
ARTICLE OPEN

Single-cell characterization of macrophages in uveal melanoma
uncovers transcriptionally heterogeneous subsets conferring
poor prognosis and aggressive behavior
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Uveal melanoma (UM) is the most frequent primary intraocular malignancy with high metastatic potential and poor prognosis.
Macrophages represent one of the most abundant infiltrating immune cells with diverse functions in cancers. However, the cellular
heterogeneity and functional diversity of macrophages in UM remain largely unexplored. In this study, we analyzed 63,264 single-
cell transcriptomes from 11 UM patients and identified four transcriptionally distinct macrophage subsets (termed MΦ-C1 to MΦ-
C4). Among them, we found that MΦ-C4 exhibited relatively low expression of both M1 and M2 signature genes, loss of
inflammatory pathways and antigen presentation, instead demonstrating enhanced signaling for proliferation, mitochondrial
functions and metabolism. We quantified the infiltration abundance of MΦ-C4 from single-cell and bulk transcriptomes across five
cohorts and found that increased MΦ-C4 infiltration was relevant to aggressive behaviors and may serve as an independent
prognostic indicator for poor outcomes. We propose a novel subtyping scheme based on macrophages by integrating the
transcriptional signatures of MΦ-C4 and machine learning to stratify patients into MΦ-C4-enriched or MΦ-C4-depleted subtypes.
These two subtypes showed significantly different clinical outcomes and were validated through bulk RNA sequencing and
immunofluorescence assays in both public multicenter cohorts and our in-house cohort. Following further translational
investigation, our findings highlight a potential therapeutic strategy of targeting macrophage subsets to control metastatic disease
and consistently improve the outcome of patients with UM.
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INTRODUCTION
Uveal melanoma (UM) arises from melanocytes in the uveal tract
and is the most common primary intraocular malignancy among
adults, accounting for more than 85% of all ocular melanomas1,2.
Local treatments such as conservative irradiation therapies and
surgical excisions have been widely used to control primary UM,
improve patient prognosis, and enhance survival rates and quality
of life3,4. However, UM is a highly metastatic disease, with ~50% of
patients developing distant metastases that result in fatal
outcomes, with a median overall survival (OS) of 12 months5–7.
Hence, there is an urgent need for improved therapeutic options
and targets to effectively treat UM metastases and improve long-
term survival rates.
Research on UM genetics and pathogenesis has revealed the

heterogeneous nature of this disease, leading to the identifica-
tion of molecularly and clinically distinct subtypes2,8–13. Tumors
are complex ecological systems composed of cancer cells,
nonmalignant stromal cells, and immune cells, collectively
known as the tumor microenvironment (TME)14,15. Although
the eye is a critical immunologically privileged site, evidence has
shown that the immunological heterogeneity in the TME

markedly impacts various aspects of UM biology, including
development, progression, metastasis, prognosis, and treatment
response16–21. Prior studies have characterized the immune
infiltration involved in UM from bulk tissue data and identified
monocytes or macrophages of the M2 lineage as the pre-
dominant group of tumor-infiltrating immune cells; these cells
are associated with tumor growth and poor prognosis16,22,23.
Recent advances in single-cell RNA sequencing have highlighted
the heterogeneous nature and functional diversity of macro-
phages, independent of the M1/M2 model24. For example, Chen
et al. identified a novel macrophage subpopulation as a
mesenchymal pro-tumor marker in gliomas25. A time series
analysis of scRNA-seq during the acute phase of kidney injury
confirmed the relevance of S100A8/A9+ macrophage infiltration
in tissue injury26. A recent pancancer single-cell analysis of
macrophage subsets also revealed a high level of complexity
and heterogeneity in different cancer types, emphasizing the
need to study the complex phenotype of macrophages in the
TME separately27. However, the cell heterogeneity and func-
tional diversity of macrophages have yet to be fully elucidated
at the single-cell level in UM.

