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Cell-free DNA (cfDNA) sequencing has demonstrated great potential for early cancer detection. However, most large-scale studies
have focused only on either targeted methylation sites or whole-genome sequencing, limiting comprehensive analysis that
integrates both epigenetic and genetic signatures. In this study, we present a platform that enables simultaneous analysis of whole-
genome methylation, copy number, and fragmentomic patterns of cfDNA in a single assay. Using a total of 950 plasma (361 healthy
and 589 cancer) and 240 tissue samples, we demonstrate that a multifeature cancer signature ensemble (CSE) classifier integrating
all features outperforms single-feature classifiers. At 95.2% specificity, the cancer detection sensitivity with methylation, copy
number, and fragmentomic models was 77.2%, 61.4%, and 60.5%, respectively, but sensitivity was significantly increased to 88.9%
with the CSE classifier (p value < 0.0001). For tissue of origin, the CSE classifier enhanced the accuracy beyond the methylation
classifier, from 74.3% to 76.4%. Overall, this work proves the utility of a signature ensemble integrating epigenetic and genetic
information for accurate cancer detection.
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INTRODUCTION
Despite many technological advances in precision oncology, cancer
is still the leading cause of mortality worldwide, especially when
identified in the late stages1. This issue urges the development of
timely and easily repeatable cancer screening approaches. Many
countries have implemented nationwide cancer screening programs;
for example, in South Korea, the National Cancer Screening Program
was launched in 1999 to deliver free-of-charge screening for
stomach, breast, and cervical cancer for Medical Aid beneficiaries2.
However, population-wide screening is currently recommended for
only a few cancers, and some existing approaches lack adequate
performance or may have unnecessary risks associated with their
application, such as perforation of the bowel after a colonoscopy,
excessive radiation exposure, and risk of infection or bleeding3.
Liquid biopsies, especially cell-free DNA (cfDNA) sequencing,

have gained enormous attention in the context of developing a
noninvasive diagnostic tool to identify early cancer signals4,5.

From a simple blood draw, which can be periodically obtained
without much harm to the donor, various analytes could
potentially be studied for real-time cancer monitoring6–9. Among
these, circulating tumor DNA (ctDNA) embedded in cfDNA has
repeatedly demonstrated its utility in identifying a minuscule
amount (<0.001%) of cancer signals from early tumors5,10,11. In
many cases, the application of deliberate machine learning
combined with a large-scale feature set guided by biological
insights has been essential in achieving high sensitivity and
specificity12. Because cancer screening targets an asymptomatic
population that has a low cancer prevalence (usually <5%) but a
large population size, high specificity is a prerequisite for clinically
applicable tests. Furthermore, for meaningful follow-up, screening
necessitates the prediction of the tumor origin when cancer is
suspected.
Many previous or ongoing clinical trials have involved

searching for cancer signatures in cfDNA via diverse feature
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types: mutational signatures, copy number variations, structural
variations, DNA fragmentation, or methylation changes13.
Aberrant methylation patterns or fragmentomic profiles have
been most heavily employed to develop screening tests.
Because aberrant DNA methylation patterns occur early in
cancer pathogenesis and each cfDNA maintains the DNA
methylation states of its cell of origin14–17, ctDNA methylation
signatures can serve as a sensitive tool for disease surveillance in
patients with early-stage cancer18–26. The fragmentomic char-
acteristics of ctDNA are different from those of cfDNA from
normal cell origins27–30, and many studies have successfully
applied the differences in fragment size profile, end motif
patterns, or preferred end positions for early cancer detec-
tion31–35 or cancer subtyping22,36,37. In addition, (normalized)
fragment coverage variation in cfDNA reflects copy number
alterations in tumors, which has demonstrated utility in cancer
detection38,39.
However, most studies have focused only on one aspect of

epigenetic or genetic signatures, using targeted methylation
panels assessing only predetermined sites or whole-genome
sequencing data analyzing genetic variations. When possible, an
integrative approach utilizing the strengths of both epigenetic
and genetic information would be ideal for identifying early
cancer signals on the background of extremely low concentrations
of ctDNA in the bloodstream. Recent studies38,40 have explored
multifeature approaches using whole-genome bisulfite sequen-
cing and/or whole-genome sequencing to improve cancer
detection performance.
Here, we introduce a cancer screening platform that enables

simultaneous analysis of whole-genome methylation, copy
number, and fragmentomic patterns in a single assay. Using a
total of 950 plasma samples (361 healthy controls and 107 colon,
113 liver, 238 lung, and 131 prostate cancer patients) and 240
tissue samples, we generated whole-genome methylation sequen-
cing (WGMS) data, which provides not only base-pair resolution of
methylation status but also largely intact ctDNA fragmentomic
profiles preserved during enzymatic methylation conversion41. We
have demonstrated and highlighted cancer signatures in three
feature types: genome-wide methylation patterns, copy number
variations, and fragmentation profiles. Biomarker discovery was
performed to identify effective methylation sites characterizing
cancer-specific or tissue-specific signatures. Classifiers were then
constructed to detect cancer signals and search the tissue of
origin (TOO) using individual features and integrating cancer
signatures from multiple features, referred to as a cancer signature
ensemble (CSE). Finally, a performance improvement from using a
multifeature CSE compared to using single-feature models was
demonstrated.

MATERIALS AND METHODS
Study design and population
Blood, plasma, tumor tissue, and adjacent normal tissue samples of cancer
patients and/or healthy controls were collected from multiple sources. All
procedures were approved by the institutional review boards at the local
institutions (Supplementary Table 1). The inclusion criteria for cancer
participants were as follows: older than 18 years and diagnosed with
colorectal cancer, hepatocellular carcinoma, any type of lung cancer, or
prostate cancer. Patients with two or more primary cancers at the same
time or comorbidities were not included in the study (when the related
information was available). Blood or plasma samples from cancer patients
and associated demographic information were based on the condition
before patients received any treatment. Cancer stages were defined using
the American Joint Committee on Cancer Staging Manual, 8th edition42.
For healthy controls, all participants were required to be at least 18 years of
age, and individuals who were diagnosed with cancer after sample
collection or who were treated with cancer therapy or showed any
symptoms of cancer or were pregnant or received organ transplantation
were not included in the study.

