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Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum
(ER)–mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins
in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital
for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and
mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and
unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis,
alterations in the ER–mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins
and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets
for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways
within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities.
Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and
their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic
strategies that target MAM proteins in various cancer types.
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INTRODUCTION
An understanding of the cooperation between organelles is
crucial for revealing the mechanisms that modulate cellular
functions and homeostasis. Among interorganellar networks,
the connection between the endoplasmic reticulum (ER) and
mitochondria has been extensively studied owing to its diverse
functions and impact on the pathogenesis of multiple diseases.
The concept of a functional unit comprising the ER and
mitochondria was first proposed in 19501. The adjacent
membrane sites that physically tether the ER and mitochondria
are called mitochondria-associated ER membranes (MAMs);
technological advances in microscopy have enabled the
elucidation of the physiological features of the tethering
structures of the MAMs. The ER and mitochondria are separated
by a 6–15 nm gap, and the average surface area percentage of
mitochondria covered by MAMs was calculated to be 3–5% in
mammalian cells2.
MAMs represent an etiological and therapeutic target in

cardiovascular diseases3, neurodegenerative diseases4, metabolic
disorders5,6, and cancers. In this review, we discuss the associa-
tions between alterations in MAM proteins and cancers and
present recent advances in research on these associations.
Additionally, we discuss the contribution of MAM proteins to
tumorigenesis and cancer progression as well as their possible
applications as diagnostic and therapeutic targets.

STRUCTURE AND FUNCTIONAL ROLE OF ER–MITOCHONDRIA
CONTACT SITES
Calcium regulation
Maintenance of Ca2+ homeostasis is one of the most important
functions of MAMs, as the ER functions as the main regulator and
storage organelle of calcium ions within living cells7. The resting
levels of Ca2+ in mitochondria are similar to those in the cytosol;
however, they can increase to 100 times the cytosolic levels under
specific stimulation conditions8. A contributing factor to this
drastic increase has been identified and subsequently confirmed
by the Ca2+ microdomain hypothesis, which states that the outer
membrane of mitochondria contains hotspots for Ca2+ shuttling
from the ER9–11. As the affinity of the mitochondrial calcium
uniporter (MCU) located in the inner mitochondrial membrane is
dependent on the local Ca2+ concentration, these microdomains
facilitate Ca2+ influx through the MCU12,13.
The translocation of Ca2+ in MAMs is mediated by several

proteins. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a
representative Ca2+ channel located in the ER14 (Fig. 1). The
opening of this receptor and subsequent Ca2+ transport occur
when the binding site of each tetrameric subunit of IP3R is
concatenated with IP315. The IP3 binding affinity and Ca2+ influx
activity of IP3R vary depending on its subtype16, phosphoryla-
tion17, and interactions with other regulatory proteins. Addition-
ally, recent research has shown that the localization of mobile IP3R
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on MAMs is important for Ca2+ signaling between the ER and
mitochondria18.
The canonical microdomain of the Ca2+ regulator in MAMs

consists of IP3R located in the ER, voltage-dependent anion
channel 1 (VDAC1) in the outer mitochondrial membrane (OMM),
and glucose-regulated protein 75 (GRP75), which acts as a physical
link between IP3R and VDAC1 and directly affects mitochondrial
Ca2+ accumulation19. The formation of these complexes brings
the ER and mitochondria into close proximity, resulting in the
formation of microdomains with high Ca2+ levels20,21. Recent
evidence has indicated the importance of another protein
component within this microdomain. DJ-1 was recognized as
the fourth component of the MAM complex through the
observation that DJ-1 ablation induced IP3R3 aggregation, which
prevented the tethering of the IP3R-GRP75-VDAC microdomain22.
In addition to the IP3R-GRP75-VDAC1 complex, the interaction

of ER-integrated protein vesicle-associated membrane protein B
(VAPB) with the OMM protein called protein tyrosine phosphatase-
interacting protein-51 (PTPIP51) is also involved in Ca2+ regula-
tion. Depletion of either VAPB or PTPIP51 leads to the disruption
of MAMs and perturbation of Ca2+ transport23.

Lipid metabolism
Because lipid synthesis is compartmentalized, lipids must be
transferred between organelle compartments. Lipids shuttle
between specific organelles through vesicle trafficking; however,
lipid influx into mitochondria through vesicles is not possible even
when lipids are needed24. Thus, several MAM proteins regulate the

nonvesicular trafficking of lipids from the ER to mitochondria (Fig.
1). Phosphatidylserine synthase 1/2 (PSS1/2) is a representative
synthetic enzyme that is enriched in MAMs and mediates
phosphatidylserine (PS) synthesis25. Specifically, PSS1 and PSS2
convert phosphatidylcholine (PC) and phosphatidylethanolamine
(PE), respectively, into PS. PE import relies on the conversion of
transported PS in MAMs to PE by PS decarboxylase (PSD) in
mitochondria rather than direct import26. Disruption of this process
and the mitochondrial PE level impairs mitochondrial dynamics and
bioenergetics27,28. Mitochondrial PE can be traced back to MAMs
and is converted into PC by PE-N-methyltransferase29. This transfer
system is the rate-limiting step in lipid biogenesis and further
contributes to the maintenance of phospholipid homeostasis.
The complex consisting of Mdm10 and Mdm34 is located in the