Received: 9 September 2022 Revised: 21 July 2023 Accepted: 25 July 2023
Published online: 1 November 2023

1State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027 Wenzhou, China. 2National Clinical Research Center
for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027 Wenzhou, China. 3These authors contributed equally: Ke Li, Lanfang Sun, Yanan Wang.
✉email: wuwencan@wmu.edu.cn; suncarajie@wmu.edu.cn; zhoumeng@wmu.edu.cn

www.nature.com/emm

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-023-01115-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-023-01115-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-023-01115-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s12276-023-01115-9&domain=pdf
http://orcid.org/0000-0002-0932-7195
http://orcid.org/0000-0002-0932-7195
http://orcid.org/0000-0002-0932-7195
http://orcid.org/0000-0002-0932-7195
http://orcid.org/0000-0002-0932-7195
http://orcid.org/0000-0001-9987-9024
http://orcid.org/0000-0001-9987-9024
http://orcid.org/0000-0001-9987-9024
http://orcid.org/0000-0001-9987-9024
http://orcid.org/0000-0001-9987-9024
https://doi.org/10.1038/s12276-023-01115-9
mailto:wuwencan@wmu.edu.cn
mailto:suncarajie@wmu.edu.cn
mailto:zhoumeng@wmu.edu.cn
www.nature.com/emm


In this study, we conducted a single-cell RNA sequencing
analysis of macrophages in patients with UM to characterize
macrophage heterogeneity and identified four macrophage
subsets. Then, we explored the clinical effects of four macrophage
subsets on tumor phenotypes and prognosis using multicenter
bulk and single-cell cohorts and evaluated their contribution to
the molecular subtyping validated by using our in-house cohort
by RNA-seq and immunofluorescence imaging. Our study
provides important insights into the diversity of macrophages in
UM and demonstrates the potential of targeting macrophage
subsets to improve routine clinical practice.

MATERIALS AND METHODS
Single-cell RNA-seq data and analysis
scRNA-seq data (10x Genomics) and clinicopathological information of 11
patients with UM were retrospectively collected from Durante’s study in
the Gene Expression Omnibus (GEO) database, under accession number
GSE13982928.
scRNA-seq data processing and analysis were implemented using the

Seurat v4 R package29. All functions were executed with default
parameters unless otherwise stated. scRNA-seq data for all UM samples
were first integrated using the merge function, and low-quality cells (<200
genes/cell or >8000 genes/cell and >10% mitochondrial genes) were
removed. Following quality control, the scRNA-seq data were normalized
using the SCTransform method with regression to determine the
mitochondrial percentage30. The potential batch effect between samples
was corrected using the Harmony method31. Principal component analysis
was performed to reduce dimensionality, and the top 20 principal
components were adopted to identify distinct groups of cells using the
graph-based clustering method with the FindClusters function (resolu-
tion= 2). Major cell clusters were annotated using known cell-type marker
genes and visualized using a T-distributed stochastic neighborhood
embedding (tSNE) scatter plot. Differentially expressed genes (DEGs)
between each cell type and all other cell types were identified using the
FindAllMarker function in Seurat, and significance was determined using
the Wilcoxon rank sum test with Bonferroni correction. Genes were
selected as DEGs based on the threshold of |logFC| > 0.5 and an adjusted P
value < 0.05.

Bulk transcriptome data and analysis
Bulk RNA-seq data and clinicopathological information of 80 UM samples
were obtained from UCSC Xena (GDC The Cancer Genome Atlas (TCGA)-
UVM cohort; https://xenabrowser.net/datapages/). Gene expression levels
measured using the HiSeq Illumina platform were quantified as FPKM-UQ
and normalized using log2-transformation.
Bulk microarray data and clinicopathological information for 120

patients with UM were obtained from the GEO, including 63 patients
from Laurent’s study (accession no. GSE22138)32, 29 patients from
Gangemi’s study (accession no. GSE27831)33 and 28 patients from van
Essen’s study (accession no. GSE84976)34.
The raw microarray data from the Human Genome U133 Plus 2.0 array

were preprocessed and normalized using the robust multichip average
(RMA) algorithm for background correction, quantile normalization, and
log2 transformation. Processed expression data from the Illumina
HumanHT-12 V4.0 expression beadchip provided by the authors were
used33.

Definition of signature scores
TEX score was defined by the mean expression value of TEX-related gene
sets (PDCD1, CTLA4, LAG3, TIGIT, TOX, and TCF7). M1- and M2-MΦ
signature enrichment scores were calculated with canonical M1- and M2-
MΦ signatures using the “AddModuleScore” function in Seurat (Supple-
mentary Table 1).

Trajectory analysis
Dramatic translational relationships among cell types and clusters were
determined using Monocle2 (v2.16.0) and CytoTRACE (https://
cytotrace.stanford.edu/)35,36. For Monocle2, the CellDataSet object was
created using the Cell DataSet function with the parameter “expression-
Family= negbinomial”. The differentiation trajectory was built using
default parameters after dimensionality reduction. Genes for trajectory

inference were determined using the dispersionTable function. Only genes
with a mean expression > 1 were selected for analysis. Dynamic
differentially expressed genes (DEGs) across pseudotimes were identified
using the differentialGeneTest function with q < 0.001. For CytoTRACE, we
input the expression count matrix of macrophages into the online tool and
then obtained the result.

