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The polyol pathway and nuclear ketohexokinase A signaling
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Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic
stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying
hyperglycemia-induced cancer progression. Here, we focused on the polyol pathway, which is dramatically activated under
hyperglycemia and causes diabetic complications. We investigated whether polyol pathway-derived fructose facilitates
hyperglycemia-induced gastric cancer metastasis. We performed bioinformatics analysis of gastric cancer datasets and
immunohistochemical analyses of gastric cancer specimens, followed by transcriptomic and proteomic analyses to evaluate
phenotypic changes in gastric cancer cells. Consequently, we found a clinical association between the polyol pathway and gastric
cancer progression. In gastric cancer cell lines, hyperglycemia enhanced cell migration and invasion, cytoskeletal rearrangement,
and epithelial-mesenchymal transition (EMT). The hyperglycemia-induced acquisition of metastatic potential was mediated by
increased fructose derived from the polyol pathway, which stimulated the nuclear ketohexokinase-A (KHK-A) signaling pathway,
thereby inducing EMT by repressing the CDH1 gene. In two different xenograft models of cancer metastasis, gastric cancers
overexpressing AKR1B1 were found to be highly metastatic in diabetic mice, but these effects of AKR1B1 were attenuated by KHK-A
knockdown. In conclusion, hyperglycemia induces fructose formation through the polyol pathway, which in turn stimulates the
KHK-A signaling pathway, driving gastric cancer metastasis by inducing EMT. Thus, the polyol and KHK-A signaling pathways could
be potential therapeutic targets to decrease the metastatic risk in gastric cancer patients with diabetes.
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INTRODUCTION
The incidence and prevalence of diabetes and cancer have been
increasing worldwide. As of 2017, more than 450 million people
have been diagnosed with diabetes1, and the incidence of cancer,
excluding skin cancer, was ~20 million new cases per year2.
Approximately 60% of newly diagnosed cancer patients are over
the age of 65 years3, and ~25% of people over the age of 65 also
have diabetes4. Thus, 8–18% of cancer patients also have diabetes
in the overall population5, and diabetes is a frequent comorbidity
of cancer patients in the elderly group over 65 years of age6,7.
Recently, several clinical cohort studies have demonstrated that
diabetes is a major risk factor for several cancers8–10. Moreover,
studies have reported that diabetes is associated with the
incidence, mortality, and progression of various cancers6,11–13.
Experimental studies14–16 have revealed that hyperglycemia per
se, rather than the common risk factors between diabetes and
cancer, worsens cancer. Hyperglycemia renders cancer cells more
aggressive by exerting metabolic and oxidative stresses16–18.
Glucose metabolism involves multiple intertwined metabolic

pathways, dynamically generating numerous glucose metabolites,
which affect cancer cell fate and behavior. For example, in the
polyol pathway, aldo-keto reductase-1-member-1 (AKR1B1)

reduces glucose to sorbitol, and sorbitol dehydrogenase (SORD)
converts sorbitol to fructose. Normally, only ~3% of glucose is
metabolized through the polyol pathway, but under hyperglyce-
mia, over 30% of the glucose enters the pathway due to saturation
of hexokinase action19,20. The polyol pathway is involved in the
development of diabetic complications21. Under hyperglycemia,
the polyol pathway depletes NADPH and generates excess NADH,
resulting in a redox imbalance. Moreover, fructose generates
advanced glycation end products (AGEs), facilitating oxidative
stress. In addition, increased osmotic pressure due to sorbitol
accumulation aggravates diabetic complications, such as neuro-
pathy, nephropathy and retinopathy21. Several recent reports have
demonstrated that the polyol pathway is involved in cancer
progression and metastasis22–24. AKR1B1 has been reported to be
overexpressed in several cancer types25,26. AKR1B1 inhibition
suppresses cancer growth24, and its activation induces epithelial-
mesenchymal transition (EMT) to facilitate cancer migration and
invasion22,23. Nevertheless, little is known about the molecular
mechanisms by which the polyol pathway promotes cancer
progression.
Here, we investigated the role of the polyol pathway in the

hyperglycemia-induced metastasis of gastric cancer.
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Hyperglycemia facilitated the migration and invasion of gastric
cancer cells depending on the polyol pathway. In two xenograft
models of gastric cancer, AKR1B1 overexpression increased
metastasis in diabetic mice. Mechanistically, polyol pathway-
derived fructose activated the KHK-A-YWHAH-SLUG pathway to
induce EMT by repressing the CDH1 gene. In conclusion, the
polyol pathway promotes diabetes-induced gastric cancer metas-
tasis by activating the KHK-A signaling pathway.

MATERIALS AND METHODS
Cell lines and cell culture
The human gastric cancer cell lines AGS, MKN-1, MKN-28, and MKN-45
were obtained from American Type Culture Collection (ATCC; Manassas,
VA); SNU-216, SNU-484, SNU-601, and SNU-638 were obtained from the
Korean Cell Line Bank (Seoul, South Korea). All cell lines except MKN-28
were cultured with 10% heat-inactivated fetal bovine serum (FBS) in
RPMI and MKN-28 in DMEM. MKN-28 and SNU-638 gastric cancer cells
were transfected with the CMV luciferase-IRES-GFP plasmid or the CMV
luciferase-IRES-AKR1B1 plasmid and selected using G418 (Millipore,
Burlington, MA). Five clones of stable cell lines were pooled to rule out
artifacts by plasmid insertion into genomes. Cell lines were authenti-
cated by STR DNA profiling analysis, which was performed in the Korean
Cell Line Bank (Seoul, Korea). Mycoplasma contamination was routinely
assessed when the cell growth or shape was changed. After thawing, the
cells were usually cultured for no more than 3 months. Cells were grown
in a humidified atmosphere containing 5% CO2 at 37 °C. For high
glucose (HG) conditions, cells were incubated in RPMI and DMEM with
50 mM glucose.

