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After cell death: the molecular machinery of efferocytosis
Byeongjin Moon 1,2,3, Susumin Yang 1,2,3, Hyunji Moon1,2,3, Juyeon Lee1,2,3 and Daeho Park 1,2✉

© The Author(s) 2023

Cells constituting a multicellular organism die in a variety of ways throughout life, and most of them die via apoptosis under normal
conditions. The occurrence of apoptosis is especially prevalent during development and in tissues with a high cellular turnover rate,
such as the thymus and bone marrow. Interestingly, although the number of apoptotic cells produced daily is known to be
innumerable in a healthy adult human body, apoptotic cells are rarely observed. This absence is due to the existence of a cellular
process called efferocytosis that efficiently clears apoptotic cells. Studies over the past decades have focused on how phagocytes
are able to remove apoptotic cells specifically, swiftly, and continuously, resulting in defined molecular and cellular events. In this
review, we will discuss the current understanding of the clearance of apoptotic cells at the molecular level.
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INTRODUCTION
Apoptosis is an essential process that occurs in multicellular
organisms to eliminate unwanted cells, such as superfluous cells
produced during development, aged cells that have lost their
function, cells that can develop into cancer, damaged cells, and
cells infected with viruses or bacteria, throughout life1. Through
apoptosis, multicellular organisms can achieve developmental
integrity, maintain tissue homeostasis, and protect themselves
from the spread of infection2. However, inducing cell death of
unwanted cells alone cannot accomplish these tasks. The dead
cells must eventually be removed, as they can induce inflamma-
tion themselves. Removal of apoptotic cells, known as efferocy-
tosis, is the final step of apoptosis3. It is known that hundreds of
billions of cells undergo apoptosis in a healthy human body daily.
However, apoptotic cells are rarely observed, even in tissues with a
high cellular turnover rate4. For example, although most devel-
oping thymocytes in the thymus undergo apoptosis, apoptotic
thymocytes are seldom seen in the thymus because they are
swiftly and continuously removed5,6.
Efferocytosis is generally referred to as the phagocytosis of

apoptotic cells because it involves the ingestion of extracellular
substances7. Phagocytosis is the process of taking in extracellular
particles larger than 0.5 µm in diameter by cells called phagocytes.
In immunology, the term specifically refers to the ingestion and
removal of bacteria and other pathogens within membrane-
bound vesicles called phagosomes8. The common usage of the
term phagocytosis for both pathogens and apoptotic cells may be
confusing to individuals outside the field, as the immune response
induced after phagocytosis of pathogens differs completely from
the response after the engulfment of apoptotic cells. Pathogen
phagocytosis often triggers proinflammatory responses, while
engulfment of apoptotic cells generally induces anti-inflammatory
responses or is immunologically silent9,10. Therefore, to avoid
confusion, the term efferocytosis, which means "taking to the
grave" or “burying,” was proposed instead of phagocytosis of

apoptotic cells and is now used in the field3. Efferocytosis can be
divided into four steps: recruitment of phagocytes to apoptotic
cells, recognition of apoptotic cells by phagocytes, internalization
of apoptotic cells into phagocytes, and degradation of apoptotic
cells in phagocytes11. In this review, we will discuss the molecular
mechanisms underlying each of these steps in efferocytosis. In
addition, calcium signaling holds considerable importance in a
wide range of cellular processes, and efferocytosis is no different.
In the later part of this review, our focus will be on calcium
signaling during efferocytosis and elucidating its molecular-level
influence on each individual step of efferocytosis, which has not
been previously reviewed.

APOPTOTIC CELL GENERATION AND THE TYPE OF
PHAGOCYTES
Our body is made up of ~37 trillion cells, and it is estimated that
~300 billion cells undergo apoptosis every day to eliminate
superfluous, aged, and damaged cells, which ultimately maintain
homeostasis. This is an astonishing number, representing 1% of
the cells that make up our body10,12,13. Apoptosis occurs in various
sites, especially in areas with a high cellular turnover rate, such as
the thymus, bone marrow, mammary gland, and spleen. In the
thymus, 95% of thymocytes undergo apoptosis during T-cell
development, with only a small number of cells making it through
key checkpoints6. In the bone marrow, a subset of excess
immature B cells survives through a selection process during B
cell development14. The mammary gland is also a site where
apoptosis is actively occurring. After lactation, mammary epithelial
cells undergo apoptosis15,16. Aged cells in need of replacement
also undergo apoptosis. For example, neutrophils, whose lifespan
is approximately 24 h, undergo apoptosis after one day. There are
~3000 to 7000 neutrophils in 1 µl of blood, and therefore, at least
18 billion neutrophils undergo apoptosis in an adult body every
day17–19.
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Phagocytes are a type of cell that defends the body by
engulfing extracellular particles such as bacteria and dead or
dying cells. There are two types of phagocytes, professional and
nonprofessional, which are classified based on their level of
effectiveness in phagocytosis20. The primary function of profes-
sional phagocytes is to remove apoptotic cells or exogenous
particles such as bacteria. Macrophages and immature dendritic
cells are examples of professional phagocytes that are specifically
designed for phagocytosis and have the ability to quickly and
continuously phagocytose targets21. In contrast, nonprofessional
phagocytes, such as fibroblasts and epithelial cells, possess the
ability to perform phagocytosis, but it is not their primary role22–24.
Most cells in tissues or organs possess the ability to perform
phagocytosis, although they are inferior to professional phago-
cytes in terms of rate and capacity. Fibroblasts and epithelial cells
are examples of nonprofessional phagocytes25. Specialized
phagocytes are a recently classified type of phagocytes whose
primary role is not phagocytosis, but they have other functions
similar to those of nonprofessional phagocytes, and they routinely
remove apoptotic cells with phagocytosis, similar to professional
phagocytes26. Retinal pigment epithelial (RPE) and Sertoli cells, as
specialized phagocytes, remove the shed outer segments of
photoreceptors in the retina and phagocytose apoptotic germ
cells and the residual body of the sperm during spermatogenesis,
respectively27–31. Additionally, astrocytes can be categorized as
specialized phagocytes because they are phagocytic, mediate
synapse elimination, and support neighboring neurons32,33.

MOLECULAR STEPS IN EFFEROCYTOSIS
There are various types of cell death in our body, but most cells die
through apoptosis during development and homeostasis34. These
apoptotic cells are generally cleared in four steps (Fig. 1). The first
step is to identify apoptotic cells. Apoptotic cells may neighbor
phagocytes, but if not, phagocytes need to find apoptotic cells. At
this stage, apoptotic cells are not passive but actively recruit
phagocytes to them by releasing chemoattractants called “find-me
signals”. In the second step, phagocytes recognize the apoptotic
cells that are adjacent to them. In this process, apoptotic cells are
recognized by phagocytes through interactions between ligands
exposed on apoptotic cells, called “eat-me signals”, and their
receptors expressed on phagocytes. Since phagocytes distinguish
cells to be phagocytosed from cells not to be phagocytosed
through this step, it is one of the pivotal steps in efferocytosis. In
this process, the best-known ligand exposed on apoptotic cells is
phosphatidylserine, which is directly or indirectly sensed by various
receptors on phagocytes. In the next step, apoptotic cells sensed
by phagocytes are internalized into phagocytes. The ligand‒
receptor interaction activates signaling pathways downstream of
engulfment receptors, which primarily induces cytoskeletal rear-
rangement to ingest massive targets. In the final step, phagosomes
with internalized apoptotic cells fuse to lysosomes to form
phagolysosomes. Apoptotic cells undergo degradation by various
digestive enzymes derived from lysosomes. We will discuss the key
molecules involved in these steps in detail (Table 1).

Recruitment of phagocytes
Numerous apoptotic cells are produced every day, but few
apoptotic cells are seen in a steady state. This absence is because
efferocytosis is highly efficient and promptly removes apoptotic
cells. If apoptotic cells and phagocytes are adjacent, finding
apoptotic cells does not affect the efficiency of efferocytosis.
However, when they are distant, the effectiveness of efferocytosis
depends on the phagocyte’s ability to locate apoptotic cells.
Phagocytes do not randomly search for apoptotic cells but move
in a specific direction that is induced by molecules released by
apoptotic cells. These molecules, known as “find-me signals”, act
as chemoattractants, causing the chemotaxis of phagocytes

toward apoptotic cells (Fig. 1). Interestingly, find-me signals not
only direct phagocytes to the location of apoptotic cells but also
enhance their ability to clear apoptotic cells and induce anti-
inflammatory responses4,35.
Several find-me signals have been identified thus far. Fractalk-

ine (CX3CL1), sphingosine 1-phosphate (S1P), lysophosphatidyl-
choline (LPC), and nucleotides (ATP and UTP) have attracted the
most attention. LPC is the first find-me signal discovered, and
along with S1P, it is one of the lipid find-me signals36. It was
reported that LPC was produced by the cleavage of phosphati-
dylcholine by phospholipase A2 activated by Caspase-3 during
apoptosis and suggested that ABCA1 might be crucial for LPC
release from apoptotic cells. LPC released from apoptotic cells is
recognized by G2A, a G-protein coupled receptor, and is known to
induce cell migration from phagocytes to apoptotic cells36,37.
However, further investigation is necessary to determine whether
LPC acts as a find-me signal in vivo, given that the concentration
of LPC used in a previous study was much higher than that found
in apoptotic supernatants and plasma38.
S1P is another lipid find-me signal39. Although S1P was

previously known to be released from apoptotic cells, its role in
inducing phagocyte chemotaxis in efferocytosis was not clear40.
Gude et al. reported that during apoptosis, sphingosine kinase 1
(SphK1) upregulates and increases the release of S1P from
apoptotic cells. They also demonstrated that purified S1P induces
phagocyte migration39. S1P receptors may be involved in
phagocyte migration. However, the expression of several S1P
receptors (1–5) in phagocytes makes it difficult to determine
which receptor is responsible for phagocyte migration in
efferocytosis. Moreover, similar to LPC, the concentration of S1P
required to induce phagocyte migration is much higher than that
found in apoptotic supernatants41. Further investigations are
needed to determine whether S1P acts as a find-me signal in vivo.
The protein fractalkine is found in the cell membrane and is

released from apoptotic B cells and neurons. During apoptosis,
cells form membrane blebs, which are released in the form of
microparticles. Fractalkine-associated microparticles released from
apoptotic cells are known to induce monocyte chemotaxis toward
apoptotic B cells42,43. Studies have shown that CX3CR1 receptors
on phagocytes sense fractalkine and induce phagocyte migration
toward apoptotic cells. However, fractalkine is limited in tissue
distribution, as it is only expressed in a few cell types.
Nucleotides such as ATP and UTP also serve as find-me

signals during efferocytosis44. Nucleotides are known to be
released from both apoptotic and necrotic cells, but much
smaller amounts of nucleotides are released from apoptotic
cells in a regulated manner. It was shown that nucleotides
released from apoptotic cells induced phagocyte chemotaxis
in vitro and in vivo, and co-treatment of nucleotides with
apyrase, an ATP diphosphohydrolase, impaired phagocyte
chemotaxis and efferocytosis in vivo44. Although various
purinergic receptors are known to recognize nucleotides, it
was reported that ATP and UTP were recognized by the P2Y2
receptor, leading to phagocyte chemotaxis. The regulated-
manner release of nucleotides from apoptotic cells is controlled
by Panx1. During apoptosis, Caspase-3 and −7 cleave the
C-terminal tail of Panx1 and generate an open conformation of
Panx1, causing the release of nucleotides45.
There are various other find-me signals, such as ribosomal

protein S19 and EMAP II, that have not been mentioned46,47.
Further investigation is needed to determine whether they are
secreted only from specific types of apoptotic cells. In addition, it
will be interesting to investigate whether various find-me signals
exhibit synergistic effects on phagocyte chemotaxis.

Recognition of apoptotic cells
Phagocytes have another task to distinguish cells to be
phagocytosed from cells not to be phagocytosed, even though
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phagocytes are recruited into the proximity of apoptotic cells by
find-me signals. This recognition is achieved by the interaction
between ligands on apoptotic cells, called eat-me signals, and
their receptors on phagocytes. Apoptotic cells expose various
ligands on the cell surface that are not expressed in live cells.
These ligands on apoptotic cells are sensed by receptors on
phagocytes indirectly by bridging molecules or directly (Fig. 1)48.
In this section, molecules involved in the second step of
efferocytosis will be discussed.
Various eat-me signals present on apoptotic cells have been

reported thus far4. These include phosphatidylserine (PS), oxLDL,
calreticulin, ICAM3, C1q, and Annexin I. Among them, PS has
attracted the most attention due to its universal exposure to

apoptotic cells and the drastic inhibitory effect on efferocytosis upon
masking it49,50. Some phospholipids, such as PS and phosphatidy-
lethanolamine, exclusively exist in the inner leaflet of the plasma
membrane in live cells. This asymmetric distribution of phospholi-
pids between the lipid bilayer is maintained by phospholipid
flippases that translocate specific phospholipids, such as PS, from
the outer leaflet to the inner leaflet of the plasma membrane51. The
asymmetric distribution is disrupted through the inactivation of
flippases and activation of scramblases during apoptosis, exposing
PS on the cell surface52. It was reported that ATP11, a flippase, was
cleaved, leading to its inactivation, whereas Xkr8, a scramblase, was
also cleaved by caspases, leading to its activation during apoptosis,
which eventually exposed PS on the surface of apoptotic cells53,54.

Fig. 1 Molecular basis of efferocytosis. In the first step of efferocytosis, chemoattractants such as nucleotides and LPC released by apoptotic
cells recruit macrophages. In the second step, the recruited macrophages directly or indirectly recognize apoptotic cells through ligand‒
receptor interactions. This interaction leads to the activation of downstream signaling pathways, which ultimately results in the
rearrangement of the cytoskeleton and internalization of apoptotic cells in the third step. In the final step of efferocytosis, internalized
apoptotic cells form phagosomes and are degraded by lysosomal enzymes. LC3-associated phagocytosis (LAP) is more efficient in degrading
apoptotic cells than non-LAP.

B. Moon et al.

1646

Experimental & Molecular Medicine (2023) 55:1644 – 1651



It seems that PS exposure on the cell surface is sufficient to
induce phagocytosis of the target in some cases, but it is
insufficient for phagocytosis of the target in other cases53,55. It was
shown that even viable cells could be engulfed when they
expressed PS53. In contrast, in some biological processes, such as
platelet activation, live cells express PS56, but these cells are not
engulfed. Additionally, forced PS exposure on live cells through a
mutant of TMEM16F, a calcium-dependent scramblase, failed to
phagocytose live cells55. One possible explanation for the failure
of engulfment of PS-exposed live cells is that PS-exposed live cells
possess signals not to be engulfed, called don't eat-me signals57.

In efferocytosis, phagocytes must remove only apoptotic cells
without phagocytosing healthy and normal cells even though
they expose PS on the cell surface. This specificity is achieved by
the balance of the two signals, the eat-me and don’t eat-me
signals. Cells that should not be engulfed may possess both
signals, but cells that should be engulfed present only eat-me
signals, resulting in efferocytosis. Don’t eat-me signals include
CD31, CD47, CD24, PD-L1, and MHC I57. A molecular mechanism
by which the signals prevent phagocytosis appears to be shared.
Upon binding of don’t eat-me signals to their receptors,
phosphatases such as SHP-1 and SHP-2 are activated and
dephosphorylate myosin II58–63. Overall, the presence of eat-me
signals on target cells are required for phagocytes to engulf them.
As mentioned above, a number of receptors expressed on

phagocytes sense the ligands on apoptotic cells. These are
collectively called engulfment receptors and include lectins, LRP1,
CD14, scavenger receptors such as CD68 and SR-A, DD1α, and
receptors recognizing PS48. Due to the importance of PS as a
ligand on apoptotic cells in efferocytosis, this section will mainly
discuss engulfment receptors that recognize PS. The engulfment
receptors that recognize PS can be divided into two types based
on how they recognize PS. One group recognizes PS directly, also
called PS receptors, while the other group recognizes PS indirectly
by bridging molecules11. This mode of recognition of apoptotic
cells, indirectly by bridging molecules or direct recognition of
apoptotic cells, also applies to other engulfment receptors that do
not sense PS. For example, LRP1 indirectly recognizes apoptotic
cells via calreticulin, whereas CD14 binds to ICAM3 exposed to
apoptotic cells64–67. It has been reported that Tim-1, Tim-3, Tim-4,
BAI1, Stabilin-2, and RAGE are engulfment receptors that directly
recognize PS68–73, whereas members of the TAM family, integrins
such as αVβ3 and αVβ5, and CD36 are engulfment receptors that
indirectly recognize PS on apoptotic cells by bridging mole-
cules13,74–77. CD36 is also known to directly bind to oxidized PS or
oxidized LDL78. TSP-1, Gas6, protein S, and MFG-E8 function as
linkers connecting PS with CD36, TAM members, and integrins,
respectively76,77,79,80. In particular, Gas6 and protein S are well
characterized. Gas6 binds to Mertk and Axl among the TAM family
members and has a high binding affinity to Axl, while protein S
binds to Mertk and Tyro381. Engulfment receptors for eat-me
signals are pro-phagocytic and promote efferocytosis upon
binding of ligands to engulfment receptors by the mechanism
described in the next section. In contrast, don’t eat-me signals
engage anti-phagocytic receptors that prevent the engulfment of
apoptotic cells, and several such receptors have also been
identified57. SIRPα and Siglec-10 are representative receptors for
the don’t eat-me signals CD47 and CD24 as ligands, respec-
tively58,82. It was shown that SIRPα recruited SHP-1 upon CD47
binding, causing dephosphorylation of myosin II and, thus,
disruption of contractile force to ingest apoptotic cells. Addition-
ally, PD-1 and LILRB1 are also known as anti-phagocytic receptors
for the don't eat-me signal83,84.

Internalization of apoptotic cells
A pivotal molecule for the internalization of apoptotic cells in
efferocytosis is Rac1, a member of the Rho family GTPase85. Its
activation results in actin polymerization, which is required for the
internalization of apoptotic cells (Fig. 1)86. Studies in C. elegans
have identified two evolutionarily conserved signaling pathways
for the phagocytosis of apoptotic cells: CED-2/CED-12/CED-5 and
CED-1/CED-6, which activate CED-10, the Rac1 ortholog in C.
elegans87. Engagement of eat-me signals with their receptors
activates downstream signaling pathways that ultimately activate
Rac1, inducing cytoskeletal rearrangement to engulf the target88.
Although various engulfment receptors have been identified, not
all signaling pathways downstream of engulfment receptors
inducing cytoskeletal rearrangement are clear. However, the
signaling pathway downstream of BAI1, one of the PS receptors,

Table 1. Molecules involved in efferocytosis.

Find-me signals Receptor Reference

LPC G2A 36–38

S1P S1P-R1 ~ 5 39–41

Fractalkine (CX3CL1) CX3CR1 42,43

Nucleotides (ATP/UTP) P2Y2 44,45

ICAM3 CD14 48

Eat-me signals

Phosphatidylserine (PS) BAI1 71

Tim-1, 3, 4 68–70,81,90–95,109

CD300b 48

CD300f 61

RAGE 73

Stabilin-1, 2 72,89

Integrin αVβ3/5
(MFG-E8)

20,77

Axl, Mertk, Tyro3
(Gas6, Protein S)

74,75,79–81,94,95

CD36 (TSP-1) 76–78

Calreticulin (CRT) LRP1 (CD91) 65

ICAM3 CD14 66,67

Complement components
C1q

LRP1 (CD91) 64

MEGF10 33

SCARF1 48

Don’t eat-me signals

CD47 SIRPα 57,58

CD24 Siglec-10 57,62,82

CD31 CD31 57

MHC-I LILRB1 84

PD-L1 PD-1 83

Molecules involved in internalization and degradation

Elmo1, Dock180, Rac1 85–88

Gulp 89

Scar, WAVE, Arp2/3 11

Rab5, Rab7, LAMP1 96,97

LXR 100,101

PPAR 101

Ucp2 102

Slc2a1, Sgk1, Slc16a1 106

Molecules involved in calcium flux in efferocytosis

Undertaker, Junctophilin-1 110,111

Orai1-Stim1 107,111

Drp-1 110,112

Crbn-Orai1 113
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is relatively well established71. BAI1 was found to be a protein that
interacts with Elmo1 (a mammalian ortholog of CED-12), acting as
a bipartite GEF together with Dock180 (a mammalian ortholog of
CED-5) for Rac1. BAI1 senses PS on apoptotic cells through the
thrombospondin type 1 repeats of the extracellular domain, which
leads to the activation of the Elmo1-Dock180-Rac1 signal module,
causing actin cytoskeletal rearrangement71. Another PS receptor,
Stabilin-2, is also known to interact with Gulp and activate Rac1 to
promote efferocytosis89. In contrast, the signaling pathway down-
stream of Tim-4 remains elusive. Since Tim-4 without the
cytoplasmic tail is still able to promote efferocytosis, it was
considered a tethering receptor without direct signaling90. Tim-4
secured apoptotic cells on phagocytes, and then other engulfment
receptors, such as integrin, generated signals to ingest the
apoptotic cells, called two-step engulfment91,92. In addition, it
was shown that tethering receptors could promote efferocytosis
without biochemical interaction with their co-receptors, but Tim-4
biochemically interacted with its co-receptors, such as Mertk93–95.

Degradation of apoptotic cells
The final step in efferocytosis is the degradation of apoptotic cells
in phagocytes. Once internalized, apoptotic cells form phago-
somes, which become increasingly acidic by recruiting Rab5 and
Rab7 sequentially, ultimately fusing with lysosomes containing the
digestive enzymes required for apoptotic cell degradation96,97. In
this process, LC3-associated phagocytosis (LAP) matures phago-
somes more efficiently than non-LAP, leading to the more rapid
degradation of apoptotic cells (Fig. 1)48,98.
Since efferocytosis involves one cell engulfing another, the

intracellular contents, such as carbohydrates, lipids, proteins, and
nucleotides in phagocytes, are doubled in the final stage of
efferocytosis, which can be a heavy burden for phagocytes. Thus,

phagocytes release some of these contents and reprogram their
metabolism to maintain appropriate levels of intracellular
contents99. For example, apoptotic cell-derived sterols and
recognition of PS by engulfment receptors activate LXR and
PPAR, respectively, leading to an increase in Abca1 expression
levels and cholesterol efflux100,101. In addition, phagocytes
reprogram their energy metabolism. Upon apoptotic cell engulf-
ment, the mitochondrial membrane potential (MMP) increases in
phagocytes. Simultaneously, Ucp2, a protein that leaks MMP, is
upregulated, which dissipates protons across the inner membrane
of mitochondria and lowers MMP. Thus, Ucp2 maintains the
appropriate MMP in phagocytes, enabling them to continuously
engulf other apoptotic cells during efferocytosis102. Continuous
efferocytosis is also enhanced by arginine derived from apoptotic
cells, which is metabolized to putrescine that activates Rac1 by
stabilizing Dbl mRNA. Thus, phagocytes that engulf the first
apoptotic cell can more efficiently ingest the subsequent
apoptotic cells due to increased Rac1 activation103.
Reprogramming of energy metabolism appears to affect the

anti-inflammatory response as well. Apoptotic cell-derived methio-
nine and fatty acids facilitate the production of anti-inflammatory
cytokines such as IL-10, PGE2, and TGF-β1104,105. Furthermore, it
was recently reported that efferocytosis increased glycolysis while
decreasing oxidative phosphorylation, resulting in lactate release
and upregulated IL-10 expression. Increases in the levels of Slc2al,
Sgk1, and Slc16a1, which are involved in glucose transport and
lactate release during efferocytosis, contribute to these results106.

CALCIUM SIGNALING IN EFFEROCYTOSIS
Calcium is essential for various cellular processes, including
efficient and continuous efferocytosis. Efferocytosis requires

Fig. 2 Calcium signaling in efferocytosis. Store-operated calcium entry (SOCE) is induced upon apoptotic cell stimulation. Mertk binding to
PS on apoptotic cells activates the downstream signaling pathway, inducing the release of calcium from the ER and thus the interaction
between Stim1 and Orai1, which ultimately causes calcium entry into phagocytes during efferocytosis. In addition, Drp-1 upregulation during
efferocytosis induces mitochondrial fission, which impedes MCU-mediated mitochondrial calcium sequestration. This SOCE and impairment
of mitochondrial calcium sequestration elevate the intracellular calcium level in phagocytes during efferocytosis.
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calcium both inside and outside phagocytes107,108. Depletion of
either intracellular or extracellular calcium completely abrogates
efferocytosis. Extracellular calcium is necessary for the recognition
of apoptotic cells by phagocytes because a number of PS binding
proteins, including PS receptors and bridging molecules, require
calcium for their binding to PS80,109,110. Additionally, extracellular
calcium acts as a provider, elevating intracellular calcium levels
during efferocytosis107. Thus, the interruption of proteins involved
in calcium influx impairs efferocytosis111–114. Studies have shown
that Undertaker in Drosophila and Junctophilin in C. elegans, which
link calcium channels at the plasma membrane to those of the
endoplasmic reticulum, are required for efferocytosis. Disruption
of Stim1 and Orai1, which are necessary for store-operated
calcium entry (SOCE), also impairs efferocytosis111,112. Recent
studies have reported that Mertk activates the PLCγ1-IP3R axis,
causing the release of calcium from the ER and inducing the Orai1-
Stim1 interaction and SOCE, leading to the elevation of calcium
levels in phagocytes during efferocytosis107. Furthermore, Orai1, a
calcium release-activated calcium channel mediating SOCE, is
upregulated through the attenuation of Crbn-mediated ubiquiti-
nation, contributing to the elevation of intracellular calcium
during efferocytosis (Fig. 2)114.
The elevation of calcium levels in phagocytes during efferocy-

tosis is also the result of decreased calcium sequestration by
mitochondria. A previous study reported that upregulation of Drp-
1 during efferocytosis increases mitochondrial fission, which
prevents MCU-mediated mitochondrial calcium uptake and thus
increases the intracellular calcium level. Drp-1-mediated mitochon-
drial fission also facilitates the continuous removal of apoptotic
cells by regulating vesicular trafficking and phagolysosomal
degradation (Fig. 2). Therefore, one of the roles of intracellular
calcium in efferocytosis appears to promote the degradation of
apoptotic cells113. However, a better understanding of the role of
intracellular calcium in efferocytosis requires further exploration.

CONCLUDING REMARKS
Apoptosis was discovered approximately half a century ago115,
and swift and continuous efferocytosis is considered the final
stage of this process. Research over the past several decades
has discovered a variety of molecules involved in the multistep
process of efferocytosis, including finding, recognizing, inter-
nalizing, and degrading apoptotic cells by phagocytes. Despite
these long-standing efforts, several crucial questions about
efferocytosis remain unanswered. In particular, the post-
efferocytosis responses resulting from the different types of
phagocytes and their efferocytosis receptors in tissues need to
be further investigated. Additionally, since apoptotic cell
degradation in phagocytes and the effects of their metabolites
on phagocytes and neighboring cells have not been fully
explored, further studies are needed.
Efferocytosis following apoptosis is an integral part of

maintaining tissue homeostasis in multicellular organisms and is
closely related to overall health. