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SARS-CoV-2 infection engenders heterogeneous
ribonucleoprotein interactions to impede translation
elongation in the lungs
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Translational regulation in tissue environments during in vivo viral pathogenesis has rarely been studied due to the lack of
translatomes from virus-infected tissues, although a series of translatome studies using in vitro cultured cells with viral infection
have been reported. In this study, we exploited tissue-optimized ribosome profiling (Ribo-seq) and severe-COVID-19 model mice to
establish the first temporal translation profiles of virus and host genes in the lungs during SARS-CoV-2 pathogenesis. Our datasets
revealed not only previously unknown targets of translation regulation in infected tissues but also hitherto unreported molecular
signatures that contribute to tissue pathology after SARS-CoV-2 infection. Specifically, we observed gradual increases in
pseudoribosomal ribonucleoprotein (RNP) interactions that partially overlapped the trails of ribosomes, being likely involved in
impeding translation elongation. Contemporaneously developed ribosome heterogeneity with predominantly dysregulated 5 S
rRNP association supported the malfunction of elongating ribosomes. Analyses of canonical Ribo-seq reads (ribosome footprints)
highlighted two obstructive characteristics to host gene expression: ribosome stalling on codons within transmembrane domain-
coding regions and compromised translation of immunity- and metabolism-related genes with upregulated transcription. Our
findings collectively demonstrate that the abrogation of translation integrity may be one of the most critical factors contributing to
pathogenesis after SARS-CoV-2 infection of tissues.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2, has caused
an unprecedented pandemic with >760 million infections and
more than 6.8 million deaths to date. Despite the enhanced
protection provided by SARS-CoV-2 vaccines, the infection has
not been fully constrained, and options to treat the disease are
still limited. The development of a proven therapy to treat
people postinfection is critical, necessitating a fundamental
understanding of viral behaviors and host responses during
pathogenesis after virus invasion.

To explain the gene regulation underlying the pathogenesis of
SARS-CoV-2 infection, a number of transcriptome studies on SARS-
CoV-2-infected animals and COVID-19 patients have been per-
formed3–7. However, a pitfall of transcriptome-based approaches is
that mRNA level changes do not always correlate with protein level
changes8,9. Given that several viruses are known to disrupt host
protein synthesis10–13 and that antiviral responses involve gene
regulation, such as the regulation of mTOR signaling, are mediated
in a translation-dependent manner14, scrutinizing gene translation is
essential to understanding virus‒host interactions at the molecular
level.
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Ribosome profiling (Ribo-seq) is a deep sequencing-based
technique that captures in vivo interactions between ribosomes
and RNAs as ribosome-protected fragments (RPFs) after RNase
digestion15. By virtue of the precise determination of ribosome
positions across transcripts and quantitative estimation of
translation activity per gene on a genome-wide scale, ‘transla-
tomes’ constructed by Ribo-Seq have elucidated hidden features
of gene translation in diverse biological contexts16–20. In particular,
this powerful technique has been exploited to identify viral ORFs
and explore the regulation of viral gene translation as well as that
of host genes upon the infection with various viruses, such as
cytomegalovirus, herpes simplex virus, influenza virus, and murine
coronavirus21–24.
In 2021, Finkel et al. applied Ribo-seq to SARS-CoV-2-infected

cell lines (the Vero E6 and Calu-3 cell lines), thereby evaluating the
protein-coding capacities of canonical and noncanonical ORFs in
viral transcripts25. They subsequently measured viral and host
mRNA translational activity in the early postinfection period (from
0 to 8 h post infection), discovering that impaired nuclear export
and accelerated degradation of host mRNAs are likely the
strategies mediated by SARS-CoV-2 virus to impede host protein
synthesis26. Kim et al. performed translatome studies with infected
cell lines over an extended time period (0–36 h), identifying
secondary initiation sites of SARS-CoV-2 transcript translation27.
More recently, two independent translatome studies of in vitro
cultured cells with a lung epithelium origin reported that several
cytokines and innate immune factors were translated at a low rate
in SARS-CoV-2-infected cells28,29.
These previous translatome studies improved our understand-

ing of mechanisms by which viral and host gene translation affects
viral pathogenesis; however, the studies were performed with
in vitro experiments involving virus interactions with a single type
of host cell. In in vivo environments of virus-infected tissues,
diverse types of cells, such as immune cells, communicate with
infected cells; these cells influence each other, which may lead to
distinct viral and host gene regulatory trajectories that cannot be
properly assessed when in vitro systems are used30. Moreover,
prominent pathological features observed in human patients with
severe COVID-19 symptoms and in animal models of SARS-CoV-2-
induced pathology include imbalances in the immune response
and tissue homeostasis that cannot be fully recapitulated in cell
line models of infection, underscoring that viral and host
translation within the tissue microenvironment needs to be
evaluated to comprehend SARS-CoV-2 pathophysiology. However,
among all the published translatome studies on viral infection,
including SARS-CoV-2 infection, none currently covers transla-
tional regulation in vivo.
We therefore applied tissue-optimized Ribo-seq to the lungs of

severe-COVID-19 model mice to establish the first temporal
profiles of gene translation in vivo during SARS-CoV-2 pathogen-
esis. Our data reveal that the translation of viral and host genes in
the tissue environment is markedly different from that observed
with in vitro systems. In addition to identifying the distinct targets
of translation modulation in vivo in infected tissues, we discovered
previously unknown molecular signatures that represent the
tissue pathology of SARS-CoV-2 infection: pseudoribosomal
ribonucleoprotein (RNP) complexes, ribosome heterogeneity with
deviated 5 S rRNP association, and impediment of translation
elongation.