OMM, and Mmm1 in the ER and Mdm12 in the cytosol exhibit
features of ER–mitochondria tethering proteins and phospholipid
exchangers30. Mdm34, Mmm1, and Mdm12 physically interact
with phospholipids via their synaptotagmin-like mitochondrial
lipid-binding domains31–33. The direct binding of Mmm1 and
Mdm12 forms a hydrophobic cavity that mediates the transport of
glycerophospholipids except for PE34. However, as the depletion
of this complex only exerts minor effects on the lipidome, more
unknown lipid regulatory proteins and mechanisms may exist in
MAMs30.

Regulation of mitochondrial dynamics
Mitochondrial quality control is a defense mechanism against
mitochondrial insult. In the early stages of quality control,

Fig. 1 Representative roles of mitochondria-associated ER membranes (MAMs). The figure shows representative MAM proteins and their
mechanisms of regulation of multiple cellular functions. (1) Calcium regulation is modulated mainly by the IP3R-GRP75-VDAC-MCU and VAPB-
PTPIP51 complexes in MAMs. (2) Lipid synthesis and transfer are mediated by the enzymes PSS1/2, PSD, and PEMT and the Mdm12-Mmm1-
Mdm34-Mdm10 complex. (3) Drp1 and MFN1/2 are involved in mitochondrial fission and fusion, respectively. The PINK1/Parkin pathway
mediates mitophagy. ER endoplasmic reticulum, OMM outer mitochondrial membrane, IMM inner mitochondrial membrane. IP3R inositol
1,4,5-triphosphate receptor, GRP75 glucose-related regulated protein 75, VDAC voltage-dependent anion channel, MCU mitochondria calcium
uniporter, VAPB vesicle-associated membrane protein B, PTPIP51 protein tyrosine phosphatase-interacting protein-51, PS phosphatidylserine,
PE phosphatidylethanolamine, PC phosphatidylcholine, PSS1/2 phosphatidylserine synthase 1/2, PSD phosphatidylserine decarboxylase,
PEMT phosphatidylethanolamine-N-methyltransferase, MFN1/2 mitofusin 1/2, PINK1 PTEN-induced putative kinase 1, TOM mitochondrial
translocase of the outer membrane 70.
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translocation and recruitment of dynamin-related protein (DRP1)
in mitochondria occurs in MAMs and facilitates mitochondrial
fission35. In contrast, mitofusin 1 (MFN1), another MAM protein,
forms puncta in the ER and facilitates mitochondrial fusion36.
Physical tethering of the ER to mitochondria by MFN1/2 indicates
the importance of MAMs as key sites for regulating mitochondrial
dynamics37,38 (Fig. 1).
In addition to fission and fusion, self-degradation of mitochon-

dria upon severe injury, a process called mitophagy, is also
influenced by MAM proteins. The PTEN-induced putative kinase
(PINK)/parkin pathway is the main signaling pathway for
mitophagy. PINK is degraded by mitochondria-resident enzymes
and further degraded in lysosomes under normal conditions;
however, mitochondrial dysfunction leads to the formation of
uncleaved PINK and its accumulation in the OMM through an
interaction with TOM39. The accumulated PINK proteins recruit
parkin, which induces mitophagy through its E3 ligase activity39,40.
A recent study reported that PINK1/Parkin mediate MFN2
phosphorylation, resulting in the dissociation of the MFN2
complex via the p97-dependent pathway. This indicates a
relationship between a decrease in ER–mitochondrial contact
and mitophagy41. Additionally, assembly of the autophagosome
marker ATG14 occurs in MAMs under starvation conditions, and
disruption of the ER–mitochondria interaction inhibits ATG14
localization and autophagosome formation42.

INTERACTION BETWEEN THE ER–MITOCHONDRIAL AXIS AND
CALCIUM HOMEOSTASIS
Most ER proteins are involved in regulating Ca2+ homeostasis43.
For instance, the sigma-1 receptor (Sig-1R), a MAM protein, is
enriched in the ER vesicles involved in this process. In the resting
state, Sig-1R binds to another chaperone in the ER, GRP78.
However, this complex dissociates under ER stress conditions,
including Ca2+ depletion. The dissociated Sig-1R then binds to
IP3R, mediating its stabilization and Ca2+ influx44. PDZ domain-
containing protein 8 (PDZD8) in the ER is another example of a
Ca2+-regulating protein in MAMs. PDZD8 knockdown impairs

