available in the form of raw data, while others
are available only in the form of preprocessed data, thus requiring
comparative analysis between data processed via different preproces-
sing methods. Importantly, HM450 data have been reported to have
different data distributions depending on the preprocessing method
used9–11, which may compromise the reproducibility and scientific
reproducibility of dataset comparison studies and meta-analyses
using these data. The problem of preprocessing-derived bias in data
distribution has been established not only for DNA methylation data
but also for transcriptomics data. For example, the platform recount2
(https://jhubiostatistics.shinyapps.io/recount/)12, which provides tran-
scriptome data processed through a unified pipeline, and Multi-
PLIER13, an analysis method based on latent features generated from
large datasets, were developed to perform comparative analysis
between datasets with data distribution bias. MultiPLIER first obtains a
latent matrix via non-negative matrix factorization (NMF)14 of large
gene expression data obtained from recount2 with regularization to
sparsely include knowledge matrices from gene sets for various
pathways and ontologies. Then, through matrix decomposition of the
dataset to be analyzed using a latent matrix, datasets from different
domains are represented by the same latent feature vector to achieve
interdataset comparative analysis.
In this study, we applied the MultiPLIER architecture to DNA

methylation data to develop a novel DNA methylation analysis
architecture with high biological semantic interpretability, thus
enabling easy interdataset comparative analysis. We named this
analysis architecture “methPLIER” and evaluated its data analysis
capacity and biological interpretability. methPLIER is a method for
performing NMF under regularization conditions that sparsely
includes knowledge matrices composed of gene sets such as
pathways and ontologies. Since multiple analysis probes are
designed for a single gene or transcript in HM450 data, it is
necessary to compress the data from probe-wise data to gene-
wise data for regularized NMF with a knowledge matrix. Since the
analysis of DNA methylation patterns near the transcription start
sites of transcripts is essential for DNA methylation analysis, we
compressed the data into principal component scores for the
analysis probes located 1500 bps from the TSSs, transforming
them into gene-wise data for each transcript. In addition, mapping
DNA methylation probe data near significant genes onto the
genome made it possible to observe the spatial relationship
between DNA methylation and expression patterns (Fig. 1). Using
methPLIER, we analyzed a lung cancer dataset obtained from the
GEO and obtained latent variables (LVs) related to relapse-free
survival (RFS). The gene sets included in the dataset were easy to
interpret biologically. Furthermore, comparative analysis between
different preprocessing methods and different platforms using

methPLIER suggested that distributional differences between the
datasets could be reduced. Based on the above findings, we
believe that DNA methylation analysis using methPLIER is useful
for interdataset comparisons and for understanding the biological
significance of DNA methylation based on available data.

MATERIALS AND METHODS
Dataset used in this study
For the development of methPLIER, DNA methylation data from 9756
samples of different cancers (lung squamous cell carcinoma; lung
adenocarcinoma; ovarian cancer; uterine corpus endometrial carcinoma;
glioblastoma multiforme; kidney renal clear cell carcinoma; invasive breast
carcinoma; thyroid cancer; low-grade glioma; skin cutaneous melanoma;
kidney renal papillary cell carcinoma; cervical squamous cell carcinoma
and endocervical adenocarcinoma; liver hepatocellular carcinoma; sar-
coma; kidney chromophobe; acute myeloid leukemia; adrenocortical
carcinoma; mesothelioma; lymphoid neoplasm diffuse large B-cell
lymphoma; esophageal carcinoma; head and neck squamous cell
carcinoma; prostate adenocarcinoma; colon adenocarcinoma; pheochro-
mocytoma and paraganglioma; uterine carcinosarcoma; uveal melanoma;
rectum adenocarcinoma; cholangiocarcinoma; testicular germ cell tumors;
thymoma; pancreatic adenocarcinoma; bladder urothelial carcinoma;
stomach adenocarcinoma) obtained from The Cancer Genome Atlas
(TCGA; and https://portal.gdc.gov) were used. To demonstrate the use of
methPLIER, we used a LUAD dataset (GSE39279)15 obtained from the Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)16. For
preprocessing and comparative analysis, we used a clear cell renal cell
carcinoma dataset (GSE61441)17 obtained from the GEO. For platform
comparative analysis, we used HM450, WGBS, and RRBS data from 4 cell
lines—GM12878, H1-hESC, HepG2, and SK-N-SH—obtained from the
Encyclopedia of DNA Elements (ENCODE; https://
www.encodeproject.org)18. The Public/Private R&D Investment Strategic
Expansion PrograM (PRISM) database is one of the largest lung cancer
databases in the world (in-house database of NCC Japan) and contains
clinical information from 1714 lung cancer patients, whole-exome analysis
data from 1559 lung cancer patients, and RNA-seq data from 1682 lung
cancer patients. In addition to clinical information, total exome analysis,
and RNA-seq analysis, the PRISM database features whole-genome analysis
data for 413 patients, DNA methylation analysis data for 402 patients, and
ChIP-seq analysis (H3K27Ac) data for 222 patients (as of April 15, 2023).