Materials
Culture media, bovine serum, epalrestat, streptozocin, G418, puromycin
dihydrochloride and other chemicals were purchased from Sigma‒Aldrich
(St. Louis, MO). A monoclonal antibody against S25-phosphorylated
YWHAH was raised using phage display technology through a commercial
facility (Bioneer, Korea). The antibodies used in this work are listed in
Supplementary Table 1.

Preparation of plasmids, siRNAs, and transfection
The cDNAs for human AKR1B1, SORD, KHK-A, and YWHAH were cloned by
reverse transcription and PCR using Pfu DNA polymerase and inserted into
pcDNA-Myc, pcDNA-His, or pcDNA-FLAG vectors. For transient expression
and knockdown, cells at ~70% confluence were transfected using Jet-
Prime reagent (Polyplus, Illkirch, France) and Lipofectamine RNAiMAX
reagent (Invitrogen), respectively. Nucleotide sequences of siRNAs are
summarized in Supplementary Table 2.

Gastric cancer xenografts
All animal experiments were carried out with the proposed protocol
approved by the Institutional Animal Care and Use Committee (approval
no. SNU-190702-3-3; SNU-230327-5-1). MKN-28 and SNU-638 gastric cancer
cell lines harboring the luciferase-IRES-GFP plasmid or the luciferase-IRES-
AKR1B1 plasmid were selected using G418 (Millipore, Burlington, MA). The
cells were secondarily transfected with sh-RNAs, and the stable cell lines
were further selected using puromycin. Male 8-week-old BALB/cSlc-nu/nu
mice were intravenously injected with streptozotocin (100mg/kg) five
times for 3 weeks. On the 10th week after the first streptozotocin injection,
transfected MKN-28 and SNU-638 cells were implanted in the spleen and
subcutaneously injected into the left flank of mice. After 4 weeks (MKN-28)
or 10–15 weeks (SNU-638), mice were intraperitoneally injected with
VivoGlo luciferin (Promega). Tumors were monitored using Xenogen
IVIS100 and IVIS Spectrum with LivingImage 2.50.1 (Xenogen,
Alameda, CA).

Cell migration and invasion assays
For migration analysis, cells in serum-free RPMI were seeded onto the
upper chamber with an 8.0 μm pore filter (Corning Life Science, Acton,
MA), and the lower chamber was filled with 10% serum. For invasion
analysis, a Matrigel-coated filter was used. After 18 h of incubation,
cells on the lower surface of the filter were fixed, stained with H&E,
photographed, and counted using ImageJ software (NIH,
Bethesda, MD).

Quantitative RT‒PCR
Total RNA was extracted using TRIzol reagent (Invitrogen) and reverse-
transcribed using M-MLV Reverse Transcriptase (Enzynomics; Daejeon,
Korea) at 42 °C for 60min. Real-time PCR was performed in qPCR
Mastermix (Enzynomics) using a CFX Connect Real-Time Cycler (Bio-Rad,
Hercules, CA). The mRNA levels were calculated in reference to the GAPDH
level. All reactions were performed in triplicate. The nucleotide sequences
of the PCR primers are summarized in Supplementary Table 3.

Chromatin immunoprecipitation
Cells were fixed with 1% formaldehyde, lysed with 0.5% NP-40, and
centrifuged at 800×g to collect nuclei. The pellet was lysed with 1% SDS,
sonicated, and incubated with IgG, anti-SLUG or anti-SNAIL antibody, and
the immune complexes were pulled down using protein A/G beads (Santa
Cruz Biotechnology). DNA in the precipitates was extracted by phenol‒
chloroform-isoamyl alcohol (25:24:1), precipitated with ethanol, resolved in
water, and subjected to PCR. The results are represented as the
percentages of the input signal.

Immunoblotting and immunoprecipitation
Proteins were subjected to SDS‒PAGE and transferred to Immobilon-P
(Millipore). The membranes were incubated with primary and HRP-
conjugated secondary antibodies in 5% skim milk and visualized using
the ECL plus kit (Amersham Biosciences; Piscataway, NJ). For analysis of
protein interactions, cell lysates were incubated with anti-MYC or anti-
FLAG beads. The bound proteins were eluted using SDS or MYC/FLAG-tag
peptides and loaded on SDS‒PAGE. All experiments were performed three
or more times.

Immunohistochemistry and immunofluorescence
For immunohistochemistry, tissue slides were deparaffinized, rehydrated,
and heated to retrieve antigen. The slides were sequentially incubated
with 3% H2O2, 2% horse serum, primary antibodies, and biotinylated
secondary antibodies. The slides were treated with the DAB detection kit
(Dako), counterstained with hematoxylin, and photographed at four high-
power fields for each slide. Protein expression was analyzed using
histoscore (the staining intensity (0–3) × the percentage of positive cells).
Human gastric cancer tissue arrays were obtained from SuperBioChips
(Seoul, Korea). Clinical information on the patients is summarized in
Supplementary Table 4. For immunofluorescence, cells on a cover slide
were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton-X-
100 and 0.05% Tween-20, and sequentially incubated with primary
antibodies and Alexa Fluor 488-conjugated secondary antibodies (Invitro-
gen). F-actin was stained with Alexa Fluor 488 phalloidin (Abcam). After
incubation with DAPI (Sigma‒Aldrich), the slides were mounted in
Faramount aqueous mounting medium (Dako). Fluorescence images were
observed under a confocal microscope.