ER–mitochondria tethering and further inhibits mitochondrial
Ca2+ uptake in the MAMs of mammalian neurons45. Other
proteins modulate calcium homeostasis in MAMs, as shown in
Table 1.
As Ca2+ participates in diverse cellular processes, disrupted

homeostasis and improper regulation of Ca2+ dynamics in MAMs
can negatively affect cellular function. The influx of Ca2+ into
mitochondria is essential for bioenergetics because several
intramitochondrial enzymes associated with glycolysis and the
tricarboxylic acid cycle are activated in a calcium-dependent
manner46. The lack of constitutive Ca2+ influx through IP3 reduces
the enzymatic activity of pyruvate dehydrogenase and thus the
production of adenosine triphosphate (ATP), resulting in the
activation of autophagy via the AMPK pathway47. Translocase of
mitochondrial outer membrane 70 (TOM70) also affects constitu-
tive Ca2+ shuttling by mediating the linkage between IP3R3 and
VDAC, and the depletion of TOM70 results in impaired mitochon-
drial respiration48.
MAM proteins stimulate Ca2+-dependent apoptotic pathways.

Ca2+ overload in the mitochondrial matrix increases mitochondrial
permeability by opening mitochondrial permeability transition
pores (mPTPs)49. One mechanism of permeability transition is
Ca2+-inducible conformational alteration of F-ATP synthases that
bind to and show activity toward mPTPs50. The opening of mPTPs
disrupts the osmotic balance in mitochondria due to nonselective
permeabilization, resulting in an influx of water that induces the
release of caspase cofactors51. Furthermore, alterations in Ca2+

levels are closely associated with responses to multiple intracel-
lular stresses, such as ER and oxidative stress.

ER–MITOCHONDRIA CONTACTS MODULATE
OXIDATIVE STRESS
Oxidative stress results from an imbalance between the produc-
tion and accumulation of reactive oxygen species (ROS) in cells
and is a hallmark of the ability to detoxify or repair reactive
products52. ROS are produced primarily in mitochondria and play
important roles in cell growth, differentiation, and death53,54.

Table 1. MAM proteins related to calcium homeostasis.

Name Cells Possible mechanisms

Sig-1R (sigma-1 receptor) CHO cells Mediates stabilizing IP3R and Ca2+ influx when dissociated
from BIP

Mouse, NRVM cells Maintains the close proximity between IP3R2 and VDAC by
interacting with IP3R2

PDZD8 (PDZ domain-containing
protein 8)

Cortical pyramidal neurons,
Drosophila

Mediates the tethering of EMCSs and mitochondrial uptake of
Ca2+ through MCU

ALKBH5 (RNA demethylase alkb
homolog 5)

143B, MG53, IMR90, and HEK293T
cells

Modulates ER lipid raft associated 1 (ERLIN1)-IP3R Ca2+

signaling via hypermethylation of ERLIN1 mRNA

FMRP (fragile X messenger
ribonucleoprotein)

Drosophila, Mouse, U2OS, HEK293T,
HeLa, and normal/patient derived
fibroblasts

Regulates Ca2+ homeostasis by interacting with VDAC; loss of
FMRP leads to excessive Ca2+ influx into mitochondria

TG2 (transglutaminase type 2) CAD cells Increases the number of IP3R-VDAC1 units through
crosslinking amyloid beta

HEK293 cells Increases the number of EMCSs by interacting with GRP75 and
increasing the formation of the IP3R-GRP75-VDAC1 complex

STING (stimulator of interferon
response cGAMP interactor 1)

Human renal carcinoma cell lines Interferes with interactions between VDAC1 and GRP75 by
binding to VDAC1 in renal cancer cells

Pyk2 (proline-rich tyrosine kinase 2) Mouse primary neuronal cells Increases the number of EMCSs by regulating the protein
expression levels of IP3R3 and VDAC1

S1T (sarcoendoplasmic reticulum
Ca2+-ATPase 1)

HeLa cells Leads to Ca2+ transport to mitochondria by increasing the
number of EMCSs and inhibiting mitochondrial mobilization
under ER stress conditions

TOM70 (mitochondrial translocase of
the outer membrane 70)

Mouse, HeLa cells Forms a cluster that contacts the ER and recruits IP3R3 to
EMCSs via a physical interaction
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Although low levels of ROS play an essential role in intracellular
signaling and pathogen defense, elevated levels can have
detrimental effects on cells, such as decreasing the efficiency of
mitochondrial respiration and inducing oncogenic stress55.
Imbalances in ROS accumulation can contribute to the develop-
ment and progression of several diseases, including cancer,
metabolic disorders, diabetes, and cardiovascular diseases56,57.
The ER and mitochondrial axes play essential roles in the

detection of and response to stress conditions, including oxidative
stress, and form interconnected networks58. Furthermore, the
simultaneous induction of ER stress and overproduction of ROS in
several diseases highlights the importance of this axis59. The roles
of ROS-related MAM proteins, including endoplasmic reticulum
oxidoreductase 1 (ERO1), Sig-1R, p66Shc, and MFN2, have been
reported (Fig. 2).
ERO1 is located entirely on the MAMs close to the ER surface

and is an essential factor in the ER oxidative folding mechanism
through co-localization with protein disulfide isomerase (PDI)60.
PDI catalyzes the formation of disulfide bonds in unfolded
proteins during oxidative protein folding and is then converted
to a reduced form61. Reduced PDI is subsequently oxidized by
ERO1 to participate in the catalytic reaction cycle, where reduced
ERO1 transfers electrons to an oxygen molecule via flavin adenine
dinucleotide, releasing H2O2

60. ERO1α, an ERO1 isoform, is
overexpressed in various cancers, and its expression is increased
by chronic ER stress, resulting in excessive H2O2 production and
an increased ROS burden62. ERO1 also affects ROS production by
regulating other MAM proteins. Under stress conditions, ERO1
oxidizes IP3R1 and induces detachment of the disulfide
isomerase–like protein ERp44 from IP3R163. ERp44 has an
inhibitory effect on IP3R164, leading to massive influx of Ca2+

through IP3R, which ultimately results in upregulated mitochon-
drial metabolism and excessive ROS production65,66.
Sig-1R regulates Ca2+ homeostasis and is involved in ROS-

related signaling pathways. Although the ROS-regulatory mechan-
isms of Sig-1R are not fully understood, previous studies have
shown that Sig-1R knockdown leads to ROS accumulation67,68.

Furthermore, some Sig-1R agonists exhibit antioxidant activity
under pathological conditions69.
p66Shc is located in MAMs, mitochondria, and the cytosol and

tetramerizes in response to oxidative stress70. Under oxidative
stress conditions, its Ser36 residue is phosphorylated by p38MAPK,
ERK, and JNK1/2, and phosphorylation of other residues, namely,
Ser54 and Thr386, occurs to prevent p66Shc degradation by
ubiquitination71–73. Activated p66Shc translocates through MAMs
into mitochondria, where it binds to cytochrome c to generate
ROS and ultimately induce cell death74. The generation of ROS by
activated p66Shc is supported by previous studies showing that
both p66Shc knockout mice and cells exhibit reduced oxidative
stress levels and a decreased incidence of diseases such as
atherosclerosis75,76.
As previously described, both MFN1 and MFN2 are involved in

the promotion of mitochondrial fusion. However, the fusion
process, which relies primarily on MFN1 and MFN2, is speculated
to have additional distinct functions77. The possible effects of
MFN2 on ROS generation have been suggested to be due to other
functions of MFN2. Munoz et al.78 reported the possible inhibitory
effects of MFN2 on ROS production. MFN2 directly interacts with
an ER stress branch, the pancreatic endoplasmic reticulum kinase
(PERK) pathway, and inhibits ER stress pathways and ROS
production. Other studies have shown that MFN2 overexpression
activates the PERK/activating transcription factor 4 (ATF4) pathway
and reduces ROS levels in cardiac fibroblasts79. However, a recent
study showed that MFN2 facilitates the adaptation of macro-
phages to mitochondrial respiration and ROS generation in
response to inflammatory stimuli80. Thus, further research is
required to fully understand the different functions of MFN2 in
different cell types and under specific stress conditions.

INTERACTION BETWEEN ER STRESS AND THE
ER–MITOCHONDRIA AXIS
Protein folding is the main function of the ER. Various conditions,
such as disruption of Ca2+ homeostasis, inhibition of degradation

Fig. 2 Mitochondria-associated ER membranes (MAMs) regulate oxidative stress. The figure shows the regulation of reactive oxygen
species (ROS) production by several proteins present in the mitochondrial ER membrane. Reduced ERO1 generates ROS through an
interaction with FAD. ERO1a, one of the ERO1 isoforms, regulates ROS production through an interaction with IP3R by releasing calcium ions
into mitochondria, which induces chronic ER stress. Additionally, p66Shc modulates ROS production via phosphorylation at Ser36, Ser54, and
Thr38 by ERK, JNK, and P38. Finally, MFN2 regulates ROS production in a manner dependent on its expression level through an interaction
with PERK. ERO1 endoplasmic reticulum oxidoreductase 1, ERp44 endoplasmic reticulum protein 44, IP3R inositol 1,4,5-triphosphate receptor,
GRP75 glucose-related regulated protein 75, VDAC voltage-dependent anion channel, CytoC cytochrome c, FAD flavin adenine dinucleotide,
PERK protein kinase R-like endoplasmic reticulum kinase.
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of unfolded proteins due to proteasome blockade, and genetic
mutations, can cause the accumulation of unfolded proteins81.
Under these stress conditions, the unfolded protein response
(UPR) is activated by three ER transmembrane proteins: activating
transcription factor 6 (ATF6), inositol-requiring enzyme 1α (IRE1α),
and PERK82. Under normal conditions, the ER chaperone GRP78/

BiP binds to the ER lumen region of these transmembrane
proteins and inhibits their activity. However, under stress
conditions, GRP78 binds to misfolded proteins and induces the
activation of these three transmembrane proteins83.
In the ATF6 pathway of the ER stress response, sensors mediate

the UPR, and ATF6 translocates to the Golgi complex after GRP78

Table 2. MAM complexes related to ER stress.

