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Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition
of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by
membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-
mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune
responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and
infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports
immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing
affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing
through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy.
Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we
summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This
study provides insights for the application of nucleic acid sensing in therapy.
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INTRODUCTION
As a complementary host defense mechanism, the vertebrate
immune system consists of both innate and adaptive immune
responses1. Although innate immunity cannot confer specificity
for host defense or form immune memory, its defense mechan-
isms can recognize and destroy most microbes within minutes to
hours. Cells detect external components of pathogens, or
pathogen-associated molecular patterns (PAMPs), through pattern
recognition receptors (PRRs), which largely comprise Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs). In addition,
endosomal TLRs and cytoplasmic nucleic acid receptors, including
nucleotide-binding and oligomerization domain NOD-like recep-
tors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), and
cyclic GMP-AMP synthase (cGAS), recognize cell-invading exogen-
ous nucleic acids; adaptive immune cells are among those that
can detect exogenous pathogens via these receptors.
Nucleic acids, which are the genetic building blocks of all

organisms, are potent PAMPs released during viral infection and
are discerned as exogenous nucleic acids by specialized PRRs.
Based on their different forms of nucleic acids, pathogen-derived
double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and
DNA are recognized by TLR3, TLR7/8, and TLR9, respectively, in
human endosomes. In contrast, nucleic acid (NA)-sensing
mechanisms in the cytoplasm contribute to immunity mainly by

recognizing invading RNA by RLRs and invading DNA by cGAS and
interferon gamma-inducible 16 (IFI16). Activated NA-sensing PRRs
transduce signals to aptamer molecules or directly recruit down-
stream proteins that mediate cytokine and type I and III interferon
(IFN) production by activating nuclear factor (NF)-κB and
interferon regulatory factor (IRF) proteins, respectively2.
Nucleic acid sensors not only mediate immune defense against

pathogens but also detect tumor-derived DNA to trigger
antitumor immune responses. Therefore, nucleic acid receptors
are potential targets for cancer therapy3,4. Organismal develop-
ment and aging are accompanied by apoptosis, through which
nucleic acids are released from cells5. Many inflammatory and
autoimmune diseases are associated with the dysfunctional or
abnormal activation of nucleic acid receptors, which are
considered attractive targets for the development of therapeutic
agonists or antagonists6. To maintain homeostasis and induce
optimal immune responses, multiple mechanisms regulate the
NA-sensing factors that distinguish between self- and non-self-
derived nucleic acids7,8. Nucleic acid sensors have exhibited
considerable potential in immunotherapy and the treatment of
autoimmune diseases; however, the mechanisms underlying their
modulatory roles are unclear. For a long time, innate immune-
activating molecules were used as adjuvants in vaccines9;
however, the immunogenicity of mRNA has been found to be
the main factor diminishing the efficiency of mRNA vaccines10.
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Therefore, greater attention is being paid to the development of
nucleic acid vaccines that do not activate innate immunity and
produce more antigenic proteins. In this review, we discuss recent
advances in understanding the mechanisms and regulation of NA-
sensing and related signaling in different treatments. To highlight
the clinical implications of NA-sensing mechanisms, we outline
some ways of evading NA-sensing pathways during therapy.

NUCLEIC ACID SENSING IN ENDOSOMES
TLRs constitute a class of transmembrane innate immune
receptors that are evolutionarily conserved and induce immune
responses by recognizing distinctive PAMPs. TLRs are single-
transmembrane proteins composed of an extracellular N-terminal
domain, which recognizes ligands; a transmembrane domain; and
a cytoplasmic Toll/interleukin 1 receptor (TIR) domain. Human NA-
sensing TLRs include TLR3, TLR7, TLR8, and TLR9, which localize to
the intracellular compartment membranes and recognize viral and
bacterial cytosolic components, such as nonmethylated CpG DNA
and single- and double-stranded RNA.

Structure and ligands of nucleic acid-sensing TLRs
TLR3, the first described viral TLR, recognizes dsRNAs larger than
40 bp, which are released during RNA virus replication11. TLR3-
induced responses increase in intensity with increasing dsRNA
sequence length; however, the underlying molecular mechanism
underlying this increase remains unclear12. Two monomeric forms
of TLR in solution bind to the dsRNA ligand to form a dimer; the
dimerized TLR3 clamps around the dsRNA without any detectable
sequence affinity specificity13. In contrast to other NA-sensing TLRs,
TLR3 is expressed in immune cells as well as some nonimmune
cells, such as neurons and keratinocytes14, and its widespread
expression enables it to play a crucial role in RNA virus infection.
TLR7 and TLR8 specifically recognize ssRNA in endosomes. TLR7

and TLR8 preferentially bind guanosine and uridine, respectively,
but contain other ssRNA-binding sites15. TLR9 recognizes ssDNA

containing unmethylated CpG sequences (commonly found in
bacteria and viruses). TLR9 harbors two DNA-binding sites—CpG-
and 5′-xCx-binding sites16. RNA:DNA hybrids are also recognized
by TLR917.