Mass analysis to quantify intracellular fructose
Cell pellets were vortexed with an ice-cold extraction solvent (acetoni-
trile:methanol:water= 4:4:2, v/v/v) for 1 min, snap-frozen for 1 min, and
centrifuged at 10,000 × g for 15 min. After being subjected to SpeedVac,
the dried samples were dissolved in 50 µL of water and subjected to LC‒
MS analysis. Sample separation was performed on a Hypersil Gold Amino
column (150 × 2.1 mm, 1.9 μm, Thermo Scientific) using an Ultimate 3000
(Dionex; Idstein, Germany) with isocratic elution. The UPLC system was
coupled to a Q Exactive Plus (Thermo Scientific) equipped with a heated
electrospray ionization (HESI) source. The MS was operated in negative ion
mode, and the scan range was from m/z 50 to 500 in targeted-sim mode.

Measurement of fructose in the tumor tissues
On the 4th week after the intrasplenic implantation of MKN-28 cells,
primary tumors in the spleens were excised and disrupted under liquid
nitrogen. A piece (40mg) of the frozen tumor was homogenized in ice-cold
PBS and centrifuged at 18,000 × g for 15min to obtain the supernatant.
Fructose in the supernatant was measured using a fluorometric fructose
assay kit (Sigma‒Aldrich).

Simulation of molecular dynamics
Simulations of atomistic molecular dynamics were conducted on two KHK-
A systems: fructose-free KHK-A and fructose-bound KHK-A. The initial
structures of the two systems were obtained from PDB ID: 2hqq and 2hw1,
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respectively27. The model systems were solvated by TIP3P water molecules
with 100mM NaCl in the simulation box with a periodic boundary
condition. The solvated system was then equilibrated at 310 K and 1 bar by
performing NPT-ensemble MD simulations using the GROMACS program
with the CHARMM36 force field. The modified Berendsen thermostat and
Parrinello-Rahman barostat were used to maintain temperature (310 K) and
pressure (1 bar). Full system periodic electrostatics were employed by the
particle‒mesh Ewald method with a 1 Å grid spacing. The cutoff and
switching distances for van der Waals forces were set to 12 Å and 10 Å,
respectively. The bonds involving hydrogen were constrained to be rigid
by using the LINCS algorithm. The MD system was equilibrated for 100 ns
with a 2 fs time step, and the structure analysis was performed to simulate
a further 200 ns run with recording every 25 ps.

Bioinformatics analysis
Public data for mRNA levels in gastric cancer patients were obtained from
GSE84437 (n= 433), GSE2685 (n= 30), and The Cancer Genome Atlas
(TCGA) datasets. For survival analysis, 25 different types of cancer datasets
from TCGA were used, and samples of each type of cancer were
categorized into an AKR1B1 low-expression group and an AKR1B1 high-
expression group by the median value. Kaplan‒Meier overall survival
graphs were analyzed using GraphPad Prism software.

Statistical analysis
All data were analyzed using Microsoft Excel 2013 or GraphPad Prism 5.0.
The results are expressed as the means and standard deviation (SD) from
three or more samples. The unpaired, two-sided Student’s t test or Mann‒
Whitney U test was used for statistical analyses. Spearman correlation
analysis was used to measure the correlation coefficient between AKR1B1
and CDH1 expression in the GSE2685 dataset. All statistical significances
were considered when P values were less than 0.05.

RESULTS
The polyol pathway is associated with gastric cancer
progression
To examine whether the polyol pathway is involved in gastric
cancer progression, we focused on AKR1B1, which is the rate-
limiting enzyme in the pathway. In gastric cancer patients, overall
survival was lower in the AKR1B1-high group than in the AKR1B1-
low group (Fig. 1a) but not in other cancer patients (Supplemen-
tary Fig. 1). The Cancer Genome Atlas (TCGA) revealed that
AKR1B1 expression is higher in metastatic or in lymph node
metastatic gastric cancers (Fig. 1b, c). Two enzymes, AKR1B1 and
SORD, in the polyol pathway were analyzed in human gastric
cancer tissues (Fig. 1d). When the specimens were divided into
low (I and II) and high (III and IV) stage groups, AKR1B1 and SORD
levels were elevated in the high stage group (Fig. 1e). A chi-square
analysis revealed that gastric cancers with elevated expression of
both AKR1B1 and SORD are more aggressive (Fig. 1f). Moreover,
the protein levels were higher in the metastatic group (Fig. 1g),
and the high expression of both proteins was associated with
metastasis (Fig. 1h). Collectively, these clinical data suggest that
the polyol pathway is associated with gastric cancer progression.

High glucose enhances the metastatic potential in
gastric cancer
We hypothesized that high glucose facilitates cancer metastasis by
increasing fructose via the polyol pathway (Fig. 2a). Based on the
AKR1B1 and SORD levels (Supplementary Fig. 2a), AGS and MKN-
45 cells were selected for experiments. High glucose and fructose
both facilitated cell migration and invasion (Fig. 2b and
Supplementary Fig. 2b, c). High glucose and fructose-induced F-
actin rearrangement with filopodia-like extensions (Fig. 2c),
indicating that the cells undergo EMT. Of the EMT markers,
CDH1 (alternatively named E-cadherin) was markedly down-
regulated under high glucose and fructose conditions (Fig. 2d
and Supplementary Fig. 2d). Thus, high glucose and fructose likely
enhance the metastatic potential in gastric cancer cells by
inducing EMT.