Sample preparation and whole-genome methylation
sequencing (WGMS)
Each blood sample received was centrifuged in Ficoll solution at 1500 × g
for 15min, and the plasma was transferred from the separated blood.
Plasma was separated by centrifugation at 16,000 × g for 10 min to remove
cell debris. Plasma and fresh frozen tumor tissues that were sent to IMBdx
directly followed subsequent steps starting from DNA extraction. cfDNA
was extracted from 1–10mL of plasma using the Maxwell® RSC ccfDNA
Plasma Kit (Promega, USA) according to the manufacturer’s instructions.
After extraction, cfDNA was quantified using the Cell-free DNA ScreenTape
Assay and the 4200 TapeStation System (Agilent, USA). Tumor tissue
genomic DNA was extracted from frozen fresh samples using the Maxwell®
RSC Tissue DNA Kit (Promega) according to the manufacturer’s instruc-
tions. Extracted tumor tissue genomic DNA was quantified using a Qubit
dsDNA High Sensitivity Kit (Thermo Fisher Scientific, USA) and fragmented
using an ultrasonicator instrument (Covaris, USA) according to the
manufacturer’s instructions.
Methylation sequencing library preparation was carried out as per the

IMBdx AlphaLiquid® Screening platform protocol. The prepared libraries
were sequenced using the NovaSeq 6000 platform at 2 × 150 bp to
generate ~100 Gb of raw sequencing data.

NGS preprocessing and quality control
FASTQ files were generated from binary base call (BCL) sequence files
using Illumina bcl2fastq software (version 2.20.0.422). Illumina-specific
adapters and low-quality sequences (-q 20 -u 20 -x -y -3 -p -g -t 1 -T 1) were
trimmed using fastp (version 0.23.1)43. The sequenced reads were aligned
to the human genome (GRCh37) using bitmapperBS (version 1.0.2.1)44. The
aligned BAM files were sorted and indexed using SAMtools (version 1.11)45.
PCR and optical duplicates were marked and removed using GATK tools
(version 4.2.3.0) MarkDuplicates46, generating a final BAM file for feature
extraction.
To check the quality of the results, we calculated the uniquely mapped

reads, mapping rate, and duplication rate using SAMtools. Conversion
efficiency was calculated using MethylDackel methylation reports (https://
github.com/dpryan79/MethylDackel).
The exclusion criteria for quality control of WGMS data included

uniquely mapped reads of less than 150 million, a mapping rate of less
than 80%, a duplication rate of more than 25%, and a C-to-T conversion
efficiency of less than 99%.

Definition of methylation regions in WGMS (CpG blocks)
The human reference genome (GRCh37) from Ensembl was scanned to
obtain all CG dinucleotide sites, resulting in 28,245,162 CpG sites.
Segments containing three or more contiguous CpGs with a neighboring
distance within 100 bp and having analyzable coverage (median coverage
at each CpG site in the healthy training cohort, >3×) were identified.
Segments longer than 1000 bp were divided into two or more similar-sized
regions that were smaller than 1 kb. Those belonging to X and Y
chromosomes or included in the ENCODE blacklist47 were not included.
The remaining 2,488,047 regions constituted our final set and were used
for marker selection and classification. The final set contained 19,289,514
CpG sites48 and spanned 522 Mb.

Methylation level quantification of WGMS data
For WGMS data, the methylation level in each methylation region was
quantified as the AMF, which was calculated using all nonduplicated reads
mapped to that region. Specifically, it was calculated as:

AMFi ¼
P

j2Ri Cj
P

j2Ri ðCj þ TjÞ ;

where Ri denotes the set of all CpG sites in region i; and Cj and T j denote
the number of cytosines and thymines, respectively, covered at the j-th
CpG in the region. In the calculation for each sample at each region, we
regarded the AMF value as missing (NA, not available) if the average read
coverage in the corresponding segment was less than 10×.

Retrieval of methylation information from TCGA
TCGA Illumina Infinium HumanMethylation450 (450 K) BeadChip data were
retrieved from the GDC legacy archive49. For each of our cancer cohorts,
the related TCGA cancer cohorts were obtained: COAD (colon adenocarci-
noma, n= 296 vs. 38 for cancer and normal tissues), READ (rectal
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adenocarcinoma, n= 98 vs. 7) for colon cancer, LIHC (liver hepatocellular
carcinoma, n= 377 vs. 50) for liver cancer, LUAD (lung adenocarcinoma,
n= 458 vs. 29) and LUSC (lung squamous cell carcinoma, n= 370 vs. 40)
for lung cancer, and PRAD (prostate adenocarcinoma, n= 498 vs. 50) for
prostate cancer.
For each methylation region analyzed in our data, the corresponding

methylation level in TCGA data was obtained by searching all of the
matching CpG positions in the 450 K chip and then computing the median
beta values reported in the chip. Approximately 185,236 (7.4%) of our
methylation regions had corresponding CpG sites (85.82%) in the chip.

Methylation marker selection for classification
Tumor tissue, adjacent normal tissue, and healthy control cfDNA samples
from WGMS data were used to select markers capturing cancer signals. For
each cancer type, we aimed to identify tissue-specific markers by
comparing AMF values between tissues (tumor/normal) and cfDNA
samples and by comparing cancer-specific markers in tumor tissue with
those in normal tissues. Marker selection was focused on regions where
healthy samples were either stably unmethylated or stably methylated;
specifically, regions where 90% of healthy training samples had an
AMF < 0.3 were referred to as healthy-unmethylated, and those where 90%
of healthy training samples had an AMF > 0.7 were referred to as healthy-
methylated.
Differential methylation analysis was performed using the R “limma”

package50. For healthy-unmethylated regions, we compiled the top
10,000 significantly differentially methylated markers (log FC > 1.0 and
FDR < 0.01) that had (i) a higher AMF in tumor tissue than in healthy cfDNA
(“T-H”), (ii) a higher AMF in normal tissue than in healthy cfDNA (“N-H”), or
(iii) a higher AMF in cancer tissue than in normal tissue (“T-N”) based on
WGMS data. The differentially methylated markers in TCGA tumor and
normal tissues were also collected and merged into the “T-N” set.
Significantly differentially methylated markers for the healthy-methylated
regions were similarly found. Tissue-specific markers included those that
overlapped between the “T-H” and “N-H” sets but did not overlap the “T-N”
set. Cancer-specific markers included those that overlapped between the
“T-H” and “T-N” sets but did not overlap the “N-H” set.
Tissue-specific and cancer-specific markers had a high proportion of

overlap among healthy-unmethylated samples (21.3% intersected by all
cancer types), but the overlap was minimal for healthy-methylated
samples (0.97% intersected by all cancer types). Our final cancer vs.
noncancer classification marker set was determined to include all healthy-
unmethylated markers (n= 67,639) after visual inspection of the heatmap,
functional category decomposition, and tradeoff assessment between
classification power and stringency constraint (fewer markers with a more
stringent constraint). The marker set used to trace the TOO was
determined by additionally including tissue-specific markers from
healthy-methylated regions (n= 43,338).