Comparison of DNA methylation data
The HM450 data are expressed as numerical data of DNA methylation
status from 0 to 1 for 485,577 probes. To apply the regularization condition
via the knowledge matrix, the data were compressed from probe-by-probe
data to promoter methylation pattern data for each transcript. Data
compression was performed through the following two steps. First, DNA
methylation data for analysis probes located within 1500 bps of the
transcription start site (TSS) for each transcript were extracted. These
analysis probes were subsequently used to perform principal component
analysis (PCA) to compress the obtained principal component scores

Fig. 1 Workflow of our proposed DNA methylation analysis method called “methPLIER”. The DNA methylation data of 9756 samples
obtained from TCGA are matrix decomposed via non-negative matrix factorization under the condition that the knowledge matrix, C, is
regularized to sparsely include the DNA methylation data and that the latent matrix, Z, is obtained. The obtained Z is used to matrix
decompose the analysis dataset to obtain the loading matrix, which is used for inter- and intradataset comparisons.
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(PCSs) down to the point where the cumulative contribution rate exceeded
80%. The eigenvectors for each principal component axis were used for
data compression of the new data. In the feasibility study for compressing
gene-wise data, probes located in the 1st exon were used. The
compression of gene-wise data from probewise data was conducted
using the previously described method.

Curation of knowledge matrices
The knowledge matrix used for methPLIER consisted of 817 gene sets
obtained from the Molecular Signatures Database (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb/)19–21. For the knowledge matrix, we
used four integrated datasets, namely, bloodCellMarkersIRISDMAP, svmMar-
kers, canonicalPathways, and oncogenicPathways, which were incorporated
into the R package PLIER22. The knowledge matrix included 545 biological
pathways23, 83 cell- and tissue-specific genetic markers24, 189 cancer-
related pathways25, and 817 gene sets. The methPLIER-CTD was
constructed using a gene set for 2545 adenocarcinoma-related chemicals
obtained from the Comparative Toxicogenomics Database (CTD). These
gene sets were subsequently transformed into a one-hot matrix consisting
of genes and gene set names for use as a knowledge matrix.

Conversion of WGBS and RRBS data to HM450 probewise data
WGBS and RRBS data were converted to HM450 probewise data for
comparative analysis with HM450 data using methyLiftover (https://
github.com/Christensen-Lab-Dartmouth/methyLiftover)26 to compare with
the HM450 probewise data. The original methyLiftover converts WGBS and
RRBS data mapped to hg19 to HM450 probe-wise data; however, since the
WGBS and RRBS data obtained from ENCODE were mapped to hg38, the
program was slightly edited to convert them to HM450 probe-wise data
using the hg38 remapped HM450 manifest file (http://zwdzwd.github.io/
InfiniumAnnotation)27 created by Zhou et al.

NMF with knowledge matrix sparse constraints
NMF with sparse regularization by a knowledge matrix was performed
using the R PLIER package (https://github.com/wgmao/PLIER)22. With the
PLIER package, we aimed to minimize the following equations by
searching for matrices U, Z, and B when given an input data matrix D
and a knowledge matrix C 2 0; 1n ´m consisting of m gene sets containing
n genes, where U is the loading matrix for the knowledge matrix and B is
the loading matrix for the latent feature matrix Z:

kD� ZBk2F þ λ1kZ � CUk2F þ λ2kBk2F þ λ3kUkL1

subject toU > 0; Z > 0

The first term is the degree of approximation index of the matrix
product ZB of the latent feature matrix Z and the factor loading matrix B to
the input data matrix D, the so-called reconstruction error. The second,
third and fourth terms are regularization terms for the matrices Z, U, and B.
Each regularization term is adjusted by the hyperparameters λ1, λ2, and λ3.
In addition, both matrices Z and U are non-negative matrices. In the
second term, the matrix product CU of the knowledge matrix C and its
factor loading matrix U, given as constants, is intended to approximate the
latent feature matrix Z. A regularity condition due to the L1 norm of
the factor loading matrix U is given in the fourth term, which optimizes the
latent feature matrix Z to be sparser. The third term is the Frobenius norm
of the factor loading matrix B relative to the latent matrix Z. The purpose is
to ensure that the factor loading matrix B is not too large relative to the
latent feature matrix Z. In this study, PLIER was run on data D converted
from probe-wise data to gene-wise data with the following hyperpara-
meters: frac= 0.7, max.iter= 350, maxPath= 10, minGenes= 10, glm_al-
pha= 0.9, and tol= 10−6.

Unsupervised clustering
Unsupervised clustering was performed to capture the macroscopic sample
characteristics of the DNA methylation data and loading matrix output from
methPLIER. Hierarchical cluster analysis (HCA), principal component analysis
(PCA), k-means clustering, and uniform manifold approximation and
projection (UMAP)28 were used for clustering. HCA performed clustering
classification using Ward’s method29 based on the Euclidean distance
between samples. k-means clustering was performed using the Hartigan‒
Wong method30, with a maximum number of iterations of 100. UMAP was

based on the Euclidean distance between samples and included the
following parameters: neighbors= 15, components= 2, and epochs= 200.