The polyol pathway drives gastric cancer cell migration and
invasion under high glucose
Cell migration was attenuated by silencing AKR1B1 and/or SORD,
and these effects were augmented under hyperglycemic condi-
tions (Fig. 3a and Supplementary Fig. 3a, b). Cell numbers were
reduced by ~10% after knockdown of both genes (Supplementary
Fig. 3c), indicating that the attenuation of cell migration was not
attributed to decreased cell number. Moreover, hyperglycemia-
induced cytoskeletal rearrangement and CDH1 suppression were
attenuated by AKR1B1 and/or SORD knockdown (Fig. 3b, c and
Supplementary Fig. 3d, e). The AKR1B1 inhibitor epalrestat also
attenuated cell migration (Fig. 3d and Supplementary Fig. 4a–d).
In AKR1B1-deficient SNU-638 and SNU-601 cells, AKR1B1 expres-
sion increased cell migration and invasion under euglycemic
conditions, which was augmented under hyperglycemic condi-
tions (Fig. 3e and Supplementary Fig. 5a, b). In SORD-deficient
MKN-1 cells, cell migration under hyperglycemic conditions was
augmented by SORD overexpression (Fig. 3f and Supplementary
Fig. 5c). Spearman correlation analysis using the GSE2685 gastric
cancer dataset revealed that AKR1B1 expression was inversely
correlated with CDH1 expression (Fig. 3g). Collectively, our results
suggest that the polyol pathway drives the hyperglycemia-
induced migration and invasion of gastric cancer cells.

Polyol pathway-derived fructose mediates EMT and cell
migration under hyperglycemic conditions
We tested whether fructose mediates hyperglycemia-induced
migration and invasion. The intracellular level of fructose was
enhanced by fructose supplementation and under hyperglycemic
conditions, which was attenuated by silencing AKR1B1 in AGS and
MKN-45 cells (Fig. 4a and Supplementary Fig. 6a, b). AKR1B1
expression increased the intracellular fructose levels in SNU-638
and SNU-601 cells (Fig. 4b and Supplementary Fig. 6a, c). In
addition, L-fructose, which functionally competes with D-fructose,
blocked hyperglycemia-induced cell migration (Fig. 4c and
Supplementary Fig. 6d, e) and CDH1 suppression (Fig. 4d and
Supplementary Fig. 6f). However, fructose-induced cell migration
was not affected by AKR1B1 and SORD knockdown (Fig. 4e and
Supplementary Fig. 6g). The polyol pathway under hyperglycemia
is likely to stimulate cell migration by producing fructose rather
than by regulating the fructose-mediated signaling pathway.

High glucose triggers the fructose-dependent KHK-A signaling
pathway
A recent study revealed the role of the ketohexokinase-A (KHK-A)
signaling pathway in fructose-induced metastasis in breast
cancer28. Exogenous fructose induces the nuclear translocation
of KHK-A in association with KPNB1 and LRRC59, and in turn, KHK-
A phosphorylates YWHAH, which recruits the repressor SLUG to
the CDH1 promoter. CDH1 suppression induces EMT and
subsequently triggers breast cancer metastasis. Based on this
scenario, we hypothesized that endogenous fructose synthesized
via the polyol pathway stimulates the KHK-A signaling pathway.
KHK exists as two isoforms, KHK-A and KHK-C. KHK-C converts
fructose to fructose-1-phosphate, whereas KHK-A regulates cell
signaling as a protein kinase. As KHK-C was not expressed in AGS
and MKN-45 cells (Supplementary Fig. 7a), we focused on the KHK-
A signaling pathway. Because ALDOB, ALOX12, and KHK-A have
been reported to promote fructose-induced cancer metastasis29,30

(Supplementary Fig. 7b), we determined which of the three
participated in hyperglycemia-induced cell migration. Cell migra-
tion was attenuated by KHK-A knockdown but not by ALDOB or
ALOX12 knockdown. When KHK-A was silenced, hyperglycemia
and fructose showed marginal effects on cell migration (Fig. 5a
and Supplementary Fig. 7c–e). Immunofluorescence and immuno-
blotting analyses revealed that hyperglycemia induced the
nuclear translocation of endogenous and expressed KHK-A
but did not induce the nuclear translocation of expressed KHK-C
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(Fig. 5b and Supplementary Fig. 8a–c). This effect of hyperglyce-
mia was attenuated by silencing AKR1B1 and/or SORD (Fig. 5c and
Supplementary Fig. 8d, e). We also found that KHK-A interacted
with LRRC59 and KPNB1 under hyperglycemic conditions, which
was inhibited by AKR1B1 and/or SORD knockdown (Fig. 5d).
LRRC59 was essential for the hyperglycemia-induced nuclear
translocation of KHK-A and cell migration (Fig. 5e, f and