Functional annotation of methylation markers
Functional annotation regarding transcription control or gene type was
performed using HOMER (version 4.1)51. CpG islands were annotated
based on the cpgIslandExt file downloaded from the UCSC table browser48.
Gene set enrichment analysis was carried out using “enrichr”52. For colon,
liver, lung, and prostate cancer, 5465, 2841, 4190, and 9950 cancer
hypomethylated regions were retrieved, respectively, and the associated
genes were searched, except for those in the intergenic regions. Cell type-
related categories enriched in the Human Gene Atlas database were then
analyzed.

Characterization of copy number patterns
To reflect the existence of copy number alterations, CNRs were calculated
using the R package “QDNAseq”53 over nonoverlapping bins at a specified
bin size. Sequenced reads in each bin were counted, and bins that
overlapped with the QDNAseq default blacklist (wgEncodeDacMapabil-
ityConsensusExcludable.bed) were removed. GC bias and mappability were
corrected, followed by normalization and smoothing, to generate the
CNRs. Bin segmentation, normalization, and calling of copy number
variation segments were carried out using default parameters.
To extract regions that frequently experienced copy number gain

events, we performed differential CNR analysis on tissue samples,
comparing cancer tissue and normal tissues for each cancer type.
However, normal tissues did not exist for prostate cancer; thus, a
composite of all normal tissues from other cancer types was used.

Thresholds for retrieving frequent gain events were set as log FC > 0.2 and
FDR < 0.01 for colon and liver cancers and log FC > 0.15 and FDR < 0.001
for lung and prostate cancers, resulting in 2168 markers for colon, 2680 for
liver, 1603 for lung, and 1041 for prostate cancer. The list of robust copy
number gains was also retrieved from the TCGA pancancer study54, and
any of our 100-kb bins overlapping TCGA markers were extracted.
To determine the best resolution for the classification exercise, genomic

binning was evaluated over a broad range, 1 kb, 5 kb, 50 kb, 100 kb, 500 kb,
and 1Mb. We examined the tradeoff between reducing noise levels and
rescuing biological signals and decided to use 100 kb bins. Manual
inspections of several tumor and cfDNA pairs suggested that focal tissue
events were frequently lost at lower resolution, and 100 kb corresponded
to the highest resolution that did not decrease the classification
performance of CNRs. For classification input, an adjusted CNR was
calculated using only short fragments (<150 bp) to enrich tumor-
associated fragments and by treating values between 0.85 and 1.05 as
copy neutral.

Fragmentomic feature engineering
The fragment size of each read was calculated using bamPEFragmentSize
from Deeptools (version 3.5.1)55. ENCODE blacklist regions were not used
for fragment size analysis. To quantify fragmentomic signals, the S/L ratio
was calculated for a specified bin size31. Short fragments were defined as
having lengths between 80 and 150 bp, and long fragments were defined
as having lengths between 151 and 220 bp. The short and long fragments
were counted over nonoverlapping bins using bamCoverage from
Deeptools (version 3.5.1) with the parameter option not to multiply by
counting duplicated reads. The ratio was calculated by dividing the
number of short fragments by the number of long fragments. The
normalized S/L ratio per bin was obtained by dividing the raw ratio by the
S/L ratio computed at the chromosome level. The log2-transformed value
was used for visualization and classification.
The bin size was evaluated with sizes of 10 kb, 50 kb, 100 kb, 500 kb,

1 Mb, and 5 Mb. After examining the raw count of short and long
fragments and coherence among normalized count profiles, we decided to
use a size of 100 kb for downstream analysis.

Model building workflow: cross-validation training, testing,
machine learning, and prediction
The healthy and cancer cfDNA samples were divided into training and test
sets, balancing age, sex, and cancer stage, to build a classification model
and for evaluation. Healthy cohorts were divided into training and test sets
within each group of people aged <50 or ≥50 years. Of note, classification
model fitting and performance evaluation were only based on the group
aged ≥50 years. The training portion was further split 4-fold for cross-
validation performance assessment.
For a given feature type and with a given portion of the training set

(75% of the entire training set for cross-validation and 100% for
independent test validation), model building and score prediction were
performed as follows:

1. Imputation of missing values: For methylation, missing values were
imputed by the average value of the healthy controls in the training
portion with no missing data. Markers that had a missing value in
more than 10% of the healthy controls were discarded.

2. Machine learning: The classification model was built with multiclass
labels using healthy controls and colon, liver, lung, and prostate
cancer patients using a support vector machine algorithm56 on a
vector of input features. The hyperparameter was tuned to achieve
the lowest probability of misclassifying unseen test examples. The
support vector classifier (SVC) function in the scikit-learn Python
library was trained using a linear kernel.

3. Prediction: The prediction score was obtained for each sample in the
test portion. The cancer score was obtained from a vector of five
probabilities supporting the five class labels by summing the portion
supporting cancer. For the TOO, the conditional probabilities
supporting the four cancer types were obtained from the original
probability by dividing by the cancer probability.

Construction of multifeature ensemble classifiers
For cancer detection, an ensemble classifier was constructed by averaging
cancer scores generated from three individual classifiers built on (i) AMF
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values of 67,639 healthy-unmethylated markers, (ii) CNRs estimated for
100-kb bins, and (iii) fragmentomic S/L ratios computed for 100-kb bins.
For each individual and ensemble classifier, the score threshold was
determined post hoc using the prediction scores of the test set. The lowest
threshold satisfying >95% specificity was chosen. Our final classification
was based on the ensemble classifier; thus, samples detected as suspected
cancer by the ensemble classifier further underwent TOO classification.
For TOO classification, an ensemble classifier was constructed by

averaging TOO conditional probabilities from three individual TOO
classifiers built on (i) AMF values of 110,977 selected markers, (ii) CNRs
estimated for 100-kb bins, and (iii) fragmentomic S/L ratios computed for
100-kb bins. For each individual and ensemble classifier, TOO prediction by
default was performed based on the class corresponding to the maximum
TOO probability.

Data visualization and statistical analysis
Genome browser snapshots were generated using the Integrative
Genomics Viewer57. UMAP analysis was performed using the Python
UMAP library58, and PCA was performed using R (version 4.1.1) software.
Student’s t test was used to compare continuous variables between
independent groups, and McNemar’s test was used to compare the
sensitivity between different classifiers. The statistical analysis was
performed using R (version 4.1.1) software, and graphical visualization
was performed using the “ggplot2” package. Differential methylation and
copy number analyses were performed using the R “limma” package50. The
sensitivity, specificity, AUC, and associated CIs were calculated using the R
“pROC” package. Classification models were built using the SVC function in
the scikit-learn Python library59.