SCENIC analysis
SCENIC analysis was employed to investigate transcription factor (TF)
regulation with default parameters37. The expression count matrix from
the Seurat object was filtered for genes using the geneFiltering function in
Seurat with the default threshold (minCountsPerGene, 0.03 × ncells;
minSamples, 0.01 × ncells) and normalized to the input. GRNboost was
used to infer TF target gene coexpression modules, and RcisTarget was
utilized to identify regulons with the default parameters and the following
cisTarget databases: hg19-500 bp-upstream-7species.mc9nr.feather and
hg19-tss-centered-10 kb-7species.mc9nr.feather. The activity of each
regulon of single cells was scored using the AUCell method.

Enrichment analysis
The enrichment score for a specific gene set or pathway activity was
calculated using single-sample gene set enrichment analysis (ssGSEA) with
the R package “GSVA”38. To conduct functional enrichment analysis of
macrophage subsets, we identified sorted differentially expressed genes
(DEGs) for each macrophage subset and performed gene set enrichment
analysis (GSEA) using cancer hallmark pathways with the clusterProfiler
(v3.18.0) package39.

Patient biospecimen collection and RNA extraction
The present study was performed according to the Declaration of
Helsinki and approved by the Ethics Committee of the Eye Hospital of
Wenzhou Medical University (ethics approval no. 2022-043-K-28-02). All
patients provided written informed consent. All data were anonymously
analyzed. Human UM tissues were collected during surgical resection at
the Eye Hospital of Wenzhou Medical University from five patients
diagnosed with UM. The patients did not receive preoperative treatment
prior to collection.
Total RNA from UM tissues was isolated using TRIzol® Reagent

(Invitrogen, Thermo Fisher Scientific, Inc.). The OD260/OD280 ratio was
used as an indicator of RNA purity; the ratio is required to be close to 2.0
for pure RNA (acceptable range, 1.8–2.1). RNA concentration and purity
were measured using a NanoDrop 2000 Spectrophotometer (Invitrogen,
Thermo Fisher Scientific, Inc.).

Immunofluorescence assay
Tumor tissues were fixed in 4% paraformaldehyde (PFA) at 4 °C overnight,
dehydrated in 10%, 20%, and 30% sucrose solution, transferred into OCT,
and frozen at −80 °C for subsequent use. Tissues with a thickness of 10 μm
were prepared and washed using phosphate-buffered saline (PBS). Primary
antibodies against CD68 (dilution 1:200; cat. no. sc-20060, Santa Cruz
Biotechnology, Inc.) and Ferritin Light Chain (dilution 1:100; cat no.
ab69090; Abcam) were applied. Tissue sections were incubated with
primary antibodies at 4 °C overnight and then with secondary antibodies,
Alexa Fluor 594-labeled donkey anti-rabbit IgG [(H+ L); cat no. 34212ES60;
Shanghai Yeasen Biotechnology Co., Ltd.] and Alexa Fluor 488-labeled
donkey anti-mouse IgG [(H+ L); cat. no. 34106ES60; Shanghai Yeasen
Biotechnology Co., Ltd.). Nuclei were counterstained with DAPI, and signals
were visualized using a DM4B (Leica Microsystems GmbH).

Statistical analysis
All statistical analyses were conducted in R (v4.0.3) with the R studio
interface (v1.3.959). Wilcoxon rank-sum or Student’s t-tests were used to
compare differences between the two groups. Consensus clustering
analysis was conducted using the R package “ConsensusClusterPlus” with
the following parameters: pItem= 0.8, pFeature= 1, reps= 1000, and the
“Pam” clustering approach. Univariate and multivariate Cox proportional
hazard regression models were utilized to assess the association between
variables and survival time. The Kaplan‒Meier method and log-rank test
were used to compare survival differences between different patient
groups. Hazard ratios (HRs), 95% confidence intervals (CIs), and corre-
sponding P values were calculated, and visualization of covariate effects
was carried out using the forest plot with the R package “forestplot”.
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Spearman’s rank correlation coefficient was applied for correlation analysis.
Statistical significance was set at P < 0.05.