Supplementary Fig. 9a). We next examined how fructose facilitates
KHK-A binding to LRRC59 and KPNB1. Given that KHK-A exists as a
dimer27, we tested whether fructose dissociates the KHK-A dimer
to allow the KHK-A monomer to associate with other proteins. To
identify the dimerization of KHK-A, we coexpressed Myc- and
His(6)-tagged KHK-A in AGS and MKN-45 cells and performed
coimmunoprecipitation. Myc-KHK-A and His-KHK-A were found to
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associate with each other. Surprisingly, the dimerization was
weakened by fructose (Fig. 5g and Supplementary Fig. 9b). On
native PAGE, the dimer of Myc-KHK-A was shown as an upper
band, which faded away under fructose supplementation (Fig. 5h).
The fructose-induced dissociation of the KHK-A dimer is further
supported by the crystallography-determined structures of
fructose-free and fructose-bound KHK-A (Supplementary Fig.
10a)27. The superimposed structures reveal a distinct difference
in the side chain orientations of Tyr112 and Tyr113 in the
interfacial region between the two monomers, while other
residues retain the same orientations (Supplementary Fig. 10b).
The observed shift of the Tyr phenol rings toward the same
monomer region in the fructose-bound state suggests a loss of
intermonomer interaction. To further understand the molecular
basis of this orientation shift of the Tyr side chains upon fructose
binding, we performed atomistic molecular dynamics (MD)
simulations. In the MD trajectory analysis, the center-of-mass
(COM) distance between two monomers is increased by fructose
binding (Fig. 5i), suggesting dissociation of the dimer. The binding
sites of fructose on KHK-A comprise Asp15, Gly41, Asn45, and
Asp258. In the unbound state, fructose-free Asp15 is more inclined

to form hydrogen bonds with the backbone oxygen of Ala97 and
Val13, disturbing their hydrophobic interaction with Tyr112
(Supplementary Fig. 11a, c). In contrast, upon fructose binding
to Asp15, it disrupts the hydrogen bonds between Asp15 and
both Ala97 and Val13, enhancing the propensity of Ala97 and
Val13 to interact with Tyr112, which shifts the Tyr112 phenol ring
orientation away from the monomer/monomer interface (Supple-
mentary Fig. 11b, d). This shift in Tyr112, altering its interaction
states in the monomer/monomer interface, is accompanied by a
similar reorientation in Tyr13, another key contributor to mono-
mer/monomer interactions. These shifts collectively result in the
weakening of KHK-A dimerization.

Polyol pathway-derived fructose induces EMT through the
KHK-A signaling pathway
Under high glucose and fructose conditions, KHK-A interacted
with YWHAH (Fig. 6a) and phosphorylated YWHAH at S25 (Fig. 6b).
More importantly, hyperglycemia-induced phosphorylation of
YWHAH was almost completely attenuated by silencing AKR1B1
and/or SORD (Fig. 6c), strongly suggesting that polyol pathway-
derived fructose drives S25 phosphorylation of YWHAH. Of the
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three CDH1 repressors SNAIL, SLUG, and TWIST, YWHAH robustly
interacted with SLUG in gastric cancer cells, which was inhibited
by silencing AKR1B1 and/or SORD (Fig. 6d and Supplementary Fig.
12a). Under fructose supplementation, the KHK-A-dependent
phosphorylation of YWHAH and the interaction of YWHAH with
SLUG were not affected by AKR1B1 and SORD knockdown
(Supplementary Fig. 12b, c), indicating that fructose acts as the
final effector of the polyol pathway. Given that the YWHAH_S25A
mutant failed to interact with SLUG, the KHK-A-dependent S25
phosphorylation of YWHAH might be critical for the interactions
under hyperglycemic conditions (Fig. 6e). Next, we found that the
polyol pathway is responsible for CDH1 repression under
hyperglycemic conditions (Fig. 6f and Supplementary Fig. 13a).
As expected, AKR1B1 and SORD knockdown did not affect CDH1
repression under fructose supplementation (Supplementary Fig.
13b, c). Hyperglycemia-induced CDH1 repression was rescued by
YWHAH knockdown, and wild-type YWHAH, not the S25A mutant,
repressed CDH1 (Fig. 6g). The recruitment of SLUG to the CDH1
promoter was augmented by hyperglycemia, which was attenu-
ated by silencing AKR1B1 and/or SORD (Fig. 6h and Supplemen-
tary Fig. 13d). In contrast, SNAIL binding to the CDH1 promoter

was not regulated by the polyol pathway. We also found that S25
phosphorylation of YWHAH is critical for SLUG, but not SNAIL,
recruitment to the CDH1 promoter in a glucose-dependent
manner (Supplementary Fig. 14a). Moreover, S25 phosphorylation
of YWHAH was critical for cell invasion under hyperglycemic
conditions (Supplementary Fig. 14b). Taken together, these results
suggest that polyol pathway-derived fructose enhances the
metastatic potential of gastric cancer cells via the KHK-A-
YWHAH-SLUG pathway. The polyol pathway and KHK-A signaling
for gastric cancer metastasis are summarized in Fig. 6i.

Diabetes-induced metastasis of gastric cancer in a spleen-to-
liver metastasis model
We next investigated whether the polyol pathway promotes
gastric cancer metastasis in mice with diabetes. We used a model
of spleen-to-liver metastasis because gastric cancer frequently
metastasizes to the liver. The experimental schedule is shown in
Fig. 7a. We first established stable MKN-28 cell lines, which were
originally derived from intestinal gastric cancer, that stably
coexpressed luciferase and AKR1B1 and verified the luciferase
activity and AKR1B1 expression (Supplementary Fig. 15a, b). In the
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streptozotocin (STZ)-treated mice in groups “b” and “d”, blood
glucose levels were substantially increased to approximately
600mg/dL (Supplementary Fig. 15c). Significant weight loss was
observed in group “d” (Supplementary Fig. 15d). By monitoring
bioluminescence emission from cancer cells, we observed more
severe liver metastasis in the diabetic controls than in the

nondiabetic controls. AKR1B1 overexpression promoted metasta-
sis in nondiabetic mice and, to a greater extent, in diabetic mice
(Fig. 7b, c). Histological examination of liver tissues verified that
bioluminescence was emitted from metastasizing cancer cells
(Fig. 7d). Representative images of liver metastases are shown in
Supplementary Fig. 15e, and metastasizing cancer cells within
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tumors were identified by immunostaining for CA 72-4 (Supple-
mentary Fig. 15f). We next evaluated whether AKR1B1-driven
metastasis is mediated by the KHK-A signaling pathway. Cell lines
were established to stably express AKR1B1/sh-KHK-A (or sh-
control) with luciferase. Luciferase activity, AKR1B1 expression,