MATERIALS AND METHODS
Mice used for studying SARS-CoV-2 infection
The mice used in this study (8 weeks old, male) were obtained from the
Jackson Laboratory (B6.Cg-Tg(K18-ACE2)2Prlman/J). All protocols were
approved by the Institutional Animal Care and Use Committee of the Seoul
National University Bundang Hospital (IACUC number BA-2008-301-071-
05). The Ji Seok Young Research Center is fully accredited by the

Association for Assessment and Accreditation of Laboratory Animal Care.
All animals were cared for in accordance with the Institute for Laboratory
Animal Research Guide for the Care and Use of Laboratory Animals, eighth
edition. The Seoul National University Bundang Hospital Institutional
Biosafety Committee approved the procedures for sample handling,
inactivation, and transfer from animal biosafety Level 3 (ABSL3) contain-
ment. The mice were lightly anesthetized with ketamine (20 mg/kg) and
xylazine (10mg/kg) during the infection procedure. All mice were infected
intranasally with virus in a total volume of 50 μl of DMEM. The weight and
temperature of the mice were monitored daily. The mice were sacrificed in
a CO2 chamber on Days 0, 1, 2, 5, and 7 post infection (dpi). All animal
experiments involving SARS-CoV-2 were performed in an ABSL3 laboratory
at the Seoul National University Bundang Hospital.

SARS-CoV-2 preparation and titration
The original Wuhan (WA1) strain of SARS-CoV-2 (accession number:
NCCP43326/Korea) was procured from the Korea Centers for Disease
Control and Prevention (KDCDC03/2020), and Vero E6 cells (CRL-1586)
were procured from the Korea Microbial Resource Center (KCTC). Vero E6
cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Life
Technologies, CA, USA), which contained 10% fetal bovine serum (FBS)
(Life Technologies). On the third day, the Vero E6 cells were inoculated
with SARS-CoV-2 to test the cytopathic effect of the strain.
The virus titer was measured by plaque assay. Vero E6 cells were seeded

in 12-well plates at a concentration of 3 × 105 cells per well and incubated.
A monolayer formed one day prior to the plaque assay. The cells were
infected for 1 h in duplicate with 10-fold serial dilutions of SARS-CoV-2 and
overlaid with 0.3% SeaPlaque (LONZA, Basel, Switzerland) agarose medium
containing 2% FBS. After 72 h of incubation, the cells infected with virus
were fixed with 4% paraformaldehyde for 1 h and then stained with a
crystal violet solution (Sigma–Aldrich, 548-62-9). The infectious virus titers
were measured, and the data are reported in plaque-forming units (PFU)
per ml.

Construction of Ribo-seq libraries from SARS-CoV-2-
infected lungs
The lung tissues isolated from sacrificed mice were homogenized within
lysis buffer (10mM/mL Tris-HCl, pH 7.4 (AM9850G, AM9855G Invitrogen);
5 mM/mL MgCl2 (#AM9530G Ambion); 100mM/mL KCl (#AM9640G
Ambion); 2 mM/mL dithiothreitol (DTT, #707265ML Thermo Fisher);
300 μg/mL cycloheximide (CHX, #C1988-1G Sigma‒Aldrich); 1% Triton
X-100 (#T8787 Sigma‒Aldrich); 1X protease inhibitor (#P3100-001 GenDE-
POT); 2 μL/mL SUPERase inhibitor (#AM2696, Invitrogen); and 2 μL/mL
RNase inhibitor (#AM2694 Invitrogen)). The treated cells were incubated
for 5 min on ice followed by incubation at 4 °C for 30min with additional
lysis buffer containing CHX at a concentration that was threefold less than
the original concentration. After incubation, the samples were centrifuged,
and the supernatant was divided into two parts. One-half of the
supernatant was treated with TRIzol LS (#10296028 Invitrogen) to isolate
RNA to be used to generate a transcriptome library (RNA-Seq) using TruSeq
Stranded Total RNA Library Prep Gold (#20020599 Illumina), and one-half
was treated with 0.1 U/mL RNase I (#EN0601 Thermo Fisher) for 30min at
25 °C to digest mRNA regions that were not associated with ribosomes. To
remove the digested mRNA fragments and collect the ribosome-protected
mRNA-containing lysate, samples were passed through illustraTM Micro-
Spin S400 HR Columns (#27-5140-01 Cytiva), which had been prewashed
with a polysome buffer (20 mM HEPES KOH (#BP299100 Fisher BioRea-
gents), pH 7.4; 5 mM MgCl2; 100mM KCl; 2 mM DTT; and 100 μg/mL CHX).
Then, they were treated with TRIzol LS. Ribosomal RNAs were depleted
using a Ribo-Zero Gold Kit with TruSeq Stranded Total RNA Library Prep
Gold (#20020599 Illumina) according to the manufacturer’s protocol, and
they were precipitated in 100% ethanol (#100983 Supelco) at -80 °C.
Samples were labeled with the radioisotope γ-P32 ATP (#NEG-502H-1
PerkinElmer) via the action of the T4 Polynucleotide kinase (T4 PNK,
#M0201L New England Biolabs) and separated on a 10% denaturing Urea-
PAGE (#U5128 Sigma‒Aldrich) gel. The signals were captured on Fujifilm
imaging plates (#28956478 GE Healthcare). The radioisotope signals were
visualized with an Amersham Typhoon Biomolecular imager (v2.0.0.6 GE
Healthcare) and analyzed using MultiGauge (v3.0) software. After protein
separation, samples of approximately 30 nt were excised from the gel, and
the RNA was purified. The purified samples were then dephosphorylated
with Antarctic Phosphatase (#M0289S New England Biolabs) and
biochemically relabeled with γ-P32 ATP using the T4 PNK reaction, which
attaches the phosphate to the free hydroxyl 5′ end of the RNA. Notably,
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10mM ATP (#P0756S New England Biolabs) was added to compensate for
the lack of γ-P32 ATP. The bound labeled samples were separated from the
free ATP in a 10% denaturing urea-PAGE gel followed by RNA excision and
purification, as described above. Adapter ligation and PCR amplification
were performed using a SomaGenics RealSeq®-AC miRNA Library Kit (#500-
00048 RealSeq Biosciences) according to the manufacturer’s protocol. The
desired adapter-ligated PCR products were purified with SPRIselect
magnetic beads as per the manufacturer’s protocol, left side selection.
Libraries were sequenced by the NovaSeq 6000 system.

Computational analyses and other experiments
Details of the computational analyses and other experimental procedures
are described in the supplemental material.

RESULTS
Distinct behaviors of SARS-CoV-2 were identified via tissue
translatome and transcriptome profile analyses
To investigate the translation and transcription of viral and host
genes in the tissues infected with SARS-CoV-2, we applied Ribo-
seq in parallel with RNA-seq to lungs of K18-hACE2 transgenic

mice after intranasal inoculation with virus (1 × 105 PFU of the
original Wuhan SARS-CoV-2 strain; Fig. 1a). The model mouse line
expresses human angiotensin I-converting enzyme 2 (hACE2) in
epithelial lineages including airway epithelium under the control
of the cytokeratin-18 promoter (K18), and the pathological signs of
severe COVID-19, such as pneumonia and pulmonary dysfunction,
has been reported to be recapitulated in these mice in several
studies5,31,32. After SARS-CoV-2 infection, the mice presented with
marked decreases in weight loss and body temperature, becom-
ing moribund at approximately 5–7 dpi (Supplementary Fig. 1a, b).
The infected mice developed pulmonary inflammation that was
characterized by the accumulation of mononuclear cells and
neutrophils predominantly in perivascular areas at 1–4 dpi, and
the inflammation expanded into alveolar spaces as perivascular
and interstitial edema developed at 5–7 dpi (Supplementary Fig.
1c, d). The pathological phenotypes of 1–2 dpi and 5–7 dpi were
noticeably different from each other, implying that the virus‒host
interactions were markedly different. We thus prepared Ribo-seq
and RNA-seq libraries 1 and 2 dpi, representing the early phase of
SARS-CoV-2 pathogenesis (the early dataset), and 5 and 7dpi,
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representing the late phase of SARS-CoV-2 pathogenesis (the late
dataset) (Fig. 1a).
To examine the dynamics of SARS-CoV-2 infection expansion

and viral activity within the tissue microenvironments, we
estimated the proportions of the Ribo-seq and RNA-seq reads
that aligned to the mouse and SARS-CoV-2 genomes (Fig. 1b). The
frequencies of viral genome-mapped reads in both the Ribo-seq
and RNA-seq libraries representing early phase infection showed
an increasing trend, indicating that the number of SARS-CoV-2
virions was continuously expanding during the early pathogen-
esis. The percentage of the Ribo-seq reads aligned to the viral
genome (5–25%) was much lower than that of the RNA-seq read
counterparts (30–85%), implying that the majority of the viral
transcripts were probably not being translated by ribosomes. In
the late Ribo-seq and RNA-seq library datasets, a minor portion of
the reads (fewer than 10%) were aligned to the viral genome,
which were very distinct from the observations in the datasets of
the in vitro cultured cells, in which the proportion of SARS-CoV-2
virus-infected cells was continuously expanding with no mean-
ingful abatement25–27. These results demonstrated that the
proliferation or survival of SARS-CoV-2 virus in the mouse tissue
was effectively restrained at some point before cells entered the
late phase, in contrast to the pattern observed in cell lines.
The density maps of the Ribo-seq reads across the SARS-CoV-2

genome (Fig. 1c and Supplementary Fig. 1g) revealed that the
tissue Ribo-seq libraries included higher read densities in the
ORF1a and b regions and lower densities in the sgRNA region
compared to the cell line counterparts, which alludes to relatively
less expression of sgRNAs in the tissue microenvironment. In line
with these observations, the ratios of sgRNA to gRNA (Fig. 1d) and
the extent of the read stacks on leader sequence regions,
representing the number of sgRNA junctions (Fig. 1e), were
considerably lower in the tissue RNA-seq libraries than in the cell
line datasets, indicating lower levels of steady-state SARS-CoV-2
sgRNAs. The lower ratio of sgRNA to gRNA may be attributable to
restricted production of sgRNAs within infected hosts or active
engulfment and degradation of SARS-CoV-2 gRNAs by the
accumulating immune cells. Either potential mechanism may
contribute to the suppressed expansion of SARS-CoV-2 in the late
phase dataset representing 5 and 7 dpi (Fig. 1b).
Principal component analysis (PCA) of the viral translatome and

transcriptome profiles (Supplementary Fig. 1e, f) demonstrated
that individual viral genes were differentially expressed in tissues
and cell lines. We estimated the proportions of individual sgRNA
junctions, which represent the relative abundances of correspond-
ing sgRNAs. While the cell line transcriptomes showed a
predominance of the sgRNAs M, N, and ORF3a, the tissue
transcriptomes showed relatively lower proportions of these
sgRNAs and moderate predominance of 7a (Fig. 1f). Taken
together, the data show that SARS-CoV-2 virus exhibited distinct
viral gene expression in the tissue microenvironment, which may
either result in or be a result of tissue-specific virus‒host
interactions.