Trafficking and activation of nucleic acid-sensing TLRs
All NA-sensing TLRs are synthesized in the endoplasmic reticulum
(ER) and transported to endosomes via the canonical secretory
pathway18. However, the characteristics of the transport routes
and compartments in which they ultimately reside are surprisingly
diverse19. Unc93B1, an ER multiple transmembrane protein, is an
essential trafficking molecule for all NA-sensing TLR proteins20

that mediates the differential transport of TLRs21. Inactive TLR9 is
native to the ER of dendritic cells (DCs) and B cells, from which it is
transported first to the cytoplasmic membrane and then
internalized into endosomes via adaptor protein 2 (AP2)-mediated
endocytosis22, whereas TLR7 recruits AP4 directly for subsequent
translocation to endosomes22 (Fig. 1). TLRs in endosomes undergo
proteolytic cleavage, thereby producing functional receptors that
interact with nucleic acid ligands23.
Activation of all NA-sensing TLRs is restricted to endosomes19.

This recognition pattern allows cells to recognize and sequester
pathogens in the endosomal compartment without risking infection,
and the contents are subsequently sorted for degradation or
recycling in a small GTPase-dependent manner. Pathogens enter an
endosome via endocytosis. After binding to nucleic acids, a TLR
forms a complex, either it’s a hetero or homodimer, and the
intracellular TIR domains of the dimerized TLRs come into close
contact with each other to activate downstream signal transduction.
The signaling cascade depends on the types of ligands, interacting
TLRs, and downstream bridging molecules. TLR3 homodimers
directly recruit TRIF in response to viral dsRNA binding. Other NA-
sensing TLRs trigger the NF-κB and/or IRF signaling pathways via
MyD88 to induce cytokine and type I IFN production, promoting
inflammatory and antiviral responses, respectively24. TIR domain-
containing adaptor-inducing interferon-β (TRIF), TNF-receptor-

Fig. 1 Trafficking of NA-sensing TLRs and downstream signals induced by nucleic acid recognition in endosomes. TLR9 is first trafficked to
the plasma membrane and then internalized into the endosome via AP2, where TRIF is recruited to activate downstream transcription factors.
TLR7 and TLR9 depend on AP4 for localization to the endosome to activate the TAK1 signaling pathway via the recruitment of MyD88. AP3
further mediates TLR localization to lysosome-related organelles (LROs), where type I IFN gene activation is mediated.
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associated factor 3 (TRAF3), and TRAF6 form a complex that
activates IRF3 signaling to produce type I IFN21. However, TLR7 and
TLR9 are dependent on AP3-based transport from the endosome to
lysosome-related organelles, which is regulated by the peptide
transporter protein solute carrier family 15 member 4 (SLC15A4) in
the endosomal compartment25. TLR7, TLR8, and TLR9 interact with
the TLR adaptor TASL in a lysosomal SLC15A4-dependent manner
and activate IRF signaling to produce type I IFN14,26 (Fig. 1).
Because nucleic acids can be derived from various sources, the

regulation of TLR ligand availability is essential to balance the
pathogen-sensing and self-recognition abilities of TLRs and
modulate inflammatory responses, which primarily involve ligand
internalization, nucleic acid digestion or processing, and the
cytoplasmic transport of ligands.

Regulation of nucleic acid-sensing TLRs
Nucleic acid digestion by nucleases regulates ligand availability.
Generally, ligand digestion in the endosomal compartment
negatively regulates TLR responses, preventing the generation
of autoimmune responses and the excessive activation of antiviral
innate immune responses. Nucleases that play a regulatory role in
the activation of TLRs include ribonuclease (RNase) T2, deoxyr-
ibonuclease (DNase) I-like 3 (DNASE1L3), DNase II, phospholipase
D3 (PLD3), and PLD414. RNase T2 is widely expressed in a variety of
cell types and negatively regulates TLR3 activation by degrading
RNA in endosomal compartments; moreover, it is required for the
activation of TLR7 and TLR827,28. RNase T2 deficiency or mutations
can cause cystic leukoencephalopathy29. The endonuclease DNase
I-like 3 is expressed in innate immune cells and degrades nucleic
acids carried by dead cells before it is internalized30 (Fig. 1).
DNASE1L3 possesses a unique positively charged and highly
hydrophobic C-terminal domain (CTD) that allows it to digest DNA
bound to proteins or lipids, which likely contributes to cell
transfection difficulties31. Functional mutations in the DNASE1L3
gene cause a rare form of pediatric systemic lupus erythematosus
(SLE)32. DNase II degrades DNA in the endosomal compartment,
while loss-of-function mutations in DNASE2 cause type I
interferonopathies33. PLD3 and PLD4 degrade TLR7 and TLR9
ligands in endolysosomes. Mice deficient in PLD3 and PLD4 suffer
from fatal diseases during the early stages of life34. Nuclease
deficiency can cause large amounts of nucleic acids to enter the
cytoplasm during subsequent endosome rupture, activating the
cytosolic NA-sensing pathway and causing type I interferonopa-
thies, which can be alleviated by eliminating type I IFN or blocking
TLR trafficking35. The physiological characteristics of some
nucleases that play partial roles or are functionally redundant,
such as RNase A and DNase I, require further study36.
The amount of ligand internalized by cells is another critical

factor affecting ligand availability. It has been shown that the
uptake of extracellular immune complexes containing self-nucleic
acids is associated with receptor for advanced glycosylation end
products (RAGE)37. Self-nucleic acids interact with the antimicrobial
peptide LL37 or HMGB1 to promote endosomal uptake of nucleic
acids and reduce nuclease degradation, which in turn stimulates
the activation of NA-sensing TLRs via self-nucleic acids38,39. The
transport of ligands from the nuclear endosome to the cytoplasm
can reduce the concentration of ligands in the endosome. SIDT1
and SIDT2 can promote dsRNA escape from the endosome into the
cytoplasm and activate antiviral immune signaling40,41.

RNA SENSING IN THE CYTOSOL
Notably, NA-sensing TLRs are mostly expressed in immune cells.
However, epithelial cells and fibroblasts on the mucosal surface,
which are exposed to the external environment and are
susceptible to infection, can still produce an effective innate
immune response to prevent pathogen proliferation42. Different
cell types employ different nucleic acid recognition mechanisms

to combat viral invasion43. Various cytoplasmic RNA-sensing
mechanisms have been identified.

Structure and ligands of RLRs
RLRs have been extensively studied as primary cytoplasmic RNA-
monitoring mechanisms. RLRs constitute a class of cytoplasmic
RNA helicases that detect viral RNA accumulated during infection
or replication in a nonsequence-specific manner and elicit antiviral
immune responses through the production of type I IFN44,45. In
contrast to TLRs, RLRs are expressed by most cell types. The RLR
family includes RIG-I, melanoma differentiation-associated gene-5
(MDA-5), and laboratory of genetics and physiology 2 (LGP2). All
RLRs have conserved structural domains and contain a central
DExD/H-box helicase and CTD. RIG-I and MDA5 also carry two
N-terminal caspase recruitment domains (CARDs) that are primarily
responsible for signal transduction. In the inactivated state of RIG-I,
the CARDs interact with the helicase domain to maintain an
autoinhibited conformation. Downstream signaling is initiated by
exposure to CARDs when RNA binds to the helicase domain and
CTD. This conformational change is thought to be triggered by a
V-shaped pincer domain consisting of a unique elbow-shaped
helical extension of the CTD with the HEL2 helicase domain46.
RIG-I recognizes the 5′-ppp structure of an RNA and the blunt

base-paired 5′ end. DsRNA are characterized by these ligand
structures. Some RNA secondary structures consist of the genetic
material of many RNA viruses that are generally not found in
healthy host cells. In addition, RIG-I can be induced to produce a
weaker signal by RNA without the 5′-PPP structure47. Some
differences between RLRs have been described48. RIG-I recognizes
relatively short dsRNAs, while the ligand preferences of MDA5
have not be fully elucidated; however, it is generally believed that
MDA5 preferentially binds to long dsRNAs (>1 kb)49. The open
C-shaped structure of MDA5 confers the ability to assemble
filamentous oligomers along long dsRNAs50. LGP2 can bind
dsRNA; however, it is thought to regulate RLRs because it lacks
an NA-sensing signaling function.

Activation of RLRs
RLRs exposed to CARDs are fully activated by the action of various
enzymes and subsequently depend on interactions with 14-3-3ε51

and 14-3-3η52, which are members of the 14-3-3 protein family, to
mediate the relocalization of RIG-I and MDA5, respectively, to
mitochondria. Mitochondrial antiviral-signaling (MAVS) protein is a
common adapter protein associated with RIG-I and MDA5 and is
localized to the inner mitochondrial membrane. RLRs interact with
the homologous CARD of MAVS and subsequently induce TRAF-
binding motifs to recruit TRAF2, TRAF5, TRAF6, and TRADD, which
mediate the activation of IRF3 or IRF7 via the action of the
cytoplasmic kinase TANK-binding kinase 1 (TBK1) to produce type
I and III IFNs15. In addition, MAVS signaling mediates the
stimulation of proinflammatory cytokines through the induction
of NF-κB activation via the IKK complex53 (Fig. 2a).
LGP2, which lacks a signaling structural domain, has been

shown to regulate RIG-I and MDA5 in several studies. LGP2 inhibits
RIG-I activation through ligand competition54 or by directly
impeding the oligomerization and signal activation of RIG-I, which
is mediated through the RIG-I CTD domain55. In addition, LGP2
interacts with tripartite motif-containing 25 (TRIM25) to inhibit
RIG-I ubiquitination56. In contrast, LGP2 facilitates MDA5 signal-
ing57,58. During viral infection, LGP2 has also shown to promote
both RIG1 and MDA5 signaling59 (Fig. 2a). In conclusion, the
characterization of the regulatory role of LGP2 under specific
physiological conditions requires further study.

Regulation of RLRs
In addition to LGP2, multiple intracellular mechanisms participate
in the regulation of RLR activity, including multiple posttransla-
tional modifications (PTMs) and protein interactions.
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Ubiquitination of RIG-I CARD via K63 linkages, mediated by the
ubiquitinated proteins TRIM25, Riplet, TRIM4, and Mex-3 RNA-
binding family member C (Mex3c), promotes RIG-I oligomerization
and signal transduction60–63; in contrast, polyubiquitination via
K48 linkages, mediated by ring finger protein 122 (RNF122),
RNF125, Casitas B-lineage lymphoma (c-Cbl), and TRIM4064,
induces RIG-I degradation. Deubiquitinases, including ubiquitin-
specific peptidase 3 (USP3), USP21, and CYLD lysine 63
deubiquitinase (CYLD), attenuate the antiviral response by
removing the K63-linked polyubiquitin chain. In contrast, USP4
and USP15 enhance the stability of RIG-I by hydrolyzing the K48-
linked ubiquitin chain and exerting a positive regulatory effect65.
SUMOylation prevents RLR degradation via K48-polyubiquitin-
dependent degradation, thereby stabilizing RLR in the early stages
of viral infection66. Additionally, phosphorylation causes RIG-I to
be autoinhibited67. A recent study showed that O-GlcNAcylation
inhibited RIG-1 signaling by modifying MAVS68 (Fig. 2b, c).
Although the PTMs related to MDA5 signaling have been studied
relatively rarely, it is likely that PTMs regulate MDA5 in a manner
similar to their regulation of RIG-I.
Many dsRNA-binding proteins participate in the regulation of