Motif analysis of sequences around DMPs
For the motif analysis of sequences surrounding differentially methylated
positions (DMPs), we utilized the Analysis of Motif Enrichment (AME) tool
included in the MEME Suite31. We focused on the 50 base pair genomic
sequences corresponding to the probe design locations on the
HumanMethylation BeadChip. To compare the hypomethylated and
hypermethylated DMPs in pan-negative cases relative to those in EGFR
mutation cases, we performed a one-tailed Fisher’s exact test for statistical
evaluation. Motifs exhibiting significant differences (P < 0.05) were
extracted for further analysis.

Availability and implementation
The code used to construct methPLIER was deposited on GitHub (https://
github.com/hamamoto-lab/methPLIER). Additionally, the data used for
building methPLIER and the methPLIER model itself were deposited in
Figshare (https://doi.org/10.6084/m9.figshare.21938528, https://
figshare.com/s/e656bd498a660778f988). By building a Docker image from
the Dockerfile available on GitHub, users can create an analytical
environment that enables the utilization of methPLIER.

Software and packages
The analysis was performed using R 4.1.1 (https://cran.r-project.org), R
Studio 1.3 (https://www.rstudio.com), and the following R packages:
ChAMP32, minfi33, PLIER (https://github.com/wgmao/PLIER)22, multiPLIER
(https://github.com/greenelab/multi-PLIER)13, and umap (https://
github.com/tkonopka/umap).

RESULTS
Development of methPLIER
To construct methPLIER, HM450 data from 9756 samples obtained
from the TCGA were used (Fig. 2). methPLIER is an NMF performed
under regular conditions where the latent matrix sparsely contains
the knowledge matrix, which is a matrix consisting of multiple
gene lists. The methodology of methPLIER presupposes a
relationship between the input data and the prior knowledge
matrix, which is necessary because of its reliance on a matrix
decomposition approach based on this prior knowledge. This
knowledge predominantly comprises curated information such as
pathway information and ontology data, which are generally more
compatible with gene expression data. However, a direct
correlation between DNA methylation data and pathways or
ontologies is not always evident, often leading to a lack of
applicable prior knowledge. To address this challenge, innovative
strategies for aligning analytical probes using knowledge matrices
must be devised. This alignment is crucial for ensuring the

Fig. 2 Diagram of methPLIER development. For the development
of methPLIER, we used 9756 samples of Illumina Infinium
HumanMethylation450 BeadChip (HM450) data obtained from
the TCGA. We selected probes located within 1500 bps of the TSS.
Next, we compressed the selected probe data to gene-wise data
using principal component analysis (PCA) (for more detail, see
Methods). The compressed gene-wise data were filtered by the gene
list of the knowledge matrix, and we obtained the source domain
data of methPLIER, comprising 26,525 features and 9756 samples.
The source domain data were decomposed via non-negative matrix
factorization with a knowledge matrix having sparse constraints.
The details and equations used are provided in the Methods section.
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relevance and accuracy of the matrix decomposition process in
the context of DNA methylation data. In addition, the knowledge
matrix used in our study was exclusively available at the gene level
and not at the probe level. Since the knowledge matrix is a matrix
consisting of multiple gene lists, HM450 data expressed as DNA
methylation data for a single CpG site were converted into data
for each gene to perform matrix decomposition. First, DNA
methylation data for analysis probes located within 1500 bps of
the TSS for each transcript were extracted and compressed for
each transcript via PCA. Among the principal components
obtained via PCA, the PCSs for the principal components reached
the point where the cumulative contribution ratio exceeded 0.8
and were used as the compressed data for each transcript. The
TCGA DNA methylation data were compressed into a matrix of
9756 samples ×26,525 features. NMF was subsequently performed
on the compressed data under the regularization condition that
the knowledge matrix was sparsely contained, resulting in a latent
matrix Z with 524 LVs (Fig. 2). To use the methPLIER tool, matrix
decomposition was performed on new DNA methylation data
using this latent matrix Z to derive a loading matrix B. The loading
matrix for the feature space was represented by the same latent
matrix Z, allowing DNA methylation data from different datasets
to be analyzed in a common feature space. Unsupervised
clustering classification and intergroup comparative analysis can
then be performed using this loading matrix.

methPLIER enables analysis that reflects sample
characteristics
To evaluate the performance of the methPLIER dataset, we analyzed
a LUAD dataset (GSE39279)15 obtained from the GEO. The LUAD
dataset was compressed into a matrix decomposable data format
using eigenvectors obtained during the compression of TCGA DNA
methylation data, followed by latent matrix decomposition. HCA was
performed on the resulting loading matrix (Fig. 3a). Based on the
HCA results, the samples were divided into two clusters, and Kaplan‒
Meier survival analysis was performed for each cluster (Fig. 3b). The
log-rank test results showed a significant difference in RFS between
the two clusters (p= 0.00093). In a previous study using the same
dataset, the sample clusters were divided into two groups based on
the HCA results, and the results of the survival response analysis
showed that there were two groups, one with a high recurrence risk
and the other with a low recurrence risk. This grouping is consistent
with the results of methPLIER analysis (GSE39279)15.