RESULTS
AlphaLiquid® Screening assay and cohort overview
We developed the AlphaLiquid® Screening platform for the early
detection of multiple cancers. It combines enzymatic methylation
conversion41 with whole-genome sequencing (Fig. 1a). Because
unmethylated cytosines at CpG sites are converted to uracils, the
base-level methylation status can be revealed genome-wide.
Additionally, copy number patterns and fragmentation profiles
can be explored because enzymatic conversion is expected to
cause minimal fragmentation damage and coverage bias41. Using
these features, the platform applies machine learning models to
identify cancer signals and predict the TOO for those detected as
cancer (Fig. 1b). Because multiple features were incorporated to
characterize the underlying cancer signals, we refer to the
combined signature as the CSE.
To construct CSE models and show the clinical performance of

AlphaLiquid® Screening, we collected plasma samples of four
cancer types (colon, liver, lung, and prostate cancers) and healthy
controls from multiple sources (“Materials and methods,” Fig. 1c
and Supplementary Table 1). cfDNA was successfully extracted
from a total of 991 (626 cancer and 365 healthy) plasma samples,
which were then subjected to WGMS (Supplementary Fig. 1). On
average, 100.9 Gb of raw sequencing reads were generated,
covering the whole genome at approximately 30×. The samples
then underwent preprocessing and quality checking (Supplemen-
tary Fig. 2). Three samples were discarded because of inadequate
blood sampling, and an additional 38 (4%) were excluded due to
low input DNA, a low conversion rate, a low mapping rate, or a
high duplication rate (“Materials and methods,” Supplementary
Fig. 1). The sequencing statistics after quality control are
summarized in Supplementary Table 2. Because cancer occurs
more often in the aged population, we restricted healthy controls
to those older than 50 years for model construction and
evaluation. However, all of the healthy samples in the training
set were used for feature engineering and marker selection. For
marker discovery, we additionally generated WGMS data from 181
tumors (cancer tissues) and 58 adjacent normal tissues (Fig. 1c). A
portion of the tissue samples had matched plasma samples (92
and 53 samples for cancer and normal tissues, respectively). For
model training and evaluation, 950 analyzable cfDNA samples

were divided into independent training and test sets, balancing
age, sex, and cancer stage as much as possible, given that all
plasma samples with matched tissues were assigned to the
training portion. The clinical characteristics of the two sets are
summarized in Table 1. The clinical stage was evenly distributed in
colorectal cancer but varied in other cancer types; samples were
more enriched for earlier stages of hepatocellular carcinoma,
enriched for stage 1 or stage 4 of lung cancer, and enriched for
stage 2 and stage 3 of prostate cancer.

Cancer signature in methylation patterns
Using WGMS data, the methylation level could be quantified at
the CpG level (1 base pair (bp) resolution, Fig. 2a) or a regional
level that contained several consecutive CpGs (Fig. 2b, c). Figure
2a shows an Integrative Genomics Viewer snapshot capturing one
genomic region containing eight CpGs. At a single CpG site, the
methylation level could be quantified as follows: at the third CpG
site, the fraction of methylated reads among all aligned reads was
0% (0/23) for the healthy control group, while the values were
55% (20/36) and 56% (14/25) for the first and second tissue
samples from the stage 4 and stage 2 cancer patients,
respectively. Additionally, the fractions of the corresponding
cfDNAs were 33% (6/18) and 0% (0/15), respectively, reflecting
varying degrees of ctDNA shedding.
Because quantification of methylation at a single CpG site often

results in high variability and sequencing errors, making cfDNA
analysis challenging, we carried out most methylation analyses at
the regional level to achieve more stable quantification. The
methylation regions used are shown in the Materials and Methods
and Supplementary Fig. 3. Briefly, starting with ~28 million CpG
sites found in the human reference genome, three or more
consecutive sites within a neighboring distance of 100 bp were
considered as a segment after low-depth sites or blacklist regions
were discarded. In total, ~2.5 million regions were available for
downstream analysis. In our study, the methylation level was
quantified as the average methylation fraction (AMF, defined as
the fraction of cytosines in the included CpG positions) unless
otherwise stated. Examples of differentially methylated regions
(DMRs) between colon cancer cfDNAs and healthy controls are
shown in Fig. 2b (cancer hypermethylated) and Fig. 2c (cancer
hypomethylated).
Because our platform covers the entire genome, DMR searches

can be flexible, contrasting any two groups of interest. Figure 2d
displays the methylation difference between healthy and colon
cancer tissue cohorts across all ~2.5 million regions. Tens of
thousands of DMR candidates may exist. The figure also presents
the relative abundance of cancer hypo- and hypermethylated
regions. Supplementary Fig. 4a shows that methylation patterns
differ between cfDNA and tissues and between tumor and normal
tissues. Differences in methylation distribution arise from their
distinct cell types16. As tumors develop and grow, their cellular
diversity leads to more varied methylation patterns in tumor
tissues compared to normal tissue, and the corresponding
anomalies appear in cfDNA due to the shedding of cancer DNA
into the bloodstream. Although small, a consistent peak at zero
AMF appears for all cohorts, suggesting the existence of
persistently unmethylated regions that may govern the expression
of essential regulatory genes. A subset of cancer tissues and a few
cancer cfDNAs exhibit global hypomethylation compared with
normal tissues or healthy cfDNAs, aligning with observations in
the literature60. The divergence level in the methylation profile
(measured by the region-specific standard deviation (SD)) is often
several-fold higher in a cancer tissue cohort than in a cfDNA
cohort (Supplementary Fig. 4b). In healthy cfDNA and normal
tissues, methylation levels are stable. In contrast, cancer tissues
show notable variations due to tumor heterogeneity. These
variations might be reflected in the cfDNA of cancer patients
but are less pronounced due to the limited presence of ctDNA.
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Unsupervised clustering by uniform manifold approximation
and projection (UMAP) analysis (Fig. 2e) revealed that tissue
(tumor/normal) samples were well clustered according to each
TOO and then by cancer status (i.e., normal tissues were further