RESULTS
Single-cell transcriptomic analysis revealed four
transcriptionally distinct macrophage subsets in UM
To explore cellular heterogeneity within the TME of UM, we
conducted a retrospective analysis of scRNA-seq data for 11 UM
patients. Following quality control and batch effect correction, a total
of 63,264 qualified cells with a mean of 1555 expressed genes were
retained for dimensionality reduction and unsupervised graph-based
cell clustering analysis. This analysis identified eight major cell
clusters, visualized via t-SNE and manually annotated based on
canonical gene markers listed in the Cellmarker database and
previously published data28,40. These cell clusters include tumor cells
(MLANA+, MITF+, and PRAME+), T cells (CCL5+, CXCR4+, CD8A+),
NK cells (NKG7+, GNLY+, GZMB+), B/Plasma cells (IGL3-1+, IGLV2-
14+, IGLV1-40+), myeloid cells (C1QB+, C1QC+ and CD74+),
cancer-associated fibroblasts (CAF, MGP+, RGS5+, COL1A1+), and
very small fractions of other cell types: endothelial cells (PECAM1+,
RAMP2+ and CCL21+) and photoreceptor cells (RCVRN+) (Fig. 1a–c).
Compared to GEP class 1 tumors and primary tumors, myeloid

cells showed relatively higher infiltration abundance in GEP class 2
tumors or metastatic tumors (Supplementary Fig. 1a), indicating
the association between myeloid cell infiltration and aggressive
tumor behaviors. We further performed SNN-based clustering of
2847 qualified myeloid cells based on 3000 HVGs to dissect the
cell composition within an infiltrated myeloid cell compartment
and identified six clusters: monocytes, dendritic cells (DCs), and
four macrophage subsets (termed MΦ-C1 to MΦ-C4) (Fig. 1d).
Monocytes displayed high expression of monocyte-related genes
such as S100A9, EREG, G0S2, and VCAN, whereas DCs expressed
CD1C, IDO1, LGALS2, and LSP1 (Fig. 1e). For macrophages, MΦ-C1
and MΦ-C2 expressed high levels of proinflammatory mediators
(such as IL1B, CCL3, CCL4, FOSB and CD83) and chemokines
(CXCL8), and MΦ-C3 highly expressed M2-MΦ markers (such as
APOE, SEPP1 and TXNIP). In contrast, MΦ-C4 did not express high
levels of the M1/M2 signature genes but instead showed high
expression of microtubule-related genes (TUBA1B), ferritin light
chain (FTL), and several immunomodulatory molecules (migration
inhibitory factor (MIF), Galectin-1 (GAL1) and Galectin-3 (GAL3)).
Further enrichment analysis of M1- and M2-MΦ canonical
signatures for the four macrophage clusters also indicated that
high M1-MΦ signature enrichment scores characterized MΦ-C2
clusters; the MΦ-C3 cluster exhibited high M2-MΦ signature
enrichment scores, and MΦ-C1 was characterized by both M1/M2-
MΦ signature enrichment scores. Notably, the MΦ-C4 cluster had
lower enrichment scores for M1 and M2-MΦ signatures (Supple-
mentary Fig. 1b). Using the average gene expression values of
each myeloid subset, we calculated the Spearman’s correlation
coefficient for all subsets based on their transcriptional patterns
and found a distinct transcriptional profile for the MΦ-C4 cluster
that differentiated it from the other three macrophage clusters
(Supplementary Fig. 1c).

Functional characterization of different macrophage subsets
in UM
To investigate the functional heterogeneity of macrophage
subsets, we performed single-cell differential expression analysis
between one macrophage subset and three other macrophage
subsets to identify significantly upregulated genes in specific
subsets (Fig. 2a and Supplementary Table 2). Functional enrich-
ment analysis for cancer hallmark pathways revealed the
upregulated genes of MΦ-C1 to be enriched in IL-6/JAK/
STAT3 signaling, IL-2/STAT5 signaling, and inflammatory response,
TNF-α signaling via NF-κB, hypoxia and inflammatory response in
MΦ-C2, and interferon alpha response in MΦ-C3. Oxidative