Feasibility of using 1st exon region probes in methPLIER
analysis
In the construction of methPLIER, a critical element is the use of a
knowledge matrix primarily derived from gene-wise data, which

extensively incorporates curated information on gene expression
patterns in relation to pathways and ontologies. To compensate
for the lack of scrutiny of the correlation of the knowledge matrix
with DNA methylation patterns, the analysis concentrated on
probes near the TSS, specifically within a 1500 base pair area
known for its strong link to gene expression. To expand the scope
of methPLIER further, we incorporated data compression for
probes located in the 1st exon region, acknowledging the
potential interest of researchers in this field. This decision was
based on the assumption that DNA methylation in the 1st exon is
likely to correlate with gene expression, which parallels the
rationale applied to the TSS. The methodology was subsequently
applied and validated using a lung cancer dataset. The results of
the expanded analysis are discussed. By using factor loading
matrix B for hierarchical clustering analysis in methPLIER
constructed with 1st exon region data, we observed the formation
of two distinct clusters, mirroring the findings from the TSS1500-
based analysis (Supplementary Fig. 1). Crucially, survival time
analysis based on cluster labels revealed significant differences
between the two groups, underscoring the robustness of the
approach.

LVs obtained via methPLIER have high biological
interpretability
Comparative analysis of LVs between the two clusters revealed
significant differences in 261 LVs (FDR < 0.05, Supplementary
Table 1). The knowledge variables in the top 10 LVs were
confirmed by heatmap plotting, which showed that the knowl-
edge matrices were sparse among the latent variables and
included gene sets related to lung cancer and cancer progression,
such as those related to KRAS, the p38 MAPK pathway, and the
integrin pathway (Supplementary Fig. 2). A heatmap of the
contents of the knowledge variables in the top 10 LVs showed
that the knowledge matrices were sparsely included among the
latent variables. LV96 contained a set of genes whose expression
was suppressed when the oncogenic form of KRAS (G12V) was
overexpressed in four epithelial cell types34, and LV121 contained
the p38 MAPK signaling pathway, all of which scored higher in the
short-term RFS group. Lung cancer patients with KRAS G12V
mutations have been shown to have shorter overall survival than
non-KRAS G12V mutation cases35. In addition, p38 generally
functions as a tumor suppressor protein; however, in vitro
experiments have shown that it contributes to cell proliferation
and malignant transformation in transgenic lung cancer cell lines
harboring the KRAS G12V mutation36. Based on the above, we
believe that latent features in methPLIER reflect biological
characteristics and allow DNA methylation data analysis with high
explanatory potential.

Fig. 3 Results of lung adenocarcinoma dataset analysis using methPLIER. a Hierarchical cluster analysis (HCA) and heatmap plot of the
loading matrix of the lung adenocarcinoma dataset (GSE39279). The columns and rows indicate samples and latent variables (LVs),
respectively. The columns were divided into two clusters according to the HCA results. The rows were divided into four clusters via k-means
clustering. b Kaplan‒Meier estimates for relapse-free survival (RFS) for the dataset with RFS information according to the two groups obtained
from HCA clustering. The p value was calculated via the log-rank test.

K. Takasawa et al.

649

Experimental & Molecular Medicine (2024) 56:646 – 655



methPLIER reduces preprocessing method-associated
differences in data distribution
To examine the effect of methPLIER on data distribution bias due
to differences in preprocessing methods, dataset distribution
comparisons were performed using a single dataset preprocessed
via four different preprocessing methods. The dataset comprised
92 renal cell carcinoma samples and was preprocessed via four
methods: a preprocessing method mimicking the Illumina
Genome Studio preprocessing method (Genome Studio)33,
subset-quantile within array normalization (SWAN)37, peak-based
correction (PBC)38, and beta-MIxture Quantile dilation (BMIQ)39.
The data preprocessed via each method were then combined into
simply integrated data and into data with the loading matrix
derived by methPLIER (methPLIER-integrated). Each of these
merged datasets was embedded into a two-dimensional space
via UMAP, and a color-coded scatter plot was generated for each
preprocessing method. After simple integration, clusters were
formed for each preprocessing method, while after using
methPLIER for analyses, no clusters were observed (Fig. 4). The
methPLIER-integrated data were then classified into two clusters
by k-means clustering and color coded based on the classification
results. In both preprocessing methods, the respective clusters
were separated on the UMAP 2 axis, showing a similar pattern
regardless of the preprocessing method (Fig. 4b). Color coding of
the UMAP plots by sample type (cancer/noncancer) and sex
information for the dataset used in the analysis showed a similar
pattern to that of the cluster information obtained by K-means
clustering (Supplementary Fig. 3). These results suggest that
methPLIER reduces the data distribution bias caused by the
preprocessing method.