clustered). Most cfDNAs, however, were separate from tissue
clusters and formed relatively loose (with respect to cancer origin)
and mixed clusters. Principal component analysis (PCA) showed a
similar result but on a different scale (Fig. 2f). These unsupervised
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Fig. 1 AlphaLiquid® Screening workflow and cohort summary. a Generation of whole-genome methylation sequencing (WGMS) data. A cell-
free DNA (cfDNA) sample was treated with enzymatic methylation conversion and then sequenced on a next-generation sequencing (NGS)
machine. b Application of our multifeature cancer signature ensemble (CSE) models. After preprocessing the WGMS data, methylation, copy
number, and fragment size features were extracted and fed to CSE machine-learning models for cancer signal detection and tissue-of-origin
prediction. c Cohorts for model development and independent test performance evaluation. The samples were collected from healthy
controls (noncancer, green) and patients from four cancer types: colon (dark yellow), liver (orange), lung (deep pink), and prostate (marine
blue). Model training and evaluation were performed using cfDNA samples, but cancer tissue DNA or (adjacent) normal tissue DNA from
cancer patients assisted feature selection. The healthy cohort was divided into two groups depending on age: older than 50 years or younger.
The cfDNA samples were split into training and test sets, given a constraint that any cfDNAs with matched tissue samples were assigned to
the training portion.
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clustering results suggested that samples are reasonably clustered
by cancer type and sample type. These delineations not only
facilitated differentiation between cancer patients and healthy
controls but also enabled accurate inference of the tissue of origin.
Overall, a cancer signature was demonstrated in cfDNA samples
that reflected the methylation signature in tissue samples, which
differed by cancer type and cancer status.

Methylation marker discovery
Taking advantage of the availability of many tissue samples, we
carried out methylation marker discovery for classifiers while
detecting cancer signals and localizing the TOO in parallel. First,
we parsed out the variations across sample types and cancer types
by comparing the methylation levels between (i) cancer tissue and
healthy cfDNA (“T-H”), (ii) normal tissue and healthy cfDNA (“N-H”),
and (iii) cancer tissue and normal tissue (“T-N”) (Fig. 3a) and repeated
the analysis for all cancer types. Normal tissues were not available
for prostate cancer; thus, a portion of the analysis was omitted. PCA
of healthy cfDNAs and all samples from one cancer type at a time
demonstrated differences by sample type (Fig. 3b and Supplemen-
tary Fig. 5). Cancer tissues were widely dispersed, normal tissues
were clustered on the edge of the tumor space, and healthy and
cancer cfDNAs were closer to each other but slightly separated.
The search for meaningful markers was focused on regions with

either consistently low or high methylation in healthy controls
(“Materials and methods”). We refer to the former as “healthy-
unmethylated” and the latter as “healthy-methylated” regions; they
served as supersets for cancer hyper and hypomethylated markers,
respectively. Differential methylation analyses were conducted using
WGMS and The Cancer Genome Atlas (TCGA) 450 K data (“Materials
and methods,” Supplementary Figs. 6 and 7). More differentially
methylated markers were found between healthy cfDNA and
(tumor/normal) tissue than between cancer and normal tissue;
among healthy-unmethylated regions, 28,057, 25,924, and 2670
markers were found by T-H, N-H, and T-N comparisons for colon
cancer with a log fold change (FC) > 1 and false discovery rate
adjusted p value (FDR) < 0.01. The cancer-specific signal (contrasting
cancer tissue and normal tissue) was strongest for liver cancer and
minimal for lung cancer in our data (Supplementary Fig. 8). The
proportion of markers with an associated (absolute) log FC greater
than 1.0 was 19.8%, 49.6%, and 1.8% for colon, liver, and lung
cancer, respectively. A search for differentially methylated markers
using cfDNA samples only (Supplementary Fig. 9) did not result in
many strong candidates; 4214, 389, and 282 markers were found
with a log FC > 1 and FDR < 0.01 for healthy vs. colon, lung, and
prostate cancer comparisons, respectively.
After examining tissue-specific and cancer-specific markers

derived from all cancer types in WGMS and TCGA data, we obtained
two methylation marker sets, one for identifying cancer (entire
“healthy-unmethylated” set; n= 67,639) and the other for determin-
ing the TOO (“TOO set”; n= 110,977). Figure 3c displays a subset of
high-ranked markers that consist of tissue-specific or cancer-specific
markers in healthy-unmethylated regions (2000 and 2676 markers
from Supplementary Fig. 10a, b, respectively) and organ-specific or
tumor-specific markers among healthy-methylated regions (3000
and 1927 markers from Supplementary Fig. 10c, d, respectively).
Compared to all genomic regions, the TOO and healthy-
unmethylated sets had a higher proportion of promoter regions
(5.6%, 23.6%, and 34.9% were observed for all, TOO, and
unmethylated sets, respectively) and overlapping CpG islands
(1.9%, 27.0%, and 44.0% were observed for all, TOO, and
unmethylated sets, respectively) (Supplementary Fig. 11a, b). Using
gene set enrichment analysis of the hypomethylated regions for
each cancer type, we identified the target organ-related cell type as
the top hit (Supplementary Fig. 11c).
Overall, through extensive joint analysis of cfDNA and tissue

cohorts, we obtained effective marker sets for cancer detection
and tracing of the origin.Ta
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Fig. 2 Cancer signature captured in methylation patterns. a IGV snapshot demonstrating base-pair level methylation information in NGS
data. Five panels display the read alignment of two cancer tissue DNAs (upper two panels) and their matched cell-free DNA (cfDNA) samples
(middle two) from stage 4 and stage 2 cancer patients and one healthy cfDNA sample (bottom). Red indicates a methylated read base, and
blue indicates an unmethylated base. b, c Examples of co-methylated CpG sites that were hypermethylated (b) and hypomethylated (c) in
colorectal cancer cfDNA relative to healthy cfDNA. For each panel (sample type), the methylated read fraction (B-value) is shown for each CpG
site (non-gray colored columns) in each sample (rows). Non-CpG sites are in gray. d Smoothed scatter plot showing the overall difference in
the region-level methylation value (quantified as logit-transformed average methylation fraction) between the colon cancer tissue DNA and
healthy cfDNA samples. The median difference in the methylation levels (y-axis) is shown against the median of those in the healthy cohort (x-
axis). All ~2.4 million methylation regions were plotted, and outliers are indicated as black dots. e Uniform manifold approximation and
projection (UMAP) analysis of all training cfDNA and tissue samples based on ~2.4 million methylation regions. Different cohorts are indicated
by color (green, healthy; yellow, colon; orange, liver; red, lung; and blue, prostate cancer), and different sample types by point type (filled
circle, cfDNA; filled triangle, adjacent normal tissue; and star, tumor tissue). The first two UMAP components were plotted. f Principal
component analysis based on the 67,639 methylation regions with low methylation in the healthy cohort.
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Cancer signature reflected in copy number patterns
Copy number alterations frequently occur in many cancers. In
cfDNA studies, alteration patterns are usually studied using whole-
genome sequencing data by analyzing normalized read coverage