Pseudoribosomal ribonucleoprotein interactions develop
during SARS-CoV-2 pathogenesis
We noted a number of Ribo-seq read peaks at promiscuous
positions across the SARS-CoV-2 genome that had not been
detected in the cell line translatome assay (Fig. 1c and
Supplementary Fig. 1g). The majority of Ribo-seq reads were
thought to be from RNA fragments protected by their associated
ribosomes (RPFs), but through sucrose sedimentation or gel
filtration used in the Ribo-seq protocols, other ribonucleoprotein
(RNP) complexes with biochemical properties similar to those of
canonical ribosomes can be isolated. We, therefore, examined
frame periodicities (i.e., three nucleotide periodicities) and CDS
(coding sequence) enrichment in the Ribo-seq reads to assess the
contributions of authentic RPFs to the tissue Ribo-seq libraries

(Fig. 2a, b). Surprisingly, the frame periodicities of the infected
tissue were considerably compromised compared to those of the
uninfected control tissues. The periodicity losses in host genes
were more prominent in the late phase, indicating that the
interactions between pseudoribosomal RNPs and host RNAs
developed progressively during SARS-CoV-2 pathogenesis. For
viral genes, the periodicities were almost completely abolished at
all time points (Fig. 2a) despite varied frame usages of individual
sgRNAs (Supplementary Fig. 2a). In addition, and more surpris-
ingly, we observed that significantly higher proportions of the
Ribo-seq reads from the SARS-CoV-2-infected tissues than from
the uninfected controls were aligned to UTRs in host genes,
showing an increasing trend postinfection (Fig. 2b, c). These
results indicate that the tissue Ribo-seq libraries included a portion
of RNAs that were unlikely to be associated with or translated by
conventional ribosomes as SARS-CoV-2 pathogenesis progressed.
To dissect the biochemical properties of the pseudoribosomal

RNPs that were associated with the attenuated frame periodicities
and UTR enrichment in host transcripts, we analyzed the lengths
of the Ribo-seq reads that were aligned to CDSs and UTRs.
Intriguingly, the analysis revealed varied degrees of protection
from RNase digestion for the CDS- and UTR-mapped reads
(Fig. 2d). Although the uninfected controls harbored a dominant
population of CDS mapped reads with a narrow range of longer
sequences (~32 nt on average), the infected tissue dataset
revealed additional populations with a broad range of shorter
length sequences that were mapped to UTRs as well as CDSs. We
divided the Ribo-seq reads into two groups based on read length,
namely, into long (30–33 nt) and short (<30 nt) read groups, and
performed metagene alignment across start and stop codons with
the reads of each group. In contrast to the long Ribo-seq reads
following the putative patterns of conventional RPFs, the short
Ribo-seq reads were broadly distributed across 5′ UTRs, CDSs, and
3′ UTRs without periodicity (Fig. 2e), suggesting that the
anomalous features of the infected tissue Ribo-seq libraries are
likely attributable to the accumulation of the short reads. This
speculation Is supported by the considerable positive correlations
among Frame 1 usage, 3′ UTR enrichment, and short read length
proportion of individual genes (Supplementary Fig. 2c). The
temporal kinetics of the proportion of short read revealed that the
number of these sequences progressively increased throughout
the pathogenic period; similarly, the number of the two other
abnormal features were increased (Fig. 2g). These results
collectively demonstrate that the noncanonical Ribo-seq reads
for host genes originate from and represent interactions between
corresponding host transcripts and ribosome-like RNP complexes
that are formed during pathogenesis.
Viral genes harbored much higher proportions (>50%) of short

Ribo-seq reads than host genes in all the time point datasets
(Fig. 2g), and both the long and short reads failed to recapitulate
the conventional movements of ribosomes (Fig. 2f). These findings
imply that, even on the first day after infection, the majority of
viral Ribo-seq reads did not originate from canonical
ribosome–RNA associations. The aforementioned periodicity
losses for viral genes (Fig. 2a) and the lack of a preferential frame
in ORF1ab (Supplementary Fig. 2d) also support this speculation.
Noncanonical Ribo-seq read peaks were more highly distributed
across viral transcripts than host UTRs (Supplementary Fig. 2b),
implying that the aberrant RNP interactions may preferentially and
frequently occur across viral transcripts or that the origins of these
interactions, namely, pseudoribosomal RNPs, for viral and host
genes may be different.
The Ribo-seq datasets of the SARS-CoV-2-infected cell lines did

not show noticeable accumulation of short reads (data not shown)
or UTR enrichment (Fig. 2b and Supplementary Fig. 2e) after
infection, and they showed moderately compromised periodicities
in both host and viral transcripts (Fig. 2a). These discrepancies
between the tissue and cell line datasets suggest that the
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development of the pseudoribosomal RNP interactions largely
took place in lung tissues, rather than in cell lines, after SARS-CoV-
2 infection.