RLRs. PACT positively regulates RLRs by interacting with the CTD
of RIG-I or promoting MDA5 oligomerization69,70. The zinc finger
protein ZCCHC3 has recently been shown to function as a
coreceptor for RIG-I and MDA571. DExD/H-box helicase 60 (DDX60)
promotes RIG-I-dependent innate immune responses72. In addi-
tion to covalent modifications, TRIM14 enhanced RIG-I signaling
by recruiting NF-κB essential regulator (NEMO) to the MAVS
complex via the ubiquitin chain73. A recent study demonstrated
that PPP1R12C relocalization triggered by viral infection or RNA
delivery reagents promoted downstream signaling by mediating
the dephosphorylation of RLRs74. In contrast, the complement
component C1q (gC1qR) on mitochondria inhibited RIG-I- and
MDA5-dependent antiviral responses75. Stress granules formed by
the aggregation of the key nucleating factors G3BP1/2 and
UBAP2L with stalled ribosome–mRNA complexes inhibited

excessive activation of RLR signaling and prevented viral
replication through unknown physiological functions76 (Fig. 2b, c).

Other RNA sensors
Several other cytoplasmic RNA sensors trigger antiviral responses via
transcription factors, including certain DExD/H-box RNA helicases
(which recognize RNA through their conserved motifs and are
involved in the activation of TLR and RLR downstream signaling
pathways), NLRs (which induce inflammasome activation by binding
RNA), the LRR domain of flightless-1-interacting protein 1 (LRRFIP1,
which binds dsRNA and dsDNA to induce type I IFN production
through β-catenin phosphorylation), Z-DNA binding protein (ZBP177,
which induces activation of innate immunity and PANoptosis
through recognition of Z-DNA and Z-RNA) (Fig. 2a), and HMGB
(which may act as a cosensor for various PRRs) (see reviews47,78).
Various RNA sensors with direct antiviral activity are expressed

in cells; these sensors include 2′,5′-oligoadenylate synthetase
(OAS), RNA-regulated protein kinase (PKR), IFN-induced protein
with tetratricopeptide repeats 1 (IFIT1), and adenosine deaminase
acting on RNA (ADAR), the expression of which depend on type I
IFN or PRR signaling7,79 (Fig. 2a). OAS binds dsRNA and catalyzes
the generation of 2′-5′-linked oligoadenylates (2–5A) from
substrate ATP to degrade virus-derived dsRNA by mediating the
activation of RNase L. PKR can be activated by viral-derived dsRNA
or short 5′-ppp RNA-containing secondary structures. Activated
PKR mediates the phosphorylation of the α-subunit of eukaryotic
initiation factor 2 (eIF2) to inhibit translation initiation. IFIT1 binds
to ssRNAs containing the 5′-ppp terminus to repress cap-
dependent RNA translation. ADAR-edited cell-derived self-RNAs
can evade NA-sensors; however, A-I editing may lead to amino
acid substitutions and loss of function of viral proteins80.

DNA SENSING IN THE CYTOSOL
Cells infected with a DNA virus but that do not express TLR9
produce high levels of type I IFN81. Therefore, ZBP182 and RNA Pol

Fig. 2 Mechanism and regulation of RNA sensing in the cytosol. a RLRs are activated by RNA derived from a virus or bacteria and mediate
the production of type I and III IFNs and inflammatory cytokines via the MAVS adaptor protein. Interferons released into the extracellular
compartment activate interferon-stimulated genes and induce direct antiviral responses. b Positive regulation of RLRs by posttranslational
modifications and interacting proteins. c Negative regulation of RLRs by posttranslational modifications and interacting proteins.
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III83 were initially identified as cytoplasmic DNA sensors. However,
subsequent studies revealed that RNA Pol III-mediated innate
immune responses were dependent on poly (dA:dT)-converted
RNA ligands with 5′-triphosphate and double-stranded secondary
structures to activate the RIG-I/MAVS pathway (Fig. 3a), and
interferon production was induced in mouse cells lacking MAVS.
Similarly, ZBP1 plays a role only in specific cell types, suggesting
that DNA activates unknown DNA-sensing pathways in the
cytoplasm in a nonsequence-specific manner.