variations61. Here, we investigated the cancer signature reflected
in cfDNA using WGMS, which also generated next-generation
sequencing (NGS) data but from a library that was subjected to
enzymatic methylation conversion.
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Fig. 3 Methylation marker discovery. a Differential methylation analysis strategy comparing methylation levels between (i) cancer tissue
DNA and healthy cell-free DNA (cfDNA); (ii) normal tissue DNA and healthy cfDNA; and (iii) cancer tissue and normal tissue DNA. b Principal
component analysis of healthy cfDNA samples (green-filled circle) and all sample types from colon cancer (yellow-filled circle for cfDNA,
yellow-star for tumor tissue, and yellow-filled triangle for adjacent normal tissue). Average methylation fractions of ~67,000 regions with low
methylation levels in the healthy training set were used. c Heatmap displaying high-ranked differentially methylated markers that exhibit
cancer-specific or tissue-specific signatures (see Materials and Methods). The annotation on the upper part of the panel indicates sample type
(cfDNA or tissue), organ site (healthy, colon, liver, lung, and prostate), cancer status (benign or cancer), cancer stage (if available), age, and sex.
The cells in the heatmap are colored by the associated average methylation fraction (AMF).
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At the individual sample level, copy number ratios (CNRs) were
calculated over nonoverlapping 100-kb bins (“Materials and
methods”) and served as a basis to quantify the magnitude of
abnormalities when distanced from zero on the log scale. The CNR
profiles of several examples are shown in Supplementary Fig. 12.
For colon, liver, and lung cancers, cfDNA, cancer tissue, and
normal tissue were obtained from the same patients with stage 4,
stage 2, and stage 1 cancer, respectively. For low-stage cancer, the

variability in cfDNA was largely comparable to the noise level
observed in healthy samples, at least in the visible spectrum.
The cohort-level CNR profile by sample type and cancer type is

shown in Fig. 4a. For all cancer types, cancer tissue cohorts
demonstrated substantial copy number events (83%, 100%, 87%,
and 87% of colon, liver, lung, and prostate tumors had at least one
event). When the magnitude of overall copy number alterations in
each cohort was summarized as the median CNR, both shared and
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Fig. 4 Cancer signature revealed in copy number patterns. a Genome-wide (log2-scale) copy number ratio (CNR) profiles of cfDNA (top
row), cancer tissue DNA (middle row), and normal tissue DNA (bottom row) samples across five cohorts (columns). Within each panel, the CNR
profile of each sample is shown horizontally along the genomic coordinates, displaying chromosome X at the end. The cancer samples in the
cfDNA panels are ordered by cancer stage. b Magnitude of overall copy number alterations in the cancer tissue cohorts. The median of log2-
transformed CNR was computed for each 100 kb bin using the cancer tissue samples in each cancer type (panels). c Uniform manifold
approximation and projection (UMAP) analysis of all training cfDNA and tissue samples based on CNR values. The other graphical details are
similar to those in Fig. 2e.
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diverged copy number patterns were observed across the
different cancer types (Fig. 4b). All cancer types showed frequent
gain and loss events on chromosomes 7 and 862, while certain
events were present only for a subset of cancer types, such as
chromosome 13, where gain events frequently occurred in colon
cancer but not in other cancers. In contrast to cancer tissues,
adjacent normal tissues did not suggest that any copy number
events had occurred (Fig. 4a). Among cfDNAs, no significant copy
number events were found in healthy controls, but observations
varied for cancers (upper panels in Fig. 4a). For the colorectal
cancer cohort, which had a well-balanced cancer stage distribu-
tion, copy number alterations were visible for some stage 4
samples. For liver and prostate cancers, relatively few substantially
large copy number alterations were observed in our cohorts.
UMAP analysis based on CNRs (Fig. 4c) revealed a broad

separation between tissue and cfDNA samples, which may
partially reflect the impact of different library preparation methods
on fine-scale normalized read depths. However, UMAP analysis
also presented clusters of tissue samples by origin and by sample
type, and moderate clusters were observed within the cfDNA
portion by cancer type, except for in the prostate and healthy
cohorts.
Our analysis confirmed frequent copy number events in cancer

tissues, but these events were visible in cfDNA of high-stage
cancer patients only. Nonetheless, unsupervised clustering using
genome-wide CNR values suggested the presence of fine-scale
variations that could be informative in separating cancer samples
from healthy control samples.
For classification purposes, we performed several modifications

to improve the signal-to-noise ratio. We re-estimated CNRs using
reads shorter than 150 bp to enrich ctDNA, and we suppressed the
fine-scale variations that were also observed in the healthy cohort
and then focused the algorithm training on the regions showing
frequent copy number gains in our WGMS tissue cohorts
(Supplementary Fig. 13) or in a TCGA pancancer study63

(Supplementary Fig. 14) (for more details, see “Materials and
methods”).

Cancer signature captured in the fragmentation profile
DNA fragments derived from tumors are known to have a
different length distribution than typical fragments from the usual
cell death process28,29. WGMS retains the maximum number of
fragments that are intact from fragmentation damage41; thus, we
were able to employ the cancer signature captured in fragmen-
tomic patterns.
The genome-wide fragment size distribution demonstrated the

well-known shape in which healthy controls usually exhibit the
highest mode, near 167 bp, with periodic oscillations observed on
the shorter end (Fig. 5a)64. Cancer samples are often enriched for
short fragments, but the degree varies depending on the stage
and the type of cancer. The short (80–150 bp) to long
(151–220 bp) fragment (S/L) ratio was calculated to quantify the
enrichment (Materials and Methods). Figure 5b displays the
distribution of the global ratio across cohorts and cancer stages.
The median ratio observed in the healthy cohort was 0.2, with an
associated SD of 0.036. In the colon cancer cohort, the ratio
generally increased with cancer stage; however, several outliers
were observed for stage 4 samples. Liver and lung cancer also
presented a moderately increasing trend by stage.
The S/L ratios were also computed at the regional level. The

normalized ratio profile (“Materials and methods”) illustrates the
difference among samples and cohorts (right panels in Fig. 5a).
The healthy cohort demonstrated relatively synchronized profiles,
but cancer cohorts exhibited increased variability. To quantify the
differences between healthy and cancer samples, we calculated
the correlation between the healthy median profile (constructed
from the median ratio of healthy controls in each bin) and the
profile of each sample (Fig. 5c). Clearly, the correlation was highest

among healthy controls and tended to decrease with increasing
stage in cancer patients.
Overall, we demonstrated that the fragment size ratio (FSR)

profile reflects the cancer signature in cfDNA but at varying
magnitudes. Interestingly, unsupervised clustering of cfDNA
samples suggested only that the cancer signal could be weaker
in fragmentation patterns than in methylation or copy number
profiles (Supplementary Fig. 15).