methPLIER reduces differences in data distribution across
analysis platforms
DNA methylation data can be obtained not only via BeadChip
analysis but also via NGS-based WGBS. WGBS has been increas-
ingly used in recent years due to its ability to yield genome-wide
methylation data, including data on DNA methylation at non-CpG
sites. Therefore, to investigate the potential of using methPLIER for
WGBS data analysis, we analyzed data from four cell lines in the
ENCODE project via the HM450K and WGBS databases. Since
methPLIER is an analysis method compatible with HM450K probe
data, WGBS data were converted to corresponding HM450K

analysis probe data using MhyLiftover26. The converted WGBS
data were merged with the HM450K data obtained from the same
cell line, and unsupervised clustering was performed via HCA to
form clusters for each analysis platform (Fig. 5a). PCA was
performed on the integrated data, and a scatter plot of principal
components (PCs) 1 to 3 was generated, revealing that clusters
were formed for each analysis platform, as was the case for HCA
(Fig. 5b). This finding suggested that direct integration of WGBS
data with HM450K data is subject to data distribution bias due to
the analysis platform. The loading matrix was subsequently
obtained using methPLIER for the previously integrated data,
with classification by HCA and PCA showing that clusters were
formed based on cell lines (Fig. 5c, d) rather than analysis
platforms, as previously observed. These results suggest that the
loading matrix output by methPLIER reduces the data distribution
bias caused by differences in analysis platforms and enables an
analysis that focuses on sample characteristics. In addition, we
evaluated the suitability of the methPLIER tool for use with RRBS
data. The results showed that the RRBS data formed distinct
clusters (Supplementary Fig. 4a–d). This pattern was attributable
to the limited alignment of the RRBS data with the HM450K
probes, which achieved only an approximately 10% match, in
contrast to the higher compatibility observed for WGBS data
(Supplementary Fig. 4e). Despite the use of methPLIER, this
discrepancy led to the persistent formation of separate clusters in
the RRBS data, highlighting a notable platform-specific bias.

The knowledge matrix of methPLIER can be flexibly modified
for different purposes
Since the latent feature matrix of methPLIER is constrained by the
knowledge matrix, the biological interpretation of latent features
is strongly influenced by the knowledge matrix applied in
constructing methPLIER. The methPLIER tool constructed thus
far used classical pathways and cancer-related gene sets focused
on cell biological functions for general-purpose data analysis.
However, in drug response prediction and drug development
research, we expect that knowledge matrices, which include gene
sets, such as pathways and ontologies related to compounds, and
drugs that can be easily analyzed at a later stage and easily
explained to stakeholders, will be more appropriate. Therefore, we
reconstructed methPLIER using the adenocarcinoma-related gene
set obtained from the CTD as the knowledge matrix and examined

Fig. 4 Comparison of the UMAP plot of the GSE61441 dataset preprocessed using various preprocessing methods. a UMAP plot of
integrated data preprocessed using various methods. The data were preprocessed at each time point through the following methods:
Genome Studio (blue), SWAN (light blue), BMIQ (red), and PBC (green). The upper panel shows the UMAP plot of the data, which were
integrated without using methPLIER, and the lower panel shows the UMAP plot of the integrated data obtained using methPLIER. b UMAP
plot of data preprocessed via each method: mimicked method of Genome Studio (upper left), SWAN (upper right), BMIQ (lower left), and PBC
(lower right). The red and blue points indicate the respective clusters, and the gray points indicate the data obtained using other
preprocessing methods.

K. Takasawa et al.

650

Experimental & Molecular Medicine (2024) 56:646 – 655



the variability of the knowledge matrix in methPLIER and its
usefulness. The CTD is a database that aggregates the effects of
environmental substances, compounds, and drugs on living
organisms, with curated toxicogenomic data available for more
than 16,300 compounds. In this study, among adenocarcinoma-
related chemicals in the CTD, we extracted the inference network
that had more than 10 reference papers, created a knowledge
matrix consisting of 2545 chemicals and 778 genes, and
constructed a methPLIER-CTD with 230 LVs.

PRISM DNA methylation dataset analysis using the
methPLIER-CTD
The methPLIER-CTD was used to analyze the DNA methylation
dataset of lung cancer patients in the PRISM database. It has been
reported that approximately half of Japanese lung adenocarci-
noma patients have EGFR mutations, and approximately 30% of
patients have no identified driver genes, such as KRAS, ALK fusion,
or RET fusion genes (pan-negative)40. A two-group comparative
analysis of EGFR-mutated and pan-negative cases was performed
on the PRISM DNA methylation dataset generated by using the
methPLIER-CTD. A t test for factor loadings on each latent feature
obtained via methPLIER-CTD was performed, and LVs with an FDR
of less than 0.05 according to the Benjamini–Hochberg method
were extracted. The results revealed significant differences in 92
LVs, and 64 features contained gene sets related to lung cancer
(Supplementary Table 2). To confirm the biological interpretability
of these 64 LVs, a heatmap plot of the factor loadings on the gene
set for each latent feature was generated (Supplementary Fig. 5).
Each latent feature contained sparse gene sets, including cancer-
related gene sets, anticancer drug-related gene sets, general drug-
related gene sets, toxicant-related gene sets, endogenous
molecule-related gene sets, and other suggestive gene sets.
Focusing on the anticancer drug-related gene set, 54 LVs were
extracted. Comparison of the DNA methylation levels of analytical
probes located near genes in the anticancer drug-related gene set
in EGFR-mutated patients and pan-negative cases revealed 841
DMPs located near 225 genes (FDR < 0.05, Supplementary Table
3). Among the DMPs, 466 DMPs tended to be hypomethylated in
pan-negative cases, while 375 DMPs tended to be hypermethy-
lated. The genes that exhibited hypomethylation in pan-negative
cases included MMP241,42, which has been reported to be involved
in metastasis and local invasion in breast cancer, and HES143,

which has been reported to be hypomethylated in colorectal
cancer (Fig. 6a, b). Among the genes that showed a trend toward
hypermethylation in the pan-negative cases were RUNX3, a known
tumor suppressor gene, and CCNA144, which has been reported to
correlate with treatment response to doxorubicin and
5-fluorouracil (Fig. 6c, d). We performed transcription factor
binding motif analysis on the 50 surrounding bps of the 466
identified hypomethylated DMPs and 375 hypermethylated DMPs
(Fig. 7). Among the hypomethylated DMPs, we observed
enrichment of transcription factor binding motifs for POU Class
6 Homeobox 2 (PO6F2), CCAAT Enhancer Binding Protein Zeta
(CEBPZ), Nuclear Transcription Factor Y Subunit Beta (NFYB), Basic
Helix-Loop-Helix Family Member E40 (BHE40), Forkhead Box P2
(FOXP2), Forkhead Box P1 (FOXP1), Forkhead Box O3 (FOXO3), E4F
Transcription Factor 1 (E4F1), Forkhead Box O6 (FOXO6), NFYA,
E4F Transcription Factor 1 (E2F4), E2F Transcription Factor 7 (E2F7),
Nuclear Transcription Factor Y Subunit Gamma (NFYC), and MYC
Associated Zinc Finger Protein (MAZ). In contrast, hypermethy-
lated DMPs displayed enrichment of transcription factor binding
motifs for NK2 homeobox 2 (NKX2-2), NK3 homeobox 1 (NKX3-1),
NK2 homeobox 1 (NKX2-1), TGFB Induced Factor Homeobox 1
(TGIF), Zinc Finger Protein 667 (ZN667), and Homeobox B13
(HXB13). NKX2-1, an airway epithelial-specific transcription factor,
has been shown to inhibit SPDEF expression, effectively prevent-
ing ovalbumin-induced goblet cell differentiation and lung
inflammation in transgenic overexpression of Nkx2-145. Intrigu-
ingly, in the context of regulating its target genes surfactant
protein B and myosin-binding protein H, NKX2-1 has been found
to be sensitive to methylation46–48. This finding contributes to a
deeper understanding of the molecular mechanisms involved in
airway epithelial cell regulation and may have implications for
future research in this area. In the pan-negative cases, we
observed enrichment of NKX2-1 recognition sequences in the
highly methylated DNA regions. Based on these findings, it is
plausible that in pan-negative cases, the binding of NKX2-1 and
NKX family proteins may be hindered by high DNA methylation.
This could result in insufficient suppression of cancer-related gene
expression, potentially leading to the onset and progression of
cancer. In summary, data analysis using methPLIER-CTD con-
structed with drug-related gene sets revealed highly methylated
regions near drug response-related genes and tumor suppressor
genes in pan-negative cases.

Fig. 5 Results of unsupervised classification of combined data with and without methPLIER. Validation of the performance of the
methPLIER tool on DNA methylation data acquired via different platforms HCA and PCA plot of the data integrated with (lower: c, d) or
without (upper: a, b) using methPLIER. The colors of the points indicate the sample names: GM12878 (red), H1-hESC (green), HepG2 (light
blue), and SK-N-SH (blue). The shape of the points indicates the type of platform used to acquire the data: HM450 (circle) or WGBS (triangle).
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DISCUSSION
DNA methylation patterns are correlated with cell and tissue type
as well as with disease and have been applied for diagnosis and
therapy response prediction under various conditions49. In studies
of rare and regional diseases, it is important to integrate DNA
methylation data from multiple studies, as small sample sizes and
limitations inherent to data from a single institution or study may
compromise analysis50,51. However, DNA methylation data in
various public databases differ according to the platform
employed and processing applied, which constitutes a barrier to
data integration. Therefore, we developed a new DNA methylation
data analysis method, namely, methPLIER, which is oriented
toward integrated data analysis. Although methPLIER is inspired
by MultiPLIER, it is not a mere adaptation for DNA methylation
data analysis. methPLIER has three novel aspects compared to
MultiPLIER and other existing methods. First, methPLIER employs a
unique preprocessing method for the input data. The DNA
methylation data used by methPLIER represents the methylation
rate of each CpG site, resulting in a “one-to-many relationship”,
where multiple methylation information exists for a single gene or
transcript. In contrast, the knowledge matrix utilized for

regularization comprises gene-specific matrices. Consequently,
transforming CpG site data into gene-specific data is essential.
methPLIER compresses the DNA methylation data for each
transcript by extracting the methylation data for analysis probes
situated within 1500 bps of the transcript’s transcription start site
and compressing them using principal component analysis52,53.
Although DNA methylation is considered an epigenetic modifica-
tion that represses expression54,55, in cancer cells and stem cells, a
hypermethylated state around the promoter contributes to or
correlates with expression activity56–58. For example, in the TERT
gene, the methylated variable region is located 1000 bps
upstream from the TSS, and the 500 bps upstream region near
the TSS was reportedly hypomethylated, regardless of expres-
sion56,57. Gu et al. examined the association between DNA
methylation and the expression of promoter regions in 265 sam-
ples of clear cell renal cell carcinoma (ccRCC) and 133 adjacent
tissues from The Cancer Genome Atlas (TCGA)59. They analyzed
TSS200, TSS1500, and 5’UTR sites as promoters and found that of
the regions with ccRCC-specific methylation patterns, 81.81%
were TSS200 sites, 6.97% were TSS1500 sites, and 11.22% were
5’UTRs. Nearly 90% of the specific methylation variation CpGs

Fig. 7 Heatmap of motif analysis for sequences surrounding DMPs. The heatmap displays the transcription factor binding motifs that were
enriched in hypomethylated DMPs (upper figure) and hypermethylated DMPs (lower figure) in pan-negative cases compared to EGFRmutation
cases. The color of the heatmap represents the -log10 value of the false discovery rate (FDR).