phosphorylation, fatty acid metabolism, and MYC Targets V1 were
enriched in MΦ-C4 (Fig. 2b). Additionally, gene set variation
analysis was applied to calculate the activity of biological
functions based on the Reactome database. The results showed
that ‘IL-6-type cytokine receptor‒ligand interactions’, ‘NF-kB is
activated and signals survival’, ‘signaling by WNT in cancer’,
‘NOTCH3 Intracellular Domain Regulates Transcription’, and
‘p75NTR signals via NF-kB’ were enriched in MΦ-C2, and MΦ-C3
was enriched in ‘PD-1 signaling’, ‘IRF3-mediated induction of type I
IFN’, ‘Complement cascade’ and ‘MHC class II antigen presenta-
tion’. MΦ-C1 not only shared similar pathways with MΦ-C2 and
MΦ-C3 but was also enriched in interleukin-35 signaling and
cytokine signaling in the immune system. In contrast, metabolism-
related pathways and the G2 phase were exclusively enriched in
MΦ-C4, suggesting potential metabolic and proliferative proper-
ties unique to this subset (Fig. 2c). Therefore, we utilized Seurat to
computationally define cell cycle phase scores for each macro-
phage subset based on expression levels of S and G2/M phase
markers. As shown in Fig. 2d, MΦ-C4 had higher S and G2/M phase
scores than the other three macrophage subsets (Fig. 2d).
Moreover, the heterogeneity of innate immune functions was

investigated among these four macrophage subsets, with the
results showing the lowest enrichment of innate immune gene
signatures for MΦ-C4, indicating potential dysfunction in innate
immunity (Supplementary Fig. 2a). Further examination of the Toll-
like receptor (TLR) family demonstrated reduced expression levels
in MΦ-C4 compared to the other three macrophage subsets
(Supplementary Fig. 2b). TLRs are pattern recognition receptors
critical in initiating the innate immune response in macrophages.
This suggests that TLR deficiency may partly contribute to
dysfunctional innate immunity in MΦ-C4.
Trajectory analysis was subsequently performed using Monocle

to investigate the polarization trajectories of macrophages in UM.
This trajectory analysis indicated a branched structure, starting
with MΦ-C1 and MΦ-C2 and bifurcating into multiple macrophage
polarization states (Fig. 2e). As illustrated in Fig. 2e, MΦ-C1, MΦ-C2,
and MΦ-C3 are more redundant in the early and middle stages of
the trajectory, respectively, whereas MΦ-C4 is primarily at the
terminal branch. For validation, we used another trajectory
reconstruction computational tool, cytoTRACE, to reproduce the
differentiation trajectory of macrophages, with MΦ-C1 and MΦ-C2
having the highest developmental potential and MΦ-C4 in the
final differentiated state (shown as low developmental potential,
Supplementary Fig. 2c, d). Transcriptional and functional changes
were explored across pseudotime. Enrichment analyses of DE
genes across pseudotime indicated the inflammatory response,
cytokine-mediated signaling pathway, and complement activation
to be activated in the early and middle stages; however, they were
uniformly downregulated in the late stage of polarization (Fig. 2f).
In contrast, metabolic pathways and ATP biosynthetic processes
involved in cellular energetics showed high enrichment in the late
stage of polarization (Fig. 2f).
To identify key transcription factors (TFs) determining the state

of each macrophage subset, the SCENIC method was applied to
determine the correlation between TFs and different transcrip-
tional programs among macrophage subsets and identify multiple
TF activity patterns (Fig. 2g). Inflammation-related TFs (NFKB1,
NFKB2, JUNB, and FOSB) were activated in MΦ-C1 and MΦ-C2,
whereas classical interferon regulatory TFs (IRF and STAT) were
identified in MΦ-C3. A total of six TFs (EZH2, RBBP5, ATF2, TAF1,
HCFC1, and MAZ) were highly elevated in MΦ-C4, which might
mediate the phenotype and characteristics of MΦ-C4.

Single-cell association of transcriptionally distinct
macrophage subsets with UM aggressive behaviors
To investigate the clinical relevance of transcriptionally distinct
macrophage subsets, we examined differences in infiltration
abundance at both the single-cell and patient levels. Relative
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proportions of different macrophage subsets in GEP class 1 and GEP
class 2 tumors and primary and metastatic tumors from single-cell
data were determined. The relative proportion of MΦ-C4 was higher
in GEP class 2 tumors (29.39%) and metastatic tumors (32.84%) than
in GEP class 1 tumors (12.47%) and primary tumors (22.98%; Fig. 3a).
Figure 3b shows that MΦ-C4 was commonly present in each UM
sample, though the level differed between samples, ranging from
4.7% to 58.3%. Furthermore, when analyzing the correlation
between infiltration abundance and clinical features, we found that
the infiltrating density of MΦ-C4 was higher in GEP class 2 tumors
(P= 0.024) than in GEP class 1 tumors (Fig. 3c, Supplementary Fig.
3a) and MΦ-C4 infiltrated more in metastatic tumors (Supplemen-
tary Fig. 3b). In addition, the tumor diameter correlated significantly
positively with the infiltrating density of MΦ-C4 compared to other
macrophage subsets (r= 0.71 and P= 0.047; Fig. 3d, Supplementary
Fig. 3c). These results suggest that increased infiltration of MΦ-C4 is
related to aggressive behaviors.
To investigate the interplay between macrophage subsets and