Cancer signature ensemble model for accurate cancer
detection
Previous results indicated that the AMF, CNR, and FSR are all
effective features for capturing cancer signals that can be
simultaneously obtained from our assay. To investigate the
improvement obtained by integrating these factors, we first built
a classifier for each feature type and then constructed a CSE
classifier using the individual classifier scores (“Materials and
methods”).
The CSE model outperformed all individual classifiers. Receiver

operating characteristic curves indicated that the CSE improved
the classification performance over the whole spectrum (Supple-
mentary Fig. 16). The areas under the curve (AUCs) for the AMF,
CNR, and FSR classifiers were 0.95 [confidence interval (CI)
0.94–0.96], 0.91 [CI 0.89–0.94], and 0.89 [CI 0.87–0.92], respectively,
but the value was increased to 0.98 [CI 0.97–0.99] by the CSE. The
score distribution from all classifiers is shown in Fig. 6a. For cancer
patients, although minor, an increasing trend was observed with
cancer stage, especially with the CSE. Healthy samples were
evaluated separately for the groups with patients older (our target
population) or younger than 50 years. For the methylation
classifier, the median score in the former group was higher than
that in the latter (significant at a p value of 0.003). This finding may
not be surprising because methylation is well known to be
associated with aging65. Such a difference was not observed for
the CNR and FSR features, implying that integrating multiple
features could modulate this extra signal.
When the threshold was set ensuring >95% specificity

(corresponding to 95.2% [CI 90–98] using the healthy cohort
aged >50 years), the sensitivity values obtained by the AMF, CNR,
and FSR classifiers were 77.2% [CI 72–82], 61.4% [CI 56–67], and
60.5% [CI 55–66], respectively (Fig. 6b and Supplementary Table
3). With the CSE, the sensitivity was increased to 88.9% [CI 85–92],
which is a significant improvement (p value < 0.0001) compared
with the best individual classifier performance, which was
obtained by methylation. The classification results for healthy
controls younger than 50 years assured that the false-positive rate
was also controlled at below 5% in the younger population; 96.4%
[CI 90–99] of samples were scored as negative with the CSE
(Supplementary Table 3). The sensitivity breakdown by cancer
type (Fig. 6b) showed that the performance gain was more
pronounced with lung and prostate cancers, for which poorer
performance was usually exhibited than in colon and liver cancers.
The sensitivities of individual classifiers ranged from 40% to 85%,
but the ensemble model stably exhibited greater than ~85%
sensitivity for both lung and prostate cancers.
When restricted to stages 1 and 2, the sensitivity was increased

to 83.9% [CI 78–89] with the CSE compared with the values
obtained with individual AMF, CNR, and FSR classifiers, which were
69.9% [CI 63–76], 55.4% [CI 48–63], and 47.3% [CI 40–55],
respectively (Supplementary Fig. 17 and Supplementary Table 3).
The performance gain again appeared to be more pronounced for
lung and prostate cancers, for which individual classifiers some-
times exhibit less than 50% sensitivity.
Pairwise correlations between individual classification scores

were between 0.71 and 0.77 (Supplementary Fig. 18), but the
ensemble classifier achieved the best performance. This finding
likely implies that the complementary nature of the three feature
types enhances the stability of the classification. The sensitivity of
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the CSE model by cancer type and stage is summarized in Fig. 6c.
The independent test performance of the CSE model was
comparable to the cross-validation training performance across
cancer types and stages (Fig. 6c).
Our ensemble approach combining the AMF, CNR, and FSR

classifiers significantly improved cancer signal identification and
robust behavior. The benefit appears to be larger for difficult
cancer types with poorer performance.

Cancer signature ensemble model for tissue of origin
prediction
TOO prediction was performed on samples that were classified as
suspected cancer. Similar to cancer detection using the CSE, an

ensemble classifier for the TOO was constructed by averaging
scores of individual classifiers based on the AMF, CNR, and FSR
features (“Materials and methods”). However, a different methyla-
tion set was used for the TOO methylation classifier that included
more organ-specific signals. A total of 294 cancer-suspected
samples (by cancer detection using the CSE) were subject to TOO
classification: 6 healthy, 54 colon cancer, 50 liver cancer, 126 lung
cancer, and 58 prostate cancer samples.
The prediction accuracy of cancer samples by the AMF, CNR,

and FSR classifiers was 74.3% [CI 69–79], 61.5% [CI 56–67], and
67.0% [CI 61–72], respectively (Fig. 7a–c). The methylation feature
achieved the best performance overall and for individual recall
and precision values computed by cancer type. The CNR and FSR

Fig. 5 Cancer signature present in fragmentomic patterns. a Density plot of fragment size (left) and line plot of regional fragment size ratio
(FSR) profile (right) for each of five cfDNA cohorts: healthy control and colon, liver, lung, and prostate cancer. Only the plasma samples
included in the training set are displayed. The regional FSR was calculated at a specified bin by dividing the number of fragments sized in the
short range (80–150 bp) by those in the long range (151–220 bp). The profile of each sample is shown as a horizontal line. b Boxplot displaying
the global fragment size ratio of each sample (points) across five cohorts (x-axis). For cancer cohorts, the samples are further grouped by
cancer stage. c Correlation in the regional FSR profile between each sample and the healthy representative, which was composed of the
binwise median values.
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Fig. 6 Performance of the cancer detection classifiers. a Boxplot displaying the prediction score of each cancer detection classifier by
cohort and cancer stage. Each panel shows the score distribution of the average methylation fraction (AMF), copy number ratio (CNR),
fragment size ratio (FSR), and cancer signature ensemble (CSE) classifier. The healthy samples of individuals younger than 50 years
(“Healthy-under50”) are separately grouped from those of individuals older than 50 (“Healthy”). The dotted horizontal gray line
indicates the cutoff determined post hoc to achieve >95% specificity in the test set. b Sensitivity computed for each cancer type
(columns) by each classifier (rows). The value is shown as a text (unit in percentage) within the surrounding circle proportionally sized
and color matched by cancer type. The overall sensitivity of each classifier is shown below the classifier name on the left side of the
figure. c Sensitivity and its 95% confidence interval displayed as a vertical range bar across cancer stages (x-axis) for each cancer type
(panel). The numbers on top of the vertical range bar denote the number of detected samples showing a cancer signature per cancer
type and stage. The upper row summarizes the independent test performance, and the lower row summarizes the four-fold cross-
validation training performance.
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exhibited worse performance, but the CNR had a slightly better
predictive value for colon cancer, and the FSR had better
predictive value for lung and prostate cancer. The CSE constructed
for TOO that integrated all features achieved an improved
accuracy of 76.4% [CI 71–81] (Fig. 7d). Although not statistically
significant, the CSE performed better than the methylation
classifier in most aspects, with recall values of 83.3%, 78.0%,
75.4%, and 70.7% for colon, liver, lung, and prostate cancers

compared with values of 88.9%, 70.0%, 73.0%, and 67.2%,
respectively, by methylation. Similarly, a minor gain was observed
in precision.
The conditional probability decomposition, which showed the

supporting origin for each sample (Fig. 7e), revealed the
associated confidence for classification and competing organ
types. For example, 75% of lung samples retained the correct
origin according to the maximal probability, but prostate origin
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Predicted