Complex Name Cells Functional of mechanisms

IP3R1-GRP75-VDAC complex pLE and pTr Induces apoptosis through mitochondrial dysfunction and ER stress via the IP3R/GRP75/
VDAC1-MCU axis

ES2 and OV90 Induces ER stress with activation of the UPR due to increases in cytosolic and mitochondrial
calcium

BMECs Induces ER stress and mitochondrial oxidative damage via the IP3R/GRP75/VDAC1-MCU axis

VAPB-PTPIP51 complex NSC34 Induces inhibition of IRE1/XBP1 due to VAPB loss under ER stress conditions

HEK293 and CV1 Induces Ca2+ regulation due to an interaction with PTPIP51 via VAPB-induced ER stress

MFN2-MFN2 complex ES2 and OV90 Induces inhibition of cell growth under ER and mitochondrial stress conditions

Sig-1R HEK293 Induces apoptosis via upregulation of the PERK/eIF2α/ATF4 pathway under ER stress
conditions

Rab32 SH-SY5Y Induces mitochondrial dysfunction and cell death with upregulation of GRP75 and MFN2
under ER stress conditions

Fig. 3 Representative characteristics of mitochondria-associated ER membranes (MAMs) in cancer and their therapeutic targets. The
figure shows representative alterations in MAMs in cancer cells from three perspectives (Ca2+ signaling, mitophagy, and lipid metabolism) and
the therapeutic drugs that target them. In cancer, the function of the IP3R-GRP75-VDAC complex is impaired, thus limiting Ca2+ trafficking to
mitochondria and inducing resistance to mitochondrial apoptosis. Cisplatin targets IP3R and promotes the activity of its complex, which
activates the influx of Ca2+ into mitochondria and induces apoptosis. Additionally, p53 mutations have been detected in various cancers, and
these mutations result in the inhibition of Ca2+ influx into the ER and thus in cell death. Adriamycin increases p53 levels in MAMs and
facilitates Ca2+ influx into the ER through SERCA, promoting apoptosis in cancer. Mipsagargin inhibits SERCA activity and increases the
intracellular Ca2+ level, which can trigger cancer cell death. Resveratrol promotes Ca2+ signaling through IP3R, resulting in autophagy-
induced cancer cell death. ACAT-1 generates cholesteryl esters that induce the accumulation of lipid droplets, resulting in tumor growth and
metastasis. Mitotane inhibits ACAT-1 and causes free cholesterol accumulation in the ER, leading to ER stress-mediated apoptosis in
cancer cells.
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is released. ATF6 is first cleaved by site-1 protease, and one half
remains at the NH2-terminus before being cleaved by site-2
protease84. Regarding the IRE pathway, GRP78 is normally bound
to IRE1α or its homolog, IRE1p, and maintains its inactivation.
When GRP78 dissociates from IRE1 in ER-stressed cells, IRE1 is
phosphorylated and dimerizes85. Finally, activated PERK phos-
phorylates eIF2α and further increases the translation of selected
mRNAs, including ATF4, which then promotes the expression of
transcription factors, such as C/EBP homologous protein (CHOP),
leading to growth arrest and DNA damage86. CHOP overexpres-
sion causes apoptosis by translocating B-cell lymphoma 2 (BCL2)-
associated X (a proapoptotic protein) to mitochondria and
decreasing the expression of BCL2 (an antiapoptotic protein)87.
The associations between MAM components and ER stress have

been widely reported (Table 2), and some UPR-related proteins
also function as MAM components. The interaction between PERK
and MFN2 is a representative example of the UPR-related MAM
pathway. Additionally, some MAM proteins are regulated by ER
stress; for instance, Sig-1R is transcriptionally upregulated via the
PERK/eIF2α/ATF4 pathway88, while another MAM protein, Rab32, is
upregulated via the UPR pathway. Rab32 belongs to the Ras-like
small GTPase family and is involved in mitochondrial fission via
interaction with DRP189. In SH-SY5Y cells, Rab32 expression is
elevated upon induction of ER stress (thapsigargin treatment),
leading to mitochondrial dysfunction and neuronal death90.
Furthermore, the ER chaperone GRP78 binds to IP3R1 during the
ER stress response, releasing Ca2+ for influx into mitochondria and
inducing cell death due to mitochondrial dysfunction91.
Further evidence has also revealed that several MAM proteins

affect UPR pathways. The ER protein VAPB is an important protein
involved in UPR activity, and VABP loss inhibits IRE1/XBP1 activity
in response to ER stress92. Furthermore, VAPB interacts with ATF6
in response to ER stress, and the terminal domain of ATF6 senses
protein accumulation in the ER lumen. VAPB, with no luminal
structure, is not directly regulated by ATF6 activation but is
indirectly inhibited93. VAPB-induced ER stress has been implicated
in inducing mitochondrial dysfunction by releasing Ca2+ through
interactions with PTPIP51 in the mitochondrial membrane23.