The pseudoribosomal RNP-associated genes exhibit impeded
translational elongation in infected tissues
To assess the target specificities of the pseudoribosomal RNP
interactions, we quantified the putative proportions of the
noncanonical Ribo-seq reads for individual genes based on the
extent of short read ratio, Frame 1 usage, and 3′ UTR enrichment
(RPF abnormality indices, RAIs) (Supplementary Table 1). Visualiz-
ing the temporal profiles of the RAIs with t-distributed stochastic
neighbor embedding (t-SNE) revealed that the abnormalities
progressively developed and spread across whole genes through-
out SARS-CoV-2 pathogenesis (Fig. 3a). Notably, a portion of the
genes were found at basally high proportions in the noncanonical
Ribo-seq reads, including those in the uninfected controls, which
was validated by pairwise comparisons between each time point
and the respective control (Supplementary Fig. 3a). These
observations suggest at least two possible origins for the
noncanonical Ribo-seq reads that contribute to the initially high
level of RAIs that progressively accrue. By overlaying the areas of
subcellular localization (Fig. 3b), no pattern was found for any
organelle.
The genes initially harboring high levels of RAIs were markedly

overrepresented in microtubule-related Gene Ontology (GO)
terms, suggesting that the origin of the basal noncanonical
Ribo-seq reads might be associated with microtubule-related
cellular functions (Fig. 3c). Intriguingly, these genes exhibited

higher sensitivities to nonsense-mediated decay (NMD, Supple-
mentary Fig. 3e) and showed high intron retention ratios
(Supplementary Fig. 3d). In specific biological contexts, certain
microtubule complexes accompanying RNA bindings are involved
in transports of microtubule constituent-coding transcripts for
their local translation or of aberrantly spliced mRNAs with retained
introns to p-bodies where NMD takes place. The basal non-
canonical Ribo-seq reads may conceivably be attributable to the
molecules that interact with RNPs that are associated with the
microtubule complexes.
The infection-triggered elevation of RPF abnormalities was

observed broadly across most genes, but the quantitative
assessment of RAIs for individual genes indicated they acquired
the aberrant RNP interactions to different magnitudes (Fig. 3a and
Supplementary Fig. 3a). We performed gene set enrichment
analysis (GSEA)33 to identify for biological properties that are
associated with biased increases in RPF abnormalities. The GSEA
results revealed overrepresented multiple immune response- and
metabolism-associated terms, such as “antigen processing and
presentation” and “fructose and mannose metabolism” (Fig. 3d
and Supplementary Fig. 3f). Notably, the RNA levels of the genes
exhibited an overall increase in RNA levels, but to a lesser extent
or decrease in RPF levels in the late phase (Fig. 3e), which led us to
hypothesize that the aberrant RNP interactions are probably
involved in the translational suppression of transcriptionally
activated genes. In line with this hypothesis, the genes with high
RAI increases exhibited decreasing and increasing trends in RPF
(Fig. 3f and Supplementary Fig. 3g) and RNA levels (Fig. 3g and
Supplementary Fig. 3h), respectively, over the time course
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Fig. 2 Pseudoribosomal RNP interactions manifest in the lungs during SARS-CoV-2 pathogenesis. a Frame distributions of the 5′ ends of
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(Supplementary Table 2). Given that the pseudoribosomal RNP
interactions took place in the CDSs as well as UTRs, we examined
whether the RNP–mRNA binding interferes with ribosome move-
ment along a CDS during translation elongation. Notably, we
observed that more potent ribosome stalling developed for the
gene with high RAI increases as the pathogenesis proceeded
(Fig. 3h), supporting the idea that translation is repressed by
pseudoribosomal RNPs and that these molecules are conceivably
involved in hindering the activities of elongating ribosomes.
To dissect sequence determinants of RPF abnormalities, we

examined the association of the RAI with different properties of
mRNA sequences, including their length, CG abundance, and
purine ratio in CDS and UTRs. The length and CG ratio of a CDS
were positively correlated with the RAI of the corresponding
genes in the uninfected control group, alluding to the reliability of
these properties as contributors to the basal RAI (Supplementary
Fig. 3b). For the accruing RAIs, we observed strong negative
correlations between RAI increases in the late phase and the CDS

length and 5′ UTR CG proportion of individual genes (Supple-
mentary Fig. 3c). These results suggest that pseudoribosomal RNP
complexes may prefer transcripts with short ORFs and high AU
frequencies in the 5′ UTR.

Ribosome heterogeneity with compromised 5 S rRNP
association manifests during SARS-CoV-2 pathogenesis
The elevation in the number of the noncanonical Ribo-seq reads
and depletion in the number of RPFs imply that the stoichiometry
of conventional ribosomes and other RNP complexes was
considerably altered in SARS-CoV-2-infected tissues. In accordance
with this finding, the relative proportions of the Ribo-seq reads
that were aligned to rRNA, transfer RNA (tRNA), 7SL, and mRNA
transcripts exhibited marked changes after viral infection (Fig. 4a).
The proportion of 7SL RNA-mapped reads decreased markedly,
and the proportions of rRNA and mRNA mapped reads decreased
to a lesser extent, suggesting that the number of RNP complexes
associating with these RNAs was decreased or that the ability of
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these RNP complexes to bind partners in the infected tissues was
lost.
We found that the expression of ribosomal protein (RP)-coding