Fig. 6 Box-and-whisker diagram of DMPs in the anticancer drug-related gene set obtained using methPLIER-CTD. The vertical axis shows
the DNA methylation level in each DMP, and the color of each box whisker indicates EGFR mutation cases in blue and pan-negative cases in
red. a, b DMPs showing significant hypomethylation in pan-negative cases. c, d DMPs showing significantly greater methylation in pan-
negative cases.
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were located within 1500 bases around the TSS. Analysis of the
association between specific methylation variations in promoters
and gene expression showed that 31.2% of the promoters were
associated with expression variation. Therefore, compressing DNA
methylation data down to the 1500-bp upstream region, as a
simple mean or median, may lead to distal methylation patterns
that are relevant to expression being overlooked. We employed
PCSs for principal components whose cumulative contribution
ratio exceeded 0.8 as the compressed data for each transcript. This
approach was chosen for three reasons: many variable DNA
methylation regions related to gene expression regulation are
located near transcription start sites; gene expression regulation
through DNA methylation is often governed by differences in the
genomic patterns of neighboring regions rather than variations in
methylation patterns at individual CpG sites; and DNA methylation
patterns near the transcription start site have been reported to
modulate transcriptional variant expression patterns. Second,
methPLIER can integrate and analyze data acquired from different
platforms or research teams while reducing data distribution bias.
BeadChip analysis was developed more than a decade ago and
has been analyzed by many research teams, making its vast
datasets valuable research tools. However, there are significant
differences in the data distribution bias between WGBS data and
other datasets, and the data characteristics can be masked by this
large bias. In our study, we used the latent feature matrix for
approximately 10,000 samples to perform matrix factorization of
the analysis target sample, reducing the bias between datasets
and platforms. This enabled us to utilize accumulated valuable
resources in future analyses without wasting them and could be
useful for meta-analyses of rare diseases where it is difficult to
collect sufficient cases at a single facility. Finally, methPLIER is
unique in that interpreting the results after data analysis is
straightforward. In traditional DNA methylation data analysis,
variable sites or variable regions are obtained by comparative
analysis, followed by functional estimation analysis, such as
pathway analysis, GO analysis, or gene set enrichment analysis.
On the other hand, methPLIER performs matrix factorization using
the latent matrix Z, which sparsely includes the knowledge matrix,
and the loading matrix B outputted by methPLIER contains
information about the knowledge matrix. Therefore, it is possible
to perform functional estimation analyses, such as pathway
analysis, GO analysis, and data feature analysis, simultaneously.
This broadens the gateway to DNA methylation data analysis and
is useful for users unfamiliar with data analysis. In unsupervised
clustering analysis using factor loadings on latent characteristic
variables derived via methPLIER, the results reflect sample
characteristics, such as progression-free survival and cell char-
acteristics, highlighting its utility for DNA methylation data
analysis. Furthermore, the factor loading matrix derived by
methPLIER reduces the data distribution bias for datasets
generated with different platforms and preprocessing methods,
which is important for dataset-to-dataset integration analysis.
The methPLIER-CTD, which was constructed by modifying the

methPLIER knowledge matrix and oriented toward drug-related
DNA methylation analysis, may have demonstrated the usefulness
of methPLIER for purpose-oriented analysis. Comparative analysis
of methPLIER-CTD between pan-negative and EGFR-mutated lung
cancer patients identified 841 lung cancer pan-negative case-
specific DMPs associated with the drug-related gene set and
genomic regions of interest. CCNA1, which is hypermethylated
according to methPLIER, contributes to cell cycle regulation and
was previously reported to be hypermethylated around its
promoter in cervical and breast cancer tumors44,60. In addition,
DNA methylation patterns around promoters have been reported
to be associated with the sensitivity of breast cancer cells to
doxorubicin and 5-fluorouracil44. RUNX3, which is hypermethy-
lated in pan-negative cases, is known to function as a tumor
suppressor gene that inhibits Wnt signaling by inhibiting

β-catenin/Tcfs, and its expression is known to be regulated by
DNA methylation61. Since RUNX3 is reportedly hypermethylated in
various cancer types, including lung cancer62,63, we speculate that
Wnt inhibitors, such as vantictumab and LGK974, which are
currently in clinical trials for other cancer types, may be useful in
the treatment of pan-negative cases.
Although we believe that the methPLIER tool is useful for

analyzing DNA methylation data, there are several limitations.
First, the biological interpretability of the latent feature matrix Z in
methPLIER varies greatly depending on the knowledge matrix
used to construct methPLIER. Therefore, when discussing the
results of the analysis using the factor loading matrix B derived by
methPLIER, it is necessary to consider what knowledge matrix the
methPLIER used in the analysis. On the other hand, this is both a
caveat in using methPLIER and an advantage in objective-oriented
data analysis, such as the example of PRISM DNA methylation
dataset analysis using methPLIER-CTD, which was reconstructed
using CTD. Second, methPLIER uses data from only a portion of
the region in the BeadChip. methPLIER compresses probe-wise
data to gene-wise data prior to matrix decomposition. These data
were compressed by principal component analysis (PCA) using
analysis probes located 1500 bases upstream from the TSS, thus
eliminating DNA methylation data located in introns and
intergenic regions. Therefore, when expectedly analyzing DNA
methylation status at a distance away from the TSS, it is necessary
to reconstruct the methPLIER gene under different probe
conditions for compression. The third limitation is that the results
of the analysis obtained by methPLIER do not guarantee the
regulation of gene expression by DNA methylation. As mentioned
above, methPLIER analyzes methylation data around promoters,
and it is highly likely that the results contribute to the regulation
of gene expression. On the other hand, the regulation of gene
expression via DNA methylation is still unclear in many respects,
and whether the DNA methylation patterns observed between
samples are directly involved in the regulation of expression must
be confirmed separately by gene expression data or wet
laboratory experiments. Fourth, the results of the methPLIER
analysis were influenced by variations in tumor content among
the samples. This issue arose because methPLIER is designed to
analyze preprocessed data without an inherent mechanism for
adjusting for tumor content. Consequently, disparities in tumor
content could influence the analysis results. Nonetheless, it is
important to consider that the TCGA data used for developing
methPLIER not only encompassed tumor regions but also included
benign tissues and represented cancers from various tissues. This
diverse composition suggests that the latent features identified by
methPLIER are likely to capture characteristics specific to different
tissues and cell types. When the tumor content varied between
samples, we predicted that methPLIER would tend to return
results enriched with latent features not directly related to the
tumor. This can indirectly indicate potential variations in tumor
content across samples. These insights can direct users toward the
application of specialized methods that have been developed to
estimate tumor content, allowing for more targeted correction of
their data. Despite these limitations, we believe that methPLIER
will increase the interpretability of DNA methylation analysis and
enable easy and comprehensive analyses, including dataset
comparative analysis and ontology analysis. The use of methPLIER
will also enable cross-dataset analysis of DNA methylation data in
medicine while maintaining biological interpretability, facilitate
meta-analysis in rare disease and epidemiological studies, and
accelerate the discovery of disease-related DNA methylation
patterns and treatment effect-related DNA methylation patterns.
The advent of numerous omics data analysis pipeline tools has

significantly advanced the field of bioinformatics by streamlining
complex data analysis processes32,33,64–66. These tools integrate a
variety of functions, from raw data ingestion to normalization, batch
normalization, and comparative analysis, within a single-command
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framework. The incorporation of graphical user interfaces in some of
these tools has democratized access to data analysis, enabling
researchers with limited programming expertise to engage in
sophisticated analytical processes65,66. Despite their utility, these
pipeline tools often require substantial computational resources,
including multicore CPUs and extensive memory, particularly when
processing raw data files, such as FASTQ or IDAT files. This demand
poses a barrier, necessitating significant computational infrastruc-
ture and extended processing times. In contrast, methPLIER
operates differently, focusing on the analysis of preprocessed
matrix files rather than raw data. Positioned downstream in the
analytical pipeline, methPLIER can use the lighter preprocessed data
typically available in public repositories, such as GEO, or as
supplementary data in academic publications. This methodological
shift offers a pragmatic approach for preliminary data analysis,
enabling rapid and cost-effective insights that are particularly
valuable in the early stages of research. Comprehensive integrated
comparative analyses generally require high-end computational
resources and standardized data analysis procedures facilitated by
established pipeline tools. However, this approach is not without
drawbacks, including considerable financial, temporal, and labor
costs, without guaranteed analytical success. Therefore, methPLIER
is a strategic alternative. Enabling preliminary integrated analyses
allows researchers to acquire initial data quickly and affordably, thus
facilitating a more cost-effective approach to integrated data
analysis. In summary, the purpose of using methPLIER in the
broader analytical framework is not to replace more resource-
intensive pipeline tools but rather to complement them. By offering
a means to conduct efficient preliminary analyses, methPLIER
enhances the overall workflow and balances the depth and breadth
of the analysis against the practical constraints of resource
allocation. This approach is particularly relevant in the context of
high-throughput omics studies, where the initial screening of vast
datasets is as crucial as a detailed analysis.
In conclusion, our new DNA methylation data analysis tool,

methPLIER, has high biological interpretability, and the knowledge
matrix can be modified according to the purpose of the analysis.
Moreover, this approach reduces the data bias between datasets
caused by differences in preprocessing methods and analysis
platforms, contributes to highly reproducible data analysis and
facilitates integrated analysis between datasets. In the future, the
expansion of DNA methylation data analysis using methPLIER will
contribute to the elucidation of the true nature of pathologies
associated with DNA methylation abnormalities and the promo-
tion of the search for disease-related markers supported by
biological significance.
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The data are available upon reasonable request.
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