CHARACTERISTICS AND DIAGNOSTIC ROLE OF
ER–MITOCHONDRIA CONTACT SITES IN CANCERS
Cancer cells require a substantial amount of energy for their rapid
proliferation and acquisition of malignant phenotypes and use
various methods, such as increases in glucose uptake and
glycolytic activity (a phenomenon known as the Warburg effect),
lipid synthesis and lipolysis, and modulation of Ca2+ signaling, to
meet these requirements94–96. Therefore, MAMs play important
roles in cancer cell function and metabolism, as they regulate the
aforementioned pathways (Fig. 3).
The regulation of Ca2+ signaling is crucial in cancers, as it is

involved in cancer progression, epithelial-to-mesenchymal transi-
tion, invasion, and resistance to apoptosis97. Therefore, Ca2+-
regulating proteins in MAMs play various roles in cancer
development (Table 3). The IP3R-GRP75-VDAC-MCU complex,
which plays an important role in Ca2+ transport, is regulated by
oncoproteins such as PTEN, BRCA1, and BCL298. In MAMs, PTEN
binds to IP3R and prevents its degradation, thereby promoting
Ca2+ transport to mitochondria, which is important for apopto-
sis98,99. However, in various cancers, PTEN loses functionality and
triggers inappropriate Ca2+ transport, leading to apoptosis
resistance100,101. BCL2, another oncoprotein in MAMs, interacts
with IP3R and VDAC and prevents the translocation of Ca2+ from
the ER to mitochondria. Furthermore, the interaction between
BCL2 and VDAC1 interferes with the export of cytochrome c from
mitochondria and thus hinders apoptosis98,102. Therefore, BCL2
overexpression in cancers results in resistance to apoptosis.
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BRCA1-associated protein 1 (BAP1), a tumor suppressor protein
in MAMs, facilitates Ca2+ influx into mitochondria by interacting
with IP3R103. Abnormalities in the function of BAP1 can induce
inappropriate Ca2+ influx into mitochondria, which may affect the
regulation of apoptosis and lead to carcinogenesis104. Mutations
in BAP1 have been observed in various cancers, including renal
cell carcinoma, cutaneous melanoma, and uveal melanoma104.
GRP75 also plays an important role in the regulation of Ca2+

homeostasis2. Transglutaminase type 2 modulates GRP75 function
by binding to GRP75 and increasing Ca2+ flux between the ER and
mitochondria, which affects cancer growth and metastasis.
Upregulation of transglutaminase type 2 is a hallmark of breast
cancer105,106. Additionally, TOM70, a protein that links IP3R3 to
VDAC, exhibits notably high expression levels in breast cancer
cells, and its potential as a therapeutic target has been duly
recognized in previous studies48,107.
In addition to its proapoptotic role in mitochondria, Ca2+ is

important for energy production, progression, and metastasis in
cancer108,109. Ca2+ influx into mitochondria mediated by MCU
promotes mitochondrial biogenesis and colon cancer prolifera-
tion108, and impairment of Ca2+ uptake by MCU knockdown
inhibits the proliferation of embryonal rhabdomyosarcoma110.
Other types of cancers with high MCU expression include prostate,
ovarian, and breast cancers, indicating the diagnostic utility of
MCU expression in cancer111. Moreover, PDZD8, another Ca2+-
regulating protein in MAMs, was found to exhibit increased
expression levels in stomach cancer tissue compared with normal
tissue and is involved in the proliferation and metastasis of
stomach cancer112.
Although research on the exact role of ROS in cancers is still

underway, ROS are known to be involved in cancer progression
and metastasis98. Several MAM proteins, including p66hsc, are
regulated by ROS, and p66hsc and the oncoprotein p53 regulate
each other113. Furthermore, p66hsc can be activated by steroid
hormones, and activated p66hsc interacts with cytochrome c to
increase ROS production. These alterations, including oxidative
stress, have been reported to result in poor prognosis in patients
with prostate cancer72,114–116. These characteristics of p66hsc have
also been observed in other cancers, including breast and lung
cancers, indicating its potential as a diagnostic and therapeutic
target117–119. Furthermore, ERO1, which controls ROS production
through the regulation of MAM proteins, is overexpressed in
cholangiocarcinoma and is involved in proliferation and metas-
tasis, leading to poor prognosis in patients120. Notably, ERO1 is
also overexpressed in various other cancers, including breast
cancer, lung cancer, and hepatocellular carcinoma, in which it
ultimately results in poor prognosis121–123.
Activated lipid metabolism and the accumulation of lipid