and KHK-A knockdown were assessed in the cell lines (Supple-
mentary Fig. 16a–d). The blood glucose level was maintained at
approximately 600mg/dL in the STZ-treated mice, and significant
body weight loss was found in group “f” but not in group “g”
(Supplementary Fig. 16e, f). On the 4th week after tumor
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implantation, bioluminescence analyses showed that the tumor
metastasis induced by AKR1B1 overexpression was strongly
attenuated by KHK-A knockdown (Fig. 7e, f). We next examined
whether the polyol pathway promotes fructose generation in the
primary tumors of diabetic mice and found that the fructose levels
were significantly higher in the AKR1B1-expressing tumors than in
the control tumors (Fig. 7g and Supplementary Fig. 16g). Then, we
examined whether diabetes-induced metastasis is mediated by
the KHK-A signaling pathway. Nuclear localization of KHK-A/
LRRC59 and S25 phosphorylation of YWHAH were significantly
increased in the AKR1B1-expressing tumors of diabetic mice
(Fig. 7h and Supplementary Fig. 17a–c). In addition, CDH1 was
downregulated in the liver metastases of diabetic mice, and
this effect was further augmented in the AKR1B1-expressing
tumors (Fig. 7i).

Diabetes-induced metastasis of gastric cancer in a
subcutaneous xenograft model
For a subcutaneous xenograft model, SNU-638, which originally
arose from a diffuse type of gastric cancer, was established to
stably coexpress luciferase and AKR1B1 (Supplementary Fig.
18a, b). Mice (6 per group) were randomly allocated and
subjected to tumor graft (Fig. 8a). Blood glucose levels verified
that diabetes was stably maintained after tumor implantation
(Supplementary Fig. 18c). In the diabetic group, the body
weights of the mice declined in the late period of the
experiment (Supplementary Fig. 18d). On the 15th week after
tumor injection, bioluminescence imaging analyses revealed
tumor growth at the injection sites and abdominal metastases
in the AKR1B1-expressing tumors, and this effect was further
enhanced in diabetic mice (Fig. 8b). The luminescence values
of the region of interest (ROI) were used for the quantitative
analysis of primary tumor growth and local tumor invasion (ROI
1) or distant metastasis (ROI 2–ROI 1) (Fig. 8c). Bioluminescence
emissions of the excised livers and intestines were robustly
detected in group “d” (Fig. 8d, e and Supplementary Fig. 18e),
with weak emissions in groups “b” and “c” and little emission in
group “a”. CA72-4 marked metastasizing cancer cells (Supple-
mentary. Fig. 18f, g). We also established stable SNU-638 cell
lines expressing luciferase and/or AKR1B1 and/or sh-KHK-A and
implanted them into diabetic mice (Supplementary Fig. 19a–d).
Blood glucose levels and body weights were monitored once a
week (Supplementary Fig. 19e, f). When KHK-A was silenced,
AKR1B1 overexpression failed to promote local tumor expan-
sion and tumor metastasis in diabetic mice (Fig. 8f, g). We
assessed bioluminescence emissions of the excised livers and
intestines and found that AKR1B1-induced tumor metastasis
was almost completely attenuated by KHK knockdown (Fig. 8h,
i and Supplementary Fig. 19g). Moreover, the nuclear localiza-
tion of KHK-A/LRRC59, S25 phosphorylation of YWHAH, and
suppression of CDH1 expression were significantly enhanced in
the AKR1B1-expressing tumors of diabetic mice (Fig. 8j–l and
Supplementary Fig. 20a–d). Collectively, these results suggest

that diabetes promotes gastric cancer metastasis through the
polyol and KHK-A signaling pathways.

DISCUSSION
Most studies investigating the role of diabetes in cancer
progression have focused on the signaling pathways and gene
expression altered by high glucose16–18. Here, we explored the
mechanism by investigating the role of fructose rather than
glucose per se. Under hyperglycemia, gastric cancer cells acquired
an increased potential for migration and invasion with EMT, all of
which occurred depending on fructose synthesis via the polyol
pathway. Under hyperglycemia, polyol pathway-derived fructose
was sufficient to stimulate the KHK-A signaling pathway. In two
different animal models mimicking gastric cancer metastasis, we
found that metastasis was significantly increased in diabetic mice
bearing AKR1B1-overexpressing tumors. Mechanistically, polyol
pathway-derived fructose triggered the nuclear translocation of
KHK-A, which phosphorylated YWHAH and repressed the CDH1
gene by recruiting SLUG to its promoter, thereby inducing EMT.
Collectively, we propose that the connection between the polyol
pathway and KHK-A signaling pathway plays a crucial role in
diabetes-induced gastric cancer metastasis. Based on this
mechanism, we also suggest that the enzymes AKRIB1 and KHK-
A could be potential targets for lowering metastatic risk in patients
with gastric cancer.
Gastric cancer is the fifth most common cancer and the third