Structure and ligands of cytosolic DNA sensors
Interferon-gamma inducible protein 16 (IFI16) and cGAS have
been identified as cytoplasmic DNA receptors. Mammalian cGAS
belongs to the cGAS/DncV-like nucleotidyltransferase (CD-NTase)
family, the members of which are structurally similar to OAS84.
cGAS contains a disordered N-terminus that anchors its inacti-
vated form to the inner cell membrane85, a central NTase domain,
and a C-terminal Mab-21 homology domain containing the zinc-
ribbon/thumb motif. cGAS binds to dsDNA to form a dimer,
followed by DNA sequestration via liquid-phase condensation86.
cGAS–DNA condensation protects the DNA against Trex1
nuclease-mediated DNA degradation87. cGAS activation by dsDNA
is DNA length dependent88, as more than 45 bp of a dsDNA
molecule binding to the A and B sites of each hcGAS molecule and
with a third binding site that promotes the stability of the
complex.89. In addition, cGAS generates innate immunity by
recognizing RNA:DNA hybrid molecules generated by intracellular
reverse transcription of the HIV-1 virus90. PQBP1 acts as an
intracellular receptor by which HIV cDNA is recognized by cGAS91.
IFI16 (p204 in mice), a member of the ALR family, contains a

pyrin structural domain (PYD) and two DNA-binding hematopoie-
tic interferon-inducible nuclear antigens with 200-amino-acid
repeat (HIN) structural domains. IFI16 also binds to dsDNA in a
length-dependent manner92. When binding dsDNA molecules, the
PYD structural domain of IFI16 assembles into filamentous
oligomers in synergistic association with neighboring PYDs and

induces STING-dependent type I IFN production93. In addition,
IFI16 recognizes viral RNA, promotes RIG-I activation through
direct interaction, and upregulates RIG-I transcription by recruiting
RNA polymerase II, which provides evidence of crosstalk between
RNA- and DNA-sensing mechanisms94.

Activation of cytosolic DNA sensors
Activation of cGAS requires nuclear export signals to mediate its
cytoplasmic localization95. cGAS catalyzes the generation of the
second messenger cGAMP from ATP and GTP, induces IFN
production through activation of the STING-TBK1-IRF3 axis, and
mediates cytokine production through activation of NF-κB. IFI16
shuttles between the nucleus and cytoplasm and mediates
interferon production via a STING-dependent cytosolic signaling
pathway92,96 (Fig. 3a). In a sequencing analysis of four cell types,
IFI16 was found to exert a crucial effect on the transfection
efficiency of plasmid DNA (pDNA)97.
STING is predominantly located on the ER outer membrane and

is expressed in most cells. STING mediates the cytoplasmic dsDNA-
induced antiviral innate immune response as an adaptor molecule
in response to cGAS and IFI16. cGAMP directly binds to STING,
induces STING movement from the ER to the Golgi apparatus, and
ultimately recruits TBK1 to colocalize with STING puncta in the
perinuclear region. TBK1 recruitment is critical for STING-mediated
IRF3 and NF-κB activation98. DNA-bound IFI16 interacts with STING
in the cytoplasm to recruit and activate TBK1-IRF3 signaling and
mediate IFN production99 (Fig. 3a).

Regulation of cytosolic DNA sensors
cGAS is strictly regulated to produce a balanced immune
response100. Intracellular nucleases are essential for ligand
availability in cytoplasmic DNA sensors. Deficiency or mutation
in TREX1, RNASEH2, or SAMHD1 leads to cGAS-dependent type I
IFN production101–103. In addition, multiple mechanisms partici-
pate in the regulation of the posttranslational modifications of
cGAS104. Elimination of the K48-linked ubiquitinated chain

Fig. 3 Mechanism and regulation of DNA sensing in the cytosol. a cGAS and IFI16, as major DNA receptors in the cytoplasm, induce STING-
dependent inflammatory cytokines and IFN production and inhibit viral replication by activating interferon-stimulated genes.
b Posttranslational modifications of amino acid residues at different sites regulate the activity of cGAS and nuclear localization of IFI16; a
variety of proteins have been shown to participate in regulating the activity of cGAS.
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suppresses P62-mediated autophagic degradation of cGAS105.
However, the abrogation of K63-linked polyubiquitination pro-
motes the DNA-binding ability of cGAS106. Interestingly, the
deubiquitinating enzyme OTUD3 promotes cGAS-mediated DNA
sensing but inhibits RLR-mediated RNA sensing107. The acetylation
of lysine residues in the unstructured N-terminal region of hcGAS
promotes its activation108. In contrast, acetylation of Lys384/
Lys394/Lys414 inhibited cGAS activation109. SUMOylation at
different sites exerts different regulatory effects on cGAS. SENP2-
mediated deSUMOylation induces cGAS degradation during late
viral infection110. However, SENP7-mediated deSUMOylation
enhances cGAS activation111. AKT, CDK1, DNA-PK, and Aurora
A-mediated phosphorylation of hcGAS can inhibit its enzymatic
activity112–114. O-GlcNAcylation has been reported to regulate NA-
sensing in various cells, although the mechanism remains
unclear115. OGT has recently been found to activate cGAS-
mediated innate immune responses by enhancing the stability
of SAMHD1, thereby promoting intracellular dNTP depletion and
generating DNA replication intermediates116 (Fig. 3b).
High acetylation and phosphorylation rates of endogenous