genes was markedly changed to varying degrees in the infected
tissues (Supplementary Fig. 4b and Supplementary Fig. 6d).
Different stoichiometries of the constituent proteins may affect
the composition of ribosomes. Ribosomes are homogenous
complexes; however, it is now known that they form hetero-
geneous conformations in different biological contexts34,35. By
analyzing the alignment patterns of Ribo-seq reads across RP
contact sites in rRNAs, we investigated whether ribosomes formed
distinctive compositions in infected tissues. Intriguingly, the
interactions of RP uL5 and uL18 with rRNA were markedly altered
in SARS-CoV-2-infected tissues (Fig. 4b and Supplementary Fig. 4a,
b). Given that the RNA level of uL5 and uL18 decreased in the late
phase, these observations imply that ribosomes in the infected
tissues are likely depleted in the RNP complexes comprising the
RPs. Notably, uL5 and uL18 are the only RPs that directly interact
with 5 S rRNA, constituting 5 S RNP in mature ribosomes.
5 S RNP organizes the functional center of 60 S ribosome

subunit, including peptidyl transfer center (PTC) and nascent
polypeptide exit tunnel (NPET), and its mutation has been
reported to induce flaws in translation elongation, such as
compromised fidelity of translational reading frames36–38. We
identified marked changes in the fragmentation pattern around
uL5- and uL8-adjacent regions within rRNAs (Fig. 4c, upper panel).
Along with the aforementioned observations, this result indicates
at least partially attenuated 5 S RNP associations with the 60 S
subunit and 80 S ribosome in SARS-CoV-2-infected tissues. Given
that a size reduction and functional center modulation are
expected from the deviated 5 S RNP association (Fig. 4c, a lower
panel), the ribosome heterogeneity manifesting in SARS-CoV-2
pathogenesis may contribute to the accumulation of the small

Ribo-seq reads and affect translation elongation in infected
tissues.
The exquisite regulation of 5 S RNP integrity is involved in cell

cycle progression and proliferation. It has been reported that the
abundant 5 S RNPs activate p53 expression, thereby inducing cell
cycle arrest and apoptosis39,40. We examined p53 expression in
the tissue translatome and transcriptome profiles and found that it
was significantly decreased in the late phase (Fig. 4d). The marker
genes for cell cycle progression and proliferation (cyclins and
histones) were conversely upregulated as the pathogenesis
proceeded (Supplementary Fig. 4c, d). These results support the
idea that in SARS-CoV-2-infected tissues, ribosome heterogeneity
with compromised 5 S rRNP association manifests and even drives
the expression of genes related to cell proliferation and survival.

Ribosomes preferentially stall on transmembrane
protein-coding mRNAs in SARS-CoV-2-infected tissues
The potentiated ribosome stalling for the genes with high RAIs
and the ribosome heterogeneity with compromised 5 S rRNP
association prompted us to look for signs of halted translation
elongation in other mRNA transcripts. We identified ribosome
stalling sites and assessed their densities based on the A-site
information of the canonical Ribo-seq reads (i.e., RPFs) in the tissue
Ribo-seq libraries. The ribosome-stalled transcripts exhibited
increases in RPF levels to a lesser extent than those in RNA levels,
indicating that their translational activities to synthesize proteins
were genuinely attenuated (Supplementary Fig. 5a).
We examined collective intensities of ribosome stalling per

codon at all the time points and found that ribosomes stalled
preferentially on a specific subset of codons in the late phase
(Fig. 5a). The codons with late phase-specific ribosome stalling
showed cytosine enrichment at the third base position (Fig. 5a, b,
and Supplementary Fig. 5b). These results suggest that the biased
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stalling on the “third base C” codons was likely attributable to the
preferential pausing of ribosomes on the transcripts that contain
these codons at a high frequency. According to GO enrichment
analysis, membrane protein-coding genes carry a significantly
higher ratio of wobble C codons (Fig. 5c). Despite a similar
distribution of codons with the third base C in both transmem-
brane domain (TMD)- and non-TMD-coding sequences (Supple-
mentary Fig. 5c), the frequency of ribosome stalling was higher in
TMD-coding regions than in non-TMD-coding regions (Fig. 5d).
These results suggest that the ribosome stalling may be
associated with ER (endoplasmic reticulum) membrane-
associated complexes, given that translation of TMDs takes place
on the membrane of this organelle.
Additionally, GO enrichment analyses of the genes with

ribosome stalling demonstrated marked increases in ribosome
stalling in the late phase, especially for ribosome- and focal
adhesion-associated genes (Fig. 5e and Supplementary Fig. 5d).
The profound stalling for ribosome-associated genes likely
contributes to the attenuated translation of ribosomal protein-
coding genes that are transcriptionally upregulated in the late
phase (Supplementary Fig. 6d).