droplets are hallmarks of various cancer cells95. Elevated lipid
levels in cancer cells promote proliferation and serve as energy
reserves and messengers in oncogenic pathways95,124. Further-
more, various enzymes involved in lipid synthesis are upregulated
in various cancers, including lung, ovarian, and prostate
cancers95,125,126. Various enzymes involved in lipid synthesis, such
as fatty acid CoA ligase, which catalyzes the ligation of
triacylglycerols and ceramide, and acyl-coenzyme A:cholesterol
acyltransferase-1 (ACAT-1), which catalyzes the synthesis of
cholesterol, are mainly located in MAMs98,127,128. Therefore,
alterations in the expression of these enzymes in MAMs are
strongly associated with cancer. For example, after passing
through mitochondria, ceramide plays an important role as an
apoptosis inducer and can inhibit cancer growth and cell
death129,130. Cholesterol metabolism is strongly associated with
cancer. ACAT-1 in MAMs converts cholesterol to cholesteryl esters,
which accumulate in the lipid droplets of cancer cells98,131. These
accumulated cholesteryl esters have a considerable impact on the
proliferation and metastasis of cancer cells132. Caveolin-1, located
in MAMs, is involved in cholesterol efflux, and its overexpression

has been identified in a variety of cancers, such as lung, liver,
kidney, and colon cancers133. These expression patterns of
caveolin-1 are closely related to cancer progression, metastasis,
and drug resistance134–136. Therefore, various MAM proteins play
major roles in cancer and can potentially be used in diagnosis and
treatment. The association between ER stress and cancer has been
established137. Sig-1R, a MAM protein regulated by ER stress, has
been reported to be overexpressed in myelogenous leukemia and
colon cancer138. This increased expression promotes angiogenesis
and facilitates cancer cell migration, resulting in poor prognosis in
patients. Consequently, Sig-1R is considered a promising ther-
apeutic target138. Another MAM protein associated with ER stress,
VAP-B, has been reported to play a key role in breast cancer
progression, highlighting its potential as a diagnostic marker for
this malignancy139.

THE ER–MITOCHONDRIAL AXIS AS A THERAPEUTIC TARGET
Targeting Ca2+ signaling
The characteristic functions of MAMs, including those in Ca2+ and
ROS signaling, lipid metabolism, autophagy, and mitochondrial
fission, enable their use as diagnostic markers and therapeutic
targets for cancer (Fig. 3). Different methods can be used to
trigger cancer cell apoptosis by promoting Ca2+ transport through
modulation of MAM proteins. One of the most widely used
anticancer drugs, cisplatin, is used to treat various cancers,
including ovarian, breast, lung, and bladder cancers140. In ovarian
cancer (SKOV3) cells, cisplatin promotes Ca2+ translocation from
the ER to mitochondria and cytosol, causing ER stress-mediated
apoptosis141. Other cancer therapeutics, such as adriamycin and
mipsagargin, target Ca2+ signaling. In MAMs, p53 regulates the
activity of SERCA by binding to it, leading to Ca2+ influx into the
ER and resulting in increased apoptosis142. p53 mutations have
been detected in various types of cancers, and adriamycin can
increase p53 levels in MAMs, which promotes Ca2+ signaling and
apoptosis in cancer cells through the activation of SERCA111,142,143.
Mipsagargin inhibits SERCA function, resulting in an increase in
intracellular Ca2+, which induces apoptosis in cancer cells144.
Another component of the Ca2+ transport complex, VDAC, can
potentially serve as a biomarker and therapeutic target for breast
cancer, as its overexpression was detected in a previous study145.
Furthermore, VDAC1 inhibition by siRNA induces cancer cell
apoptosis, suggesting that siRNAs could be a target for cancer
therapy146,147. Previous studies have shown that PDZD8, which is
highly expressed in stomach cancer and is involved in cancer cell
proliferation and metastasis, can also be used as a therapeutic
target112. Notably, sunitinib, a kinase inhibitor, attenuates the
proliferation of stomach cancer cells, as demonstrated in the
human gastric cancer cell lines TMK1 and MKN74, by decreasing
the PDZD8 protein level112.

Targeting lipid metabolism and ER stress
Targeting the lipid metabolism-related functions of MAMs could
aid in cancer treatment. For example, mitotane, which targets
ACAT-1, converts cholesterol to CE and causes lipid droplet
formation in various cancers148. In adrenocortical carcinoma,
mitotane-induced ACAT-1 suppression induces free cholesterol
and fatty acid accumulation in the ER, leading to apopto-
sis111,148,149. Modulation of ER stress also constitutes a potential
therapeutic approach for cancer. In prostate cancer, corosolic acid
modulates IRE1 and PERK signaling and induces ER stress, which
promotes apoptosis and inhibits cell proliferation150. In hepato-
carcinoma, 20(S)-protopanaxadiol can increase UPR activity and
enhance the ER stress response by phosphorylating components
of the PERK cascade, subsequently leading to increases in the
expression of associated genes151. Moreover, previous studies
have shown that panaxydol induces Ca2+ release from the ER
through IP3R and activates the JNK pathway, causing ER stress,
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which is mediated by PERK152,153. These effects trigger apoptosis
in renal carcinoma and prostate cancer cells152,153. Evodiamine is
another therapeutic candidate that affects the JNK and PERK
pathways. By modulating both pathways, evodiamine can induce
apoptosis in ovarian cancer cells and reduce the extent of
metastasis in colon cancer153–155.