IFI16 have been found in lymphocytes and are mainly associated
with nuclear localization. IFI16 carries a nuclear localization signal
(NLS) at the N-terminus, and the NLS motif is modified by
acetyltransferase p300 to promote accumulation in the cyto-
plasm117. In contrast, phosphorylation by CD2 on S132 promotes
the nuclear localization of IFI16118. Recent studies revealed that
clearly localized IFI16 prevented DNA viral invasion via its effect on
different pathways119 (Fig. 3b).
Several proteins have been found to mediate cGAS signaling by

interacting with ligands or regulating ligand action. Among these
proteins, G3BP1, ZYG11B, Ku, and ZCCHC3 promote cGAS-
mediated innate immune responses by facilitating DNA binding
and condensation120–123. DEAD-box helicase 41 (DDX41) promotes
cGAS activation by regulating DNA stabilization via its helicase
activity124. Others, such as Atg9a and Gasdermin D, inhibit STING-
dependent innate immune responses by mediating autop-
hagy125,126. OASL suppresses IFN production by specifically
binding to cGAS during DNA virus infection127. Notably, poly(rC)-
binding protein 1 (PCBP1) facilitates the binding of cGAS to DNA,
whereas PCBP2 interacts with cGAS and prevents its excessive
activation128,129 (Fig. 3b). Additionally, cGAS, IFI16, and STING
regulate each other. cGAS may contribute to the innate immune
response by increasing the stability of IFI16130, and IFI16-mediated
TBK1 recruitment is essential for cGAMP-mediated STING activa-
tion96,131. STING negatively regulates antiviral immune responses
through TRIM21-mediated ubiquitinated degradation of IFI16132.
Moreover, the transport of extracellular second messenger cyclic
dinucleotides (CDNs) by SLC19A1133, SLC19A2134, LRRC8135,
LL37136, P2X7R137, and Connexin138 is essential for the activation
of intracellular STING. ABCC1 has recently been identified as a
cGAMP export protein139. ENPP1 attenuates STING activation in
bystander cells by degrading extracellular cGAMP140.

Other cytosolic DNA sensors
Other DNA sensors can recognize DNA in specific cell types or may
recognize only specific sequences, mainly, the DExD/H-box
helicases DHX9 and DHX36 (which recognize CpG DNA to activate
the TLR downstream signaling pathway), DDX41 and DDX60
(which enhance the type I IFN response by binding dsDNA), and
AIM2 (which triggers the inflammasome pathway by binding
dsDNA to produce IL-1β and IL-18) (see reviews42,141) (Fig. 3a).

NUCLEIC ACID SENSING AS A PROMISING
THERAPEUTIC TARGET
NA-sensing exerts both pro- and antitumor effects at different
stages of tumorigenesis. Genomic instability typically produces
autoimmunogenic DNA in cancer cells. Therefore, NA-sensing-

mediated IFN production contributes to DC maturation and
tumor-specific T-cell responses142. However, in vitro studies have
revealed that NA-sensing pathways in several cancer cells are
inhibited by JAK2-STAT3-mediated signaling143. External activa-
tion of NA-sensing has shown enhanced antitumor effects in a
variety of cancers. However, in metastatic cancer, the cGAS-STING-
TBK1 axis-mediated inflammatory response is positively associated
with tumor metastasis. These opposing effects may be associated
with the type and stage of the tumor8.
NA-sensing-associated mechanisms also play different regula-

tory roles in gene therapy. Genetic vaccines, including DNA and
RNA vaccines consisting the nucleic acids of target genes, are
injected directly into the body to induce innate and adaptive
immune responses144,145. pDNA is an intrinsic adjuvant for DNA
vaccines and is essential for the activation of resident antigen-
presenting cells through activation of the innate immune response
via the action of STING-TBK1146,147. However, type I IFN produced
by activated nucleic acid induction inhibits the translation of mRNA
vaccine-encoded antigenic proteins, thereby reducing antigen-
specific immunity148,149. Type I IFN is probably critical for
enhancing the early immune response but is also the main cause
of side effects150. For optimal treatment outcomes, it is essential
that the immunostimulation and transfection efficiency of nucleic
acids be balanced when designing therapeutic strategies151.

Positive regulation of nucleic acid sensing in therapy
The activation of NA-sensing in cancer cells promotes hot tumor
transformation through the production of type I IFN and
cytokines152. Type I interferons also upregulate the expression of
major histocompatibility complex (MHC) class I molecules in
antigen-presenting cells, which present processed cancer cell-
derived antigen molecules to CD8+ T cells152. Stimulating the
production of type I and III IFNs in CD4+ T cells confers self-
protection against HIV infection and enhances the ability of CAR-T
cells to clear tumor cells153. In addition, cGAS-mediated cGAMP
release from cancer cells activates adjacent immune cells154,155.
Studies have shown that the DNA released from tumor cells after
chemotherapy and radiotherapy activates NA-sensing signals that
synergistically enhance antitumor effects156–158. Agonists of cGAS,
STING, and RIG-I potentiate the antitumor activity of immune
cells159–161; for example, the combination of a STING agonist and a
PD1 blocker showed therapeutic effects in tumors with low
immunogenicity162. Similarly, the innate immune response
mediated by RIG-I ligands in combination with CTLA-4 blockade
enhanced adaptive immune response-mediated antitumor
effects163. Furthermore, this combination therapy can enhance
the antitumor effect of the anti-PD1 antibody in a cGAS-dependent
manner by inhibiting the protein arginine methyltransferase
PRMT1- and PRMT5-mediated methylation of the cGAS residues
Arg133 and Arg124, respectively164,165 (Fig. 4a). A recent study
suggested that inducing RIG-I-dependent OAS/RNase L-mediated
apoptosis is a potential strategy for cancer immunotherapy166.
Because the basic components of pDNA, such as the TLR9

agonist, are immunogenic, the unmethylated CpG sequence is
commonly used as a vaccine adjuvant167. CpG oligodeoxynucleo-
tides (ODNs) stimulate the maturation and survival of plasmacy-
toid DCs and accelerate regulatory T (Treg) cell differentiation and
depletion through the activation of TLR9168,169. Recent studies
revealed that SARS CoV-2 mRNA vaccination exposes HIV to CD8+
T cells170. A small-molecule agonist of RIG-I, KIN1148, exhibits an
adjuvant effect on influenza virus vaccine immunity171. The dsRNA
analog poly(I:C) activates TLR3 and MDA5 to induce Th1 cell and
CD8+ T-cell immune responses through the production of IFN and
cytokines172. Activation of TLR7/8 and the RIG-I pathway promotes
macrophage differentiation toward the M1 proinflammatory
phenotype and exhibits antitumor activity173,174 (Fig. 4a). In
summary, NA-sensing has emerged as a promising target for
cancer immunotherapy175.
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Negative regulation of nucleic acid sensing in therapy
The disadvantages of intrinsic NA-sensing activation are mainly
observed in autoimmune and inflammatory diseases176. NA-
sensing is especially important during the metastatic stage of
cancer and is activated under specific conditions. Increased levels
of inflammatory factors caused by NA-sensing have been
associated with poor prognosis8 (Fig. 4b). Recent studies have
shown that RIG-I attenuates the tumor-killing effect of CD8+
T cells by inhibiting STAT5 action177.
Although the innate immune response induced via nucleic acid

immunity can contribute to disease attenuation, it also plays a
negative regulatory role. NA-sensing induces apoptosis in host
cells via multiple pathways178. IRF3-mediated apoptosis impairs
T-cell proliferation and metabolism179. Mechanistically, activated
IRF3 binds to the proapoptotic protein Bax, and the subsequent
translocation of the IRF3-Bax complex to mitochondria promotes
the release of cytochrome c into the cytoplasm, thereby inducing
apoptosis8,180. In contrast, NA-sensing mediates the degradation
of transfected RNA and inhibits translation initiation through the
actions of interferons181. OAS recognizes dsRNA and activates
RNase L to mediate RNA degradation. The degraded RNA can also
activate other NA-sensing PRRs182. dsRNA-dependent activation of
PKR subsequently phosphorylates translation initiation factor
eIF2α, resulting in translation repression183. IFIT1 can also suppress
translation by sequestering eukaryotic initiation factors or directly
binding to the 5′ end of foreign RNA184 (Fig. 4c).
mRNA vaccines elicit different immune responses by encoding

antigenic proteins. On the one hand, mRNA-encoded proteins
acting as endogenous antigens are degraded by proteasomes into
antigenic peptides and activate CD8+ T cells via MHC class I
molecules. On the other hand, mRNA vaccine-encoded proteins
secreted into extracellular compartments are internalized by
antigen-presenting cells, which generate antigenic peptides by
proteolysis in endosomes and are presented to CD4+ T cells via
MHC class II molecules, which can induce cytokine secretion and

stimulate B cells to activate humoral immune responses185 (Fig.
4c). The induction of these immune responses depends on the
transfection efficiency of the mRNA vaccine and is inhibited
mainly by negative regulatory effects mediated by NA-sensing149.
NA-sensing also causes gene editing difficulty in some cells.
Inhibition or evasion of NA-sensing can save nucleic acids from
translational repression, thereby improving gene transfection
efficiency and increasing the expression of functional protein
products186,187.

Strategies to evade nucleic acid sensing
Small-molecule inhibitors and viral proteins. Small-molecule inhi-
bitors (see review188) of DNA sensing pathways have potential
therapeutic value in diseases with long-term activation of
proinflammatory pathways, such as autoimmune and inflamma-
tory diseases161,189,190. In addition, A151 ODN inhibits the activity
of multiple DNA receptors191, and 2′-O-methyl (2′OMe) gapmer-
modified antisense oligonucleotides show sequence-dependent
inhibition of NA-sensing mediated via RNase-H1 recruitment192.
Understanding how viruses evade immune recognition is

important for antiviral research and immunotherapy193. Multiple
virus-encoded proteins inhibit NA-sensing-associated pathways
(see review194). Vaccinia virus (VACV), the most studied Poxvir-
idae195, degrades cGAMP via B2R gene-encoded POXIN196. Some
viruses are thought to improve the efficiency of nucleic acid
vaccines by blocking the RNA-sensing pathway and enhancing
gene expression197. Among these proteins, influenza A virus
nonstructural protein 1 (NS1) stimulates mRNA translation by
inhibiting interferon production198. Vaccinia protein B18R inhibits
type I IFN to enhance mRNA stability and translation efficiency199.