other cell components, we further resolved T cells into eight

subsets based on established markers: memory T cells, regulatory
T cells (Tregs), inflammation-related T cells expressing TNF and
IFNG (Inflam T), and preexhausted (Pre-TEX) and exhausted T cells
(TEX) expressing moderately and highly exhausted markers
(Supplementary Fig. 4a, b). B cells and plasma cells were also
differentiated (Supplementary Fig. 4c, d). Spearman’s rank
correlation coefficients were computed for each subset (Fig. 3e).
In contrast to other macrophage subsets, MΦ-C4 correlated highly
with the tumor-derived population of cancer-associated fibro-
blasts (CAFs) and immunosuppressive T lymphocyte subsets,
including Tregs, preexhausted T cells (Pre-TEX), and exhausted
T cells (TEX) (Fig. 3e). A significant positive association between
MΦ-C4 and T-cell exhaustion (TEX) was also observed (r= 0.75 and
P= 0.008, Fig. 3f and g).

High infiltration of MΦ-C4 correlates with poor prognosis
Considering the heterogeneity of MΦ-C4 in UM patients and its
association with aggressive behaviors observed at the single-cell
level, we investigated its clinical implications in a cohort of 80 UM
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patients from TCGA. Using ssGSEA and scRNA-seq-defined over-
expressed markers, we estimated the infiltration abundance of
different macrophage subsets. Multivariate Cox analysis revealed that
only MΦ-C4 remained significantly associated with overall survival
(OS) (HR, 8.8; 95% CI, 1.8–43; p= 0.0073), suggesting that MΦ-C4 is
an independent prognostic risk factor for UM patients (Fig. 4a).
Survival analysis showed that patients with high MΦ-C4 infiltration

had significantly shorter OS (HR, 22.6; 95% CI, 21.83–23.37; log-rank
P< 0.0001) and progression-free survival (HR, 4.44; 95% CI, 4.00–4.88;
log-rank P= 0.00025) than those with low MΦ-C4 infiltration (Fig. 4b).
Additionally, the findings were consistent across three external GEO
cohorts, whereby patients with high MΦ-C4 density showed poor
survival compared to those with low MΦ-C4 density (HR, 2.59; 95%
CI, 2.24–2.94; log-rank P= 0.005 for Laurent’s cohort; HR, 21.24; 95%
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CI, 20.38–22.10; log-rank P< 0.0001 for Gangemi’s cohort; and HR,
3.39; 95%, CI 2.68–3.90; log-rank P= 0.038 for van Essen’s cohort; Fig.
4c). After adjusting for clinical variables, including locational
information, age, tumor basal diameter, sex, histopathology, and
tumor stage, multivariate Cox regression analysis revealed that high
infiltration of MΦ-C4 remained significantly associated with poor

survival in four UM cohorts (TCGA: HR 57, 95% CI 9.9–320, P < 0.001;
Laurent’s: HR 3.7, 95% CI 1.7–8.4, P= 0.0015; Gangemi’s: HR 18, 95%
CI 3.2–100, P= 0.0011; van Essen’s: HR 4, 95% CI 0.89–18, P= 0.072)
(Supplementary Fig. 5). These findings suggest that MΦ-C4
infiltration may be an independent and robust prognostic factor
for UM patients.
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Potential MΦ-C4-based UM subtyping
Given the heterogeneity of UM, we sought to determine whether
MΦ-C4 within the TME can be used to define UM subtypes. We
conducted differential gene expression analysis to identify MΦ-
C4-specific core metagenes by comparing the gene expression
profiles of macrophages with those of other cell types and of
MΦ-C4 with those of other macrophage subsets. Finally, seven