Attenuated translation of transcriptionally upregulated genes
in late SARS-CoV-2 pathogenesis
The canonical Ribo-seq reads (RPFs) and the RNA-seq reads
constituted distinct profiles of temporal gene expression during
SARS-CoV-2 pathogenesis in a translation-dependent and
translation-independent manner, respectively (Supplementary
Fig. 6a). We examined the difference between gene expression
changes in the tissues and cell lines after SARS-CoV-2 infection by

comparing tissue and cell line translatome profiles. The up- or
downregulated genes in the SARS-CoV-2-infected tissues and cell
lines negligibly overlapped with each other (Supplementary Fig.
6b), suggesting that the gene regulation or disruption in the tissue
during SARS-CoV-2 pathogenesis may be dissimilar with those in
the infected cell lines. The predicted phenotypes from function
and pathway enrichment analyses corroborated the discrepancy
(Fig. 6a). Except for cell cycle progression and necrosis, all the
predicted biological functions and pathways in the tissue and cell
line translatomes were different.
We performed comparative analyses to anticipate phenotypes

from the gene expression changes observed in the tissue Ribo-seq
and RNA-seq datasets after SARS-CoV-2 infection (Fig. 6b,
Supplementary Table 3 and Supplementary Table 4). The
predicted phenotypes and their regulatory directions (positive or
negative) were mostly shared between contemporary transla-
tomes and transcriptomes, and immune response-associated
terms such as migration and activation of lymphocytes were
considerably enriched. However, as for the extent of the predicted
phenotype bias (enrichment score), the transcriptomes had more
positive values for many terms than the translatomes in the late
phase. This observation led us to hypothesize that the increases in
the expression of phenotype-associated genes in the translatomes
may not catch up with those in the transcriptomes, i.e.,
translational activities for the transcriptionally upregulated genes
may be compromised in the late phase. To examine this
hypothesis, we assessed the changes in ribosome densities (RDs)
for the annotated genes of immune response GO terms. The
majority of the inflammatory, adaptive immune, and innate
immune response-associated genes exhibited RD increases and
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decreases in the early and late phases, respectively (Fig. 6c). The
RNA levels of the genes markedly increased in the late phase to a
greater extent than their RPF counterparts (Supplementary Fig.
6c). These results imply that compromised translation possibly
alleviates the effects of transcriptional upregulation for the
immune response genes.
Since not all the annotated immune genes exhibited transla-

tionally attenuated gene expression in the late phase, we isolated
the subset of genes with the expression pattern (Fig. 6c,
demarcated by red lines) and then reconstructed molecular
function and pathway networks based on them (Fig. 6d;
Supplementary Table 5). Interestingly, multiple pathways, such
as Interleukin-1 (IL-1), type 1 interferon, and IL-6 signaling

pathways, which are associated with COVID-19 pathology41,42,
were highlighted. Leukocyte migration-, activation-, and inflam-
matory response-related terms were underscored as well,
suggesting that compromised translation for the immune-
related genes may be involved in the immune imbalance in
SARS-CoV-2-infected tissues.
To explore other cellular functions and molecular pathways that

are modulated by translation regulation or perturbation, we
performed GSEA based on the RDs of individual genes. We
discovered that a number of genes associated with “response to
external stimuli”, “cellular respiration and metabolism”, and
“ribosome and translation” terms were translationally upregulated
in the early phase and downregulated in the late phase of
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SARS-CoV-2 pathogenesis (Fig. 6e; Supplementary Table 6),
suggesting that regulation in each direction may play dominant
roles in early and late SARS-CoV-2 pathology. The RP-coding genes
that exhibited clear ribosome stalling in the late phase were
highlighted here as well. We examined the changes in RPF and
RNA levels of canonical RP-coding genes (Supplementary Fig. 6d),
and the results revealed bipartite regulatory pathways of basic
translation machinery constituents during pathogenesis. In the
early phase, the RNA levels of the RP-coding genes markedly
decreased despite their enhanced translation, while in the late
phase, the genes were transcriptionally activated, but their
translation was strongly compromised. Intriguingly, mitochondrial
ribosome protein-coding genes were maintained at relatively
constant levels of expression both in the translatomes and
transcriptomes. These observations indicate that disrupted
production of canonical ribosomes in respiratory tissues inevitably
ensues from SARS-CoV-2 infection.

Mouse homologs of human COVID-19 signatures exhibit
attenuated translation activities
To examine the homology between gene regulation in our mouse
model of SARS-CoV-2 pathology and human COVID-19 patients,
we exploited single-cell transcriptomes of lung autopsy tissues
from COVID-19 and non-COVID-19 donors (Fig. 7a)4. We assessed
single-cell expressions for human homologs of the up- and
downregulated genes in the mouse translatomes after SARS-CoV-2

infection. Uniform manifold approximation and projection (UMAP)
plots indicated that the up- and downregulated genes were
predominantly expressed in COVID-19 and non-COVID-19 donor
cells, respectively (Fig. 7b and Supplementary Fig. 7a). The
homologs of the upregulated genes were most prominently
expressed in macrophages and monocytes, which is a reasonable
outcome given that SARS-CoV-2 infection induces massive
infiltration of innate immune cells into mouse and human lungs.
In addition to these results, the collective expressions for the
human homologs of the up- and downregulated genes in SARS-
CoV-2-infected mouse tissues exhibited higher expression in
COVID-19 and non-COVID-19 populations, respectively (Fig. 7c,
the left panel), indicating that gene expression changes in human
and mouse lungs with SARS-CoV-2 pathology are at least partially
similar. The up- and downregulated gene sets in the human cell
line translatomes showed less similar and, in some cases, opposite
patterns (Fig. 7c, a right panel), which, paradoxically, supports the
relevance of the mouse tissue translatome in recapitulating gene
regulation in human COVID patients.
We identified marker genes for the cell type clusters based on