most common cause of cancer-related deaths worldwide2. Several
clinical studies have recently reported a significant correlation
between diabetes and gastric cancer progression11,13. In addition,
a meta-analysis revealed that hyperglycemia correlates with
gastric cancer risk (HR, 1.11; 95% CI, 0.98–1.26)31. The 5-year
survival rate of gastric cancer patients with diabetes is significantly
lower than that of nondiabetic patients32. Although gastric cancer
is highly prevalent, the clinical outcomes of patients without
metastasis are favorable33. Indeed, gastrectomy is the best way to
eradicate gastric cancers, and patients without a stomach can
maintain relatively healthy lives with nutritional supplements.
Thus, it is important to prevent metastasis in patients with gastric
cancer. Our results provide a theoretical basis for strict control of
hyperglycemia in cancer patients with diabetes to prevent
metastasis.
According to Lauren’s criteria, gastric cancer can be classified

into intestinal and diffuse types34. The intestinal type forms
localized masses removable surgically, but the diffuse type
infiltrates into the surrounding tissues and shows a worse
prognosis34. MKN-28 and SNU-638 were used as representative
cells for intestinal and diffuse types, respectively. Considering the
distinct properties of these cells, we also adopted two xenograft
models: intrasplenic implantation of MKN-28 cells and subcuta-
neous implantation of SNU-638 cells. Interestingly, MKN-28 and
SNU-638 metastasized to the liver in different histological
patterns. Within mouse livers, MKN-28 cells formed large nodules,

Fig. 7 Hyperglycemia facilitates the spleen-to-liver metastasis of gastric cancer grafts in mice. a Schematic diagram of an animal model for
hyperglycemia-induced metastasis of gastric cancer. STZ was intravenously injected to induce diabetes. MKN-28 stable cell lines were slowly
implanted in the spleen using a syringe. b Four weeks after the intrasplenic implantation of tumor cells, bioluminescence images of tumor-
bearing mice were monitored using Xenogen IVIS spectroscopy. The color bar represents tumor intensity from purple (low) to red (high).
c Quantitative analysis of bioluminescence emission in total flux (photons/s/cm2/sr) measured 4 weeks after tumor implantation. d On the 4th
week after tumor implantation, livers were excised from mice. Representative images of H&E-stained livers (top panel) and tumor areas per
field were quantified using ImageJ (bottom panel). e MKN-28 stable cell lines expressing the indicated genes were grafted into the spleens of
diabetic mice. Bioluminescence images of the mice were taken. f Bioluminescence intensities of tumor-bearing mice were quantified.
g Fructose levels were measured in primary tumors excised from spleens. h The excised livers were costained with the indicated antibodies
and anti-CA72-4 antibody. All tissues were stained with fluorescent dyes for visualization. The percentage of nuclear KHK-A, LRRC59, or
YWHAH-pS25 (+) cells in CA 72-4 (+) cells was counted and presented as bar graphs. i Representative photographs of liver tissues
immunostained with anti-CDH1 antibody (top panel). The expression levels were analyzed based on histoscore (bottom panel). Each result in
the graph is presented as the mean and SD. * denotes P < 0.05 by Student’s t test.
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whereas SNU-638 cells infiltrated into the liver parenchyma
without clumping. Even in tumor xenografts, gastric cancer cells
may retain growth properties inherited from their origins.
Several studies have reported the effect of hyperglycemia on

gene expression. Hyperglycemia induces MMP2 expression in

cholangiocarcinoma by activating STAT335, upregulates MMP9 in
lung cancer by inducing HMOX136, and upregulates MMP2/9 in
breast cancer37. The upregulation of MMPs could be responsible
for hyperglycemia-induced cancer metastasis38. In lung cancer
cells, hyperglycemia induces TGF-β secretion, which stimulates
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EMT and cell migration39. Hyperglycemia also triggers the
degradation of the p53 activator HIPK240, inhibiting p53-
dependent apoptosis41. HIF1A, which expresses many hypoxia-
induced genes, is also upregulated by hyperglycemia and
consequently induces VEGF and HMOX1, thereby promoting
angiogenesis and tumor growth42. However, to the best of our
knowledge, little is known about the signaling pathways that
initiate these hyperglycemic effects. Moreover, it remains unclear
how cancer cells sense glucose levels. Here, we suggest that
polyol pathway-derived fructose stimulates cancer metastasis and
that KHK-A appears to act as a fructose sensor.
ALDOB and ALOX12 have been reported to be involved in

fructose-induced cancer metastasis28–30. KHK converts fructose
to fructose-1-phosphate, and ALDOB converts fructose-1-
phosphate to glyceraldehyde and dihydroxyacetone phos-
phate. Colorectal cancer cells undergo metabolic reprogram-
ming after liver metastasis. ALDOB is transcriptionally induced
by GATA6 and promotes fructose metabolism, which provides
metastasizing cancer cells with the energy and materials
necessary for increased growth29. The lipoxygenase ALOX12
produces 12-HETE, which induces inflammation and promotes
cancer progression. In breast cancer, fructose upregulates
ALOX12 and a corresponding increase in 12-HETE, thereby
promoting lung metastasis30. In contrast, KHK-A acts as a
nuclear protein kinase upon fructose stimulation and represses
CDH1, thereby facilitating breast cancer metastasis28. However,
our results showed that fructose-induced cell migration and
invasion were not attenuated by silencing either ALDOB or
ALOX12, indicating that KHK-A primarily contributed to the
prometastatic effect of fructose.
In general, the downregulation of CDH1 and the upregulation of