genes (CSTB, S100A9, LGALS1, FTL, ACTB, TUBA1B, SH3BGRL3) were
identified as MΦ-C4-specific core metagenes (Fig. 5a). Then, we
performed consensus clustering analysis for UM patients in the
TCGA cohort based on MΦ-C4-specific core metagenes and
identified three patient clusters, designated MS1, MS2 and MS3
(Fig. 5b), which were reproducible through clustering of spectral
patterns using t-SNE dimensionality reduction (Fig. 5c). All seven
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MΦ-C4-specific core metagenes were upregulated in MS3, and
the abundance of infiltrating MΦ-C4 was significantly higher in
MS3 than in MS1 and MS2 (Fig. 5d, e). Survival analysis revealed
that MS1 and MS2 were associated with improved prognosis but
that MS3 had the poorest survival probability (log-rank P= 0.031;
Fig. 5f). Moreover, the distribution of subtypes across different
clinicopathological characteristics indicated nonuniform cluster-
ing of patients (Fig. 5e). We further assessed the interplay of MΦ-
C4-based subtyping with gene expression profiling (GEP)-based

or previously defined somatic copy number alteration (SCNA)-
based classification (Fig. 5g). As depicted in Fig. 5h, MΦ-C4-based
subtyping can effectively stratify UM patients in different GEP
classes or SCNA subsets into different risk groups with distinct
survival (four-way log-rank P < 0.0001) (Fig. 5h). For example, GEP
class 2 tumors in non-MS3 were associated with better OS than
GEP class 2 tumors in MS3. These results suggest that molecular
subtyping based on MΦ-C4 provides additional prognostic value
beyond traditional staging and known molecular subtyping.
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Development of an MΦ-C4-derived subtyping system for UM
molecular diagnosis and prognosis prediction
To accelerate the potential clinical applications of MΦ-C4-based
molecular subtyping, we utilized a gradient-boosting machine-
learning framework to establish a subtyping system (termed GML2S)
that classifies UM subtypes and predicts prognosis based on MΦ-C4-
specific core metagenes (Fig. 6a). We trained GML2S using the TCGA
UM cohort and validated it using external UM cohorts. The MS3
subtype identified using GML2S showed significantly shorter survival
times than those with predicted non-MS3 subtypes (log-rank

P= 0.028 for TCGA cohort; log-rank P= 0.033 for Laurent’s cohort;
P= 0.0094 for Gangemi’s cohort and P= 0.054 for van Essen’s
cohort; Fig. 6b). Moreover, GML2S was highly informative for
identifying patients with metastasis (Fig. 6c).
GML2S was further applied to five UM samples from the in-

house WMU cohort for subtype classification. Among these
samples, one patient was predicted to have the MS3 subtype;
the remaining four patients were predicted to have the non-MS3
subtype by GML2S (Fig. 6d). As indicated in Fig. 6e, the patients
with the predicted MS3 subtype exhibited significantly higher

Fig. 6 Development of an MΦ-C4-derived subtyping system for UM molecular diagnosis and prognosis prediction. a Schematic
representation of MΦ-C4-based molecular subtyping. b Kaplan–Meier survival curves for overall survival for patients with MS3 and non-MS3
subtypes in the TCGA cohort and three GEO multicenter cohorts. c Bar plot showing the percentage of primary and metastatic patients
between predicted MS3 and non-MS3 subtypes in three GEO multicenter cohorts. Statistical differences were determined by Fisher’s exact
test. d Schematic representation of applying the MΦ-C4-derived subtyping system in the WMU cohort. e Heatmap showing the relative
expression level of 7 metagenes among predicted MS3 and non-MS3 subtypes in the WMU cohort. f Immunofluorescence imaging of three
representative cases with dual staining of FTL (red) and CD68 (green), alongside DAPI (blue), in individual and merged channels are shown.
The scale bar represents 25 μm. g Quantification of CD68+ and FTL+ cells. Values were normalized to the total number of DAPI+ cells. Error
bars represent the mean ± SEM. Statistical analysis was performed using an unpaired two-tailed Student’s t-test, (*)= p < 0.05.
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expression levels of MΦ-C4-specific core metagenes than the non-
MS3 patients (Fig. 6e). Immunofluorescence microscopy was
performed on tissues from three representative cases from the
WMU cohort to confirm increased infiltration of MΦ-C4 in the
predicted MS3 case compared with the remaining two non-MS3
cases (Fig. 6f, g). These results highlight the potential of GML2S in
UM molecular diagnosis and subtype classification.