Sequence optimization and chemical modifications. Nucleic acid
modification can prevent the innate immune response-mediated
translational repression of exogenous genes by reducing immuno-
genicity186. The 5′-cap1 structure (a 2′-O-methyl group linked to the

Fig. 4 Differential regulation of NA-sensing signaling pathways in therapy. a NA-sensing promotes the antitumor therapeutic efficacy of
immune checkpoint inhibitors by inducing dendritic cell (DC) maturation and tumor-specific T-cell responses and promotes the differentiation
of macrophages into M1 proinflammatory macrophages. b In the metastatic stage of cancer, NA-sensing-induced inflammatory cytokines
exhibit cancer-promoting effects. c Model of antigen-specific immunity mediated by nonviral gene therapies and the negative regulatory
effects of NA-sensing on therapeutic transgenes.
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first nucleotide: m7GpppNmpN) can escape RIG-I recognition,
thereby increasing translation efficiency200,201. The addition of
poly(A) tails minimizes mRNA immunogenicity by reducing the U
content of the sequence186. Circular RNAs (circRNAs) reportedly
exhibit low immunogenicity and high stability and can initiate
stable translation via internal ribosome entry site elements202,203.
The incorporation of N6-methyladenosine (m6A)-modified circRNAs
completely abrogated RIG-I-mediated activation of the immune
response204. In addition, many chemical modifications of RNA bases
have been leveraged to reduce the immunogenicity of mRNA;
these modifications include pseudouridine (Ψ), N1-methyl-
pseudouridine (m1Ψ), 2-thiouridine (s2U), 5-methoxyuridine
(m5U), and 5-methylcytidine (m5C)205–207. DNA transfection was
performed to construct CAR-modified immune cells, and the low
efficiency of pDNA transfection in immune cells was appropriately
resolved by removing CpG sequences and reducing plasmid size208.

Limitations and prospects of nucleic acid sensing in therapy
Despite multiple modifications aimed at limiting undesired
immune stimulation caused by nucleic acid vaccines, further
optimization is necessary to achieve the desired transfection
efficiency and economic viability. For instance, although DNA
vaccines can trigger an immune response in animal experiments,
they exhibit low immunogenicity in human clinical trials147, thereby
slowing the development of DNA vaccines. DNA vaccines have also
been used in the fight against COVID-19; for example, the COVIDITY
DNA vaccine was developed with two plasmids encoding the S
protein receptor-binding domain and the nucleocapsid (N) protein,
thus providing a mechanism to enhance extracellular antigen cross-
presentation. Nevertheless, although physical delivery methods
such as electroporation or needle-free injection systems may
address delivery efficiency issues, the risk of DNA insertion remains
a concern209. In contrast, agonists and antagonists of DNA sensors
show more promise for clinical applications6. In contrast to DNA
vaccines, RNA vaccines carry no risk of genomic insertion and are
easy to deliver. Although balancing antigen expression and
immunogenicity of RNA can increase the antigen availability, the
thermal instability of these vaccines remains a challenge that has
not been adequately addressed.
As mentioned earlier, NA-sensing activation exhibits both

benefits and drawbacks in disease treatment, and its necessity
must be carefully evaluated in the context of different diseases
and stages of pathogenesis. The study and comparison of DNA-
sensing and RNA-sensing interactions can help in identifying new
optimization strategies210,211. The low immunogenicity of DNA
vaccines may be due to some degree of cell-type specificity of
DNA sensors, but it is unclear where nucleic acid vaccines that are
injected into the skin accumulate. Targeted delivery of nucleic acid
vaccines to lymph nodes or tumors may reduce NA-sensing while
enhancing antigen-specific immune responses212. Furthermore,
the effect of STING on tumor-associated macrophage differentia-
tion helps alleviate tumor cell-mediated immunosuppression in
the tumor microenvironment213. An alternative method for
engineering T cells is in vivo RNA transfection214, although the
role of NA-sensing of in vitro transcribed mRNA after CAR
transfection remains unclear. A vast body of research links NA-
sensing modulation to other therapeutic approaches215.

CONCLUSIONS
NA-sensing plays an important role in immunotherapy owing to
its ability to elicit innate immunity. Therefore, a comprehensive
understanding of the regulation and mechanisms underlying NA-
sensing may contribute to the development of antitumor
therapies. Several emerging regulatory mechanisms complement
the profiling of NA-sensing systems. Although human nucleic acid
receptors are diverse, their recognition ligands overlap, and there
are similarities in their regulatory mechanisms and downstream

signals, such as common adaptor proteins and cofactors. To
effectively prevent pathogenic infections, humans have evolved
redundant NA-sensing systems to complement the cellular
recognition of immunogenic nucleic acids. Therefore, crosstalk
among nucleic acid receptors is essential216. In this review, we
describe the regulatory mechanisms of nucleic acid receptors.
NA-sensing is a double-edged sword in the field of therapeutics.

In cancer therapy, NA-sensing tends to have a facilitative effect on
antitumor immunity and is thus considered a potential treatment
target. However, in the field of gene therapy, it is important to
prevent the excessive activation of NA-sensing pathways to
maintain proper immunogenicity and efficient gene transfection.
The application of in vitro-transcribed mRNA has emerged as a
promising therapeutic strategy. Multiple modification approaches
have been proposed for increasing therapeutic efficiency by
increasing transfection efficiency. In conclusion, nucleic acid
sensors are potential targets for gene and cell therapies, which
must be generated to balance therapeutic transgene-mediated
innate and adaptive immune responses145,217,218.
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