CDH2 (N-cadherin) and VIM (vimentin) are regarded as hallmarks
of EMT. However, in EMT under hyperglycemia (this study) or
fructose supplementation28, CDH1 was dramatically repressed, but
CDH2 and VIM were not induced. Then, is it possible that EMT is
induced by only CDH1 repression irrespective of CDH2 and VIM?
Notably, EMT does not always require all the hallmarks for EMT.
Indeed, many clinical studies have revealed that the loss of CDH1
is an independent marker for gastric cancer progression43.
Furthermore, in cell experiments, EMT has been reported to be
induced by genetically repressing only CDH144. Therefore, it is not
surprising that the remarkable suppression of only CDH1 underlies
the EMT induction by hyperglycemia.
In addition to the polyol pathway, AKR1B1 participates in

various signaling pathways by metabolizing lipid aldehyde and
prostaglandins. For instance, AKR1B1 stimulates PLC and PKC by
reducing GSH-aldehyde under increased oxidative stress, thereby
activating the NF-κB pathway45,46. NF-κB plays crucial roles in
tumor progression by transcriptionally inducing various cytokines
in the tumor microenvironment. AKR1B1 is also known to regulate
prostaglandin metabolism. This molecule functions to convert
prostaglandin H2 (PGH2) to prostaglandin F2α (PGF2A), which
promotes tumor growth by activating the PKC-MAPK, PKA-GSK3B,

and PI3K-mTOR pathways47,48. AKR1B1 may promote tumor
metastasis via nonpolyol pathways such as NF-κB and PGF2A. At
least in our experimental settings, however, the polyol pathway
seems to be the main mechanism underlying hyperglycemia-
induced metastasis in gastric cancer. This argument could be
strongly supported by our results showing that the EMT of cancer
cells and the metastasis of grafted tumors were substantially
attenuated by KHK-A inhibition because the nonpolyol pathways
are independent of KHK-A signaling.
Several AKR1B1 inhibitors are in clinical trials as therapeutic

drugs for diabetic complications49,50. According to our results,
AKR1B1 inhibitors could be potential drugs for preventing
cancer metastasis in diabetic patients. If needed, AKR1B1
inhibitors can be coadministered with conventional anticancer
drugs in cancer patients with diabetes. In some cases, AKR1B1
inhibitors could be used for dual purposes to inhibit diabetic
complications or cancer exacerbation. However, KHK-A inhibi-
tors could also have potential therapeutic benefits and may
prevent gastric cancer metastasis in diabetic patients. The KHK
inhibitor PF-06835919, which is currently under clinical trials as
a therapeutic agent for nonalcoholic steatosis and steatohepa-
titis51, is an emerging agent for the prevention of cancer
metastasis. Theoretically, it is plausible to test a combination
therapy using AKR1B1 and KHK inhibitors to lower the risk of
cancer metastasis in patients with diabetes.
Despite the high homology, KHK-A and KHK-C have different

biochemical functions52,53. Several studies have investigated
KHK-C-driven fructose flux as an underlying mechanism of
fructose-induced cancer progression. High fructose levels have
been reported to provide fuel and building blocks necessary for
cancer growth and metastasis29,54. However, notably, KHK-A is
predominantly expressed in most cancer cells, whereas KHK-C is
rarely expressed. Since KHK-A has poor fructose phosphoryla-
tion activity, it is expected that fructose metabolism does not
profoundly contribute to the progression of most cancers
lacking KHK-C. However, the endogenous role of KHK-A remains
to be uncovered28. A recent study identified the function of
KHK-A as a protein kinase. KHK-A enhances nucleic acid
synthesis by phosphorylating and activating PRPS1, augment-
ing cell proliferation55. KHK-A also phosphorylates YWHAH and
consequently suppresses CDH1 expression, thereby promoting
EMT and metastasis28. Based on these reports, KHK-A is likely to
act as a protein kinase to facilitate cancer growth and
metastasis.
In conclusion, we report that the excessive production of

fructose via the polyol pathway and the fructose-triggered KHK-A
signaling pathway drives gastric cancer metastasis under hyper-
glycemic conditions. For patients with comorbid gastric cancer
and diabetes, we strongly recommend strict control of blood
glucose levels to prevent diabetes-induced cancer exacerbation.
We also propose that the polyol and KHK-A signaling pathways
could be potential targets to prevent and treat cancer metastasis
in patients with diabetes.

Fig. 8 Hyperglycemia facilitates the distant metastasis of gastric cancer grafts in mice. a Schematic diagram of the gastric cancer xenograft
study. SNU-638 stable cell lines were injected subcutaneously into the left flank of mice. b On the 15th week after tumor inoculation,
bioluminescence images of the mice were taken. c Bioluminescence intensities of grafted tumors (ROI 1) and metastases (ROI 2 – ROI 1) were
quantitatively analyzed. d Bioluminescence images in excised organs were captured (L = liver, S = spleen, K = kidney, I = intestine). The color
bar represents tumor intensity from purple (low) to red (high). e Quantitative analysis of bioluminescence emission in the livers and intestines.
f On the 10th week after the subcutaneous implantation of tumor cells, bioluminescence images of mice were taken. g Quantitative analysis
of bioluminescence emission of grafted tumors (ROI 1) and metastases (ROI 2 – ROI 1) measured 10 weeks after tumor implantation.
h Bioluminescence images of organs were captured. i Bioluminescence intensities in the livers and intestines were analyzed. j The excised
livers were stained with antibodies against KHK-A or LRRC59 and costained with anti-CA 72-4 antibody. For visualization of protein expression,
fluorescent dyes were used. The percentage of nuclear KHK-A or LRRC59 expression in CA72-4 (+) cells was quantified and is presented as bar
graphs. k Livers were subjected to immunofluorescence staining. All tissues were stained with an antibody against YWHAH-pS25 and DAPI.
l The liver sections were immunostained with anti-CDH1, which was evaluated using histoscore. Each result in the graph is presented as the
mean and SD. * denotes P < 0.05 by Student’s t test.
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