DISCUSSION
The immune microenvironment is a critical regulator of tumor
initiation, progression, and therapeutic response due to its
complexity and diversity41–44. Macrophages, among the most
common infiltrating immune cells in the tumor immune micro-
environment, play a dual role in promoting and inhibiting tumor
growth and progression45,46. With the advent of scRNA-seq, there
is increasing evidence of the remarkable plasticity and broad
spectrum of macrophages, leading to the identification of diverse
macrophage subsets in multiple cancer types24. However, the
heterogeneity of macrophages and their clinical significance in
UM require further elucidation.
In the present study, our single-cell RNA-seq analysis provides

a comprehensive understanding of the cellular heterogeneity of
macrophages in UM, revealing distinct transcriptional patterns
and functions of four heterogeneous macrophage populations.
The findings also indicate that the conventional M1/2 classifica-
tion may not fully characterize the macrophage subsets involved
in UM, as macrophages exhibit complex multifunctional pheno-
types. Moreover, a unique macrophage population (MΦ-C4) with
a distinct transcriptomic signature and characteristics was
identified, as characterized by proliferation signaling and
metabolic capacity. Dramatic alterations in cell metabolic profiles
have been used to characterize the phenotype and function of
macrophages47.
The results of the present study demonstrate that core regulons in

MΦ-C4 inferred from SCENIC analysis are involved in cell proliferation
and mitochondrial biogenesis, which may play crucial roles in
coordinating the phenotype of MΦ-C4. HCFC1 controls the cell cycle
from G1 to S phase in multiple ways, and MYC can interact with
HCFC1 to drive ribosome biogenesis and mitochondrial pro-
grams48,49. ATF2 was proven to directly regulate cyclin B1, cyclin
D1, etc., and was associated with poor prognosis in a study of
ccRCC50. As a potential E2F target, EZH2 is an important marker for
cell proliferation51. In addition to proliferation and metabolism
signaling, MΦ-C4 increases the expression of multiple immunomo-
dulatory molecules, including GAL1, GAL3, and MIF. GAL1 accelerates
tumor growth and immune escape by inducing cytotoxic T-cell
apoptosis and may be a promising immune checkpoint52,53. GAL3 is
a multifunctional immunosuppressive ligand and recruits T-cell
subsets highly expressing immune checkpoint molecules into the
tumor microenvironment, and MΦ-C4-enriched UMs tended to have
high infiltration of exhausted T cells and Tregs54. MIF is reported as
an essential effector molecule for inhibiting the cytolytic activity of
NK cells55 and highlights the role of MIF in the upregulation of
multiple oncogenic pathways, leading to tumor malignancies and
progression56–58. In addition, we found that the MΦ-C4 identified in
our study resembles a subset of C1QC+TAMs in Zhang’s study
(Supplementary Fig. 4e). These results indicate the protumorigenic
effects of MΦ-C4 in UM, but its potential clinical significance requires
further investigation.
Notably, the association between MΦ-C4 infiltration, aggressive

behaviors, and poor survival outcomes was observed in both scRNA-
seq and TCGA bulk RNA-seq cohorts, and among the macrophage
subsets, MΦ-C4 was observed to have the worst prognosis in UM.
These results were validated using multicenter microarray cohorts.
The clinical effects of MΦ-C4 infiltration not only depend on the
technology used to measure gene expression (scRNA-seq, bulk RNA-
seq, or microarray) but are also independent of important clinical

variables. These data indicate that MΦ-C4 may have potential as a
therapeutic target.
Cancer subtyping allows for understanding tumor heterogeneity

and improving risk stratification and clinical decisions59,60. Several
molecular subtypes have been established for UM, but these are
limited to genetic, genomic, transcriptomic, and methylomic
subtypes2,9,11,61. Following the observed clinical significance of MΦ-
C4 infiltration, by incorporating the transcriptional signatures of MΦ-
C4 and machine learning, this subtyping scheme can potentially
provide additional information on the immune microenvironment of
UM tumors and aid in more informed clinical decisions. The validation
of this subtyping scheme in multiple public UM cohorts and the in-
house cohort of the present study, as well as its confirmation through
immunofluorescent imaging, supports its potential clinical utility.
However, further studies are necessary to fully understand the
implications of this subtyping scheme and its ability to improve risk
stratification and clinical outcomes for UM patients.
In conclusion, our study utilized single-cell transcriptome data

to characterize the transcriptional heterogeneity of macrophages
within the UM TME and demonstrated the clinical relevance of
these macrophage subsets for assessing disease aggressiveness
and prognosis. These findings deepen our knowledge of cellular
heterogeneity in UM and emphasize the potential therapeutic
benefits of targeting macrophages in UM treatment.
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