Colon 80.00%
Liver 85.37%
Lung 84.40%

Prostate 50.00%
Recall 88.9% 70.0% 73.0% 67.2% 74.31%

FSR Truth PrecisionColon Liver Lung Prostate

Predicted

Colon 31 6 7 8 59.62%
Liver 7 33 6 2 68.75%
Lung 5 5 90 9 82.57%

Prostate 11 6 23 39 49.37%
Recall 57.4% 66.0% 71.4% 67.2% 67.01%

CSE Truth PrecisionColon Liver Lung Prostate

Predicted

Colon 45 1 4 9 76.27%
Liver 2 39 2 0 90.70%
Lung 2 4 95 8 87.16%

Prostate 5 6 25 41 53.25%

Recall 83.3% 78.0% 75.4% 70.7% 76.39%

CNR Truth PrecisionColon Liver Lung Prostate

Predicted

Colon 43 2 14 13 59.72%
Liver 4 33 5 4 71.74%
Lung 2 9 73 13 75.26%

Prostate 5 6 34 29 38.36%
Recall 79.6% 66.0% 57.9% 48.3% 61.46%
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Fig. 7 Performance of the tissue of origin classifiers. Confusion matrix summarizing the tissue of origin (TOO) classification results for the
a average methylation fraction (AMF), b copy number ratio (CNR), c fragment size ratio (FSR), and d cancer signature ensemble classifier.
Accuracy (bottom horizontal axis) and precision of CSE prediction (right vertical axis) among true positive participants with a known cancer
signal origin. Correct TOO calls are indicated on the diagonal. e Stacked bar plot visualizing the conditional TOO probability (y-axis) of CSE
decomposition in each sample (x-axis). The samples are grouped by cancer type. Samples on the x-axis are ordered by high conditional
probability of their own cancer type. f Boxplot showing each organ-supporting probability of CSE (titled in each panel) across four cancer
cohorts (x-axis).
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was repeatedly found to be the second highest candidate. When
the probabilities were organized by supporting origin (Fig. 7f), the
colon and liver cohorts demonstrated an exclusively high score
distribution by true origin, but the lung cohort had a less specific
distribution, and the prostate cohort presented a minimally
specific distribution. Many lung samples had competitive scores
compared with prostate samples, resulting in nearly 50%
precision. This suggests that the CSE model was relatively weak
in distinguishing between lung and prostate cancers. In contrast,
colon and liver cancers presented strong unique signatures
(Supplementary Fig. 19).
Among the individual feature types, methylation exhibited the

best TOO performance compared with the copy number and
fragmentomic patterns. However, integration of all features led to
a further improvement in accuracy.

DISCUSSION
In this study, we introduced AlphaLiquid® Screening, a cfDNA NGS
platform that enables integrative analysis of genome-wide
methylation, copy number, and fragmentomic patterns. Nearly
1000 cfDNA and 250 tissue samples were analyzed, allowing us to
thoroughly demonstrate the utility of each feature and, more
importantly, the power of using an all-in-one assay for the early
detection of multiple cancers. When evaluated on an independent
test set, our CSE classifier (combining the three features) achieved
88.9% sensitivity at 95.2% specificity for cancer detection, which is
more than 10% higher than that of any other classifier built on
individual features. Regarding localization of the TOO, we found
that a methylation classifier built on a selected marker set
enriching tumor-specific signals exhibited the best performance.
Nonetheless, the genome-wide fragment size profiles and copy
number patterns also carried modest signals; thus, another
ensemble classifier was built to benefit the simultaneous
availability of all features.
Direct comparisons of our classification performance with those

of other studies in the literature are difficult because the cancer
type and stage or clinical characteristics would differ. Additionally,
many other studies involve similar individual feature types that are
differently engineered20,32,33,37,39,66–70. However, the relative con-
tribution of each feature type in identifying cancer signals would
likely be maintained. Indeed, we found similar conclusions in a
recent benchmark study40. The genome-wide methylation signa-
ture is the most promising model for tracing the tissue origin as an
individual feature type, and a panfeature model combining
methylation, copy number, fragmentomic, and mutation patterns
from multiple assays, including whole-genome bisulfite sequen-
cing at ~30×, whole-genome sequencing at ~30×, and targeted
deep sequencing at ~60,000×, achieved the best performance for
cancer detection40. We note that unlike this recent study that
utilized different datasets, our platform was able to capture all of
the features from a dataset generated by a single experimental
assay.
Our study has several limitations. First, we examined only

portions of cancer-associated features that can be obtained from
cfDNA sequencing. For example, microbial abundance, fragmen-
tomic endpoint distribution, or motif patterns have also been
studied regarding cancer association71,72. Second, the CSE models
presented were constructed using samples from the Korean
population and included only four cancer types, which do not
represent the cancer prevalence in Korea or elsewhere and cannot
reflect ethnic diversity. Third, limited demographic and clinical
characteristics were available; thus, the exclusion criteria were
based only on samples with available information.
Maximum utility of screening platforms is achieved when they

are applied to detect most frequently occurring cancers. With the
accumulation of more cancer types in the models, we intend to
commercialize our platform. A draft report page presenting the

results of the CSE models for cancer detection and tissue of origin
findings is shown in Supplementary Fig. 20. Additional efforts will
include broadening the ethical spectrum through global colla-
borations. In the meantime, our platform has maximal potential to
be adapted to address other biological or clinical questions, such
as searching for biomarkers or classifying contrasted groups.
Because the availability of features is not restricted to biased
regions selected for cancer detection, a flexible analysis could be
performed for nearly any purpose. Continuous accumulation of
data from our assay along with associated clinical information will
provide additional value to advance the liquid biopsy field in
precision oncology as comprehensive profiling of epigenetic and
genetic signatures can be easily revisited.
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