Increasing the sensitivity of cancer cells to chemotherapeutic
compounds
Repeated use of chemotherapeutic drugs can result in resistance
to them; therefore, other MAM proteins can be targeted to reduce
this resistance. For example, cisplatin is widely used to treat
ovarian cancer; however, its long-term use can induce cisplatin
resistance in ovarian cancer cells, which is highly correlated with
GRP75156. GRP75 knockdown increases cisplatin-induced apopto-
sis in ovarian cancer cells, suggesting a decrease in resis-
tance157,158. Blocking the function of MAM-localized BCL2, which
interacts with IP3R, via a BCL2 inhibitor disrupts Ca2+ translocation
and leads to an increase in the cellular Ca2+ level in cisplatin-
resistant ovarian cancer cells. Furthermore, a study demonstrated
that ABT737, a BCL2 inhibitor, reduces the cisplatin resistance of
SKOV3 ovarian cancer cells by modulating Ca2+ signaling159,160.
These changes in cellular Ca2+ signaling lead to cisplatin-induced
apoptosis, indicating that the regulation of MAM proteins could
lower resistance to anticancer agents159,160. Targeting MAM-
localized PERK is also a potential approach for treating resistant
forms of cancers. PERK regulates ER stress, ROS production, and
Ca2+ levels, all of which affect the apoptotic process59,161. Previous
studies have reported that modulating PERK can induce apoptosis
in endocrine-resistant breast cancer cells161–163. Another example
of increased anticancer treatment sensitivity is that occurring after
combination treatment with bortezomib, a proteasome inhibitor,
and cisplatin. In pancreatic cancer, bortezomib can maximize the
anticancer effects of cisplatin by activating JNK cascades and
subsequently inducing apoptosis159,164.

Reducing cancer metastasis
Emerging evidence suggests that MAM proteins and mitochon-
drial calcium dynamics may affect the migratory ability of cells165,
and several studies have revealed the roles of MAM proteins in
tumor invasion and metastasis, offering valuable perspectives for
both diagnostic and therapeutic approaches. In triple-negative
breast cancer cells, blocking MCU function can inhibit Ca2+ influx
into mitochondria and ROS generation, resulting in reduced
migration and progression159,166. Moreover, overexpression of
FUN14 domain-containing 1 (FUNDC1), a MAM protein, could be a
diagnostic and prognostic marker for breast cancer, as it triggers
cell proliferation, migration, and invasion167. FUNDC1 knockdown
by siRNA alters NFATC1 activity and inhibits the proliferation and
metastasis of breast cancer cells147,168. A similar example is the
targeting of MFN2 by miR-761 in hepatocellular carcinoma
discovered in a previous study165, wherein miR-761 was shown
to be upregulated in the tissues of patients with hepatocellular
carcinoma, thereby confirming its role in modulating MFN2
expression. Additionally, miR-761 inhibition resulted in reduced
migration and invasion of human cancer cell lines, as well as
suppression of tumor metastasis in nude mice165.

Increasing immune cell activity
Modulation of MAMs may aid in cancer treatment by increasing the
accessibility of immune cells. For example, interactions between
the ER and mitochondria regulate the expression of glycans, which
can reduce immune cell accessibility in glioblastoma169. A previous
study proposed the modification of glycan expression in glioblas-
toma through modulation of ER–mitochondria contact sites to
enhance immune cell recognition as a potential approach for
glioblastoma treatment169. Furthermore, regulation of MAM
proteins in immune and cancer cells can aid in treatment. In

memory T cells, promoting AKT signaling can inhibit the expression
of MAM-localized GSK3b and strengthen the interaction between
VDAC and HK-1, resulting in increased cellular respiration and
functional acquisition170. These alterations play a significant role in
the differentiation of memory T cells into effector T cells170. These
studies suggest that the modulation of MAM proteins to increase
immune cell activity offers various therapeutic benefits.

CONCLUSION
Interactions between organelles are involved in many cellular
functions. This review focuses specifically on the contact sites
between the ER and mitochondria, known as MAMs. Various MAM
proteins play important roles in the regulation of Ca2+ signaling,
lipid metabolism, mitochondrial dynamics, oxidative stress, and ER
stress. Therefore, alterations in MAM proteins can lead to changes
in these mechanisms, resulting in the inhibition of apoptosis and
increased resistance to anticancer drugs. Several therapeutic
agents targeting MAM proteins have been reported to induce
apoptosis and reduce antibiotic resistance and metastasis in
cancer cells by modulating Ca2+ signaling and lipid metabolism.
Owing to these diverse effects in cancers, research on MAM-
targeting therapeutics should be ongoing. Moreover, as altera-
tions in MAM proteins are characteristic of various cancers, they
can potentially serve as diagnostic markers and therapeutic
targets; however, further research is needed to determine whether
they can be used as accurate biomarkers for specific cancers.
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