the human single-cell transcriptomes and examined RDs of their
respective mouse homologs (Supplementary Fig. 7c). None of the
marker gene sets were predominant among those with RD
decreases in the late phase, indicating that the compromised
translation in the infected tissues was unlikely to be exclusive to
certain cell types. We then isolated COVID-19 and non-COVID-19
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signature genes that had been exclusively expressed by each
donor in every cell type cluster (Supplementary Fig. 7b;
Supplementary Table 7). Intriguingly, the RDs of the COVID-19
signatures decreased in the late phase to a greater extent than
those of their non-COVID-19 counterparts (Fig. 7d). This result
implies that attenuated translation may preferentially occur for a
common set of genes that are transcriptionally upregulated after
SARS-CoV-2 infection in both species. We then examined RD
changes in the signatures of individual cell types (Fig. 7e). RD
decreases of COVID-19 signatures in the late phase showed
preponderances for most immune cells, except B cells and mast
cells, suggesting that translation might be preferentially compro-
mised in these cells. In the early datasets, the COVID-19 signatures
of CD8+ T cells, plasma cells, club cells, and mesenchymal cells
exhibited larger RD increases, alluding to synergy between
translational and transcriptional upregulation in these cells during
the early pathogenesis.

DISCUSSION
What and how viral and host genes are regulated in virus-infected
tissues are important aspects of the pathophysiology of all viral
diseases, including COVID-19. Given that there is currently no
translatome constructed from any virus-infected tissue, our study
offers a unique resource to directly study gene translation in vivo
within tissues that undergo viral pathogenesis as well as SARS-
CoV-2 pathogenesis.
The translation and transcription of SARS-CoV-2 virus in tissues

were very different from those in the cell lines, highlighting
unseen actions of the virus at the molecular level in physiological
contexts. In particular, the relatively low levels of sgRNAs and
subdued expansion of SARS-CoV-2 imply that the host defense
system may directly impede sgRNA synthesis of RNA-dependent
RNA polymerase (RDRP) or eliminate infected cells where sgRNAs
are actively produced. Given that the proportions of M and N
protein-coding sgRNAs were markedly lower in the tissues versus
the cell lines, either scenario may probably work when the
expression of these viral genes is high. It will be intriguing to
isolate the temporal RDRP complexes from infected tissues and
identify the associated proteins, which may reveal the hidden
defense mechanisms that disrupt viral expansion.
Unexpectedly, our analysis of the tissue Ribo-seq libraries

uncovered hitherto-unidentified RNP interactions in SARS-CoV-2-
infected tissues. No previous translatome studies on virus-infected
cell lines had reported this phenomenon, implying that exclusive
or specific factors in the tissue microenvironment are likely to be
key triggers. Given that RPF abnormalities continuously accrued
even after SARS-CoV-2 infection is attenuated in tissue (5 and
7 dpi), their emergence is unlikely to be dependent on viral
activity. The pseudoribosomal RNP interactions were coinciden-
tally identified in conjunction with specific pathological features,
such as extensive immune cell infiltration and pulmonary structure
collapse (Supplementary Fig. 1c, d), which may allude to causal
relationships between RBP accumulation and pathological events.
It will certainly be interesting to investigate whether excessive
immune activation or tissue damage leads to the production of
noncanonical Ribo-seq reads. If it does, then RNP interactions may
be critical signatures in diverse pathological contexts, including
other acute and severe respiratory disease contexts. Similarly, RPF
abnormalities more likely originate from endogenous RNP
complexes that form during pathogenesis rather than exotic viral
complexes. To clarify the molecular origin of the pseudoribosomal
RNP interactions, isolating and identifying the RNP complexes in
SARS-CoV-2-infected tissue is essential and may elucidate a novel
molecular pathway that explains the gene regulation or perturba-
tion underlying SARS-CoV-2 pathology.
The positive correlation between RPF abnormality and RNA level

increases of individual genes suggests that the pseudoribosomal

RNPs may preferentially target newly and actively synthesized
RNAs. In addition, the decreased densities and the elevated
pausing rates of ribosomes for the genes with the RPF abnormality
increases suggest that the RNPs and canonical ribosomes may
conceivably compete for access to newly transcribed transcripts.
Given that translation of the transcriptionally upregulated genes is
compromised during late pathogenesis, SARS-CoV-2-infected
tissues may hardly attain the required amounts of certain gene
products (i.e., proteins) to recover from damage caused by the viral
invasion, regardless of the transcriptional reprogramming that
induces the expression of these genes. If this is the case, then
resolving the RBP complexes may be a key strategy for mitigating
SARS-CoV-2 pathogenesis.
Our study proposes that disruption of RNP complexes that are

associated with translation is one of the most prominent
molecular events underlying SARS-CoV-2 pathology. The dichot-
omous suppression of RP-coding genes is thought to reduce
ribosome steady-state levels and global translational capacities in
infected tissues. Moreover, the differential magnitudes of RP gene
downregulation are linked to ribosome heterogeneity. The
relatively low expression of RP uL5 and uL18 may result in
attenuated 5 S RNP associations with large ribosomal subunits,
which may induce defects in translation elongation. The RPF
abnormalities may originate from heterogeneous ribosome–RNA
associations, although further study is required to verify this
scenario. In addition, the potentiated ribosome stalling in TMD-
coding regions alludes to disturbed elongating ribosome com-
plexes that are associated with ER. Decreases in 7SL RNA-mapped
Ribo-seq reads may be linked to unstable ER-associated mRNA
translation. The molecular mechanisms underlying both the
hindrances to translation elongation are currently unclear, but
they will certainly be intriguing areas to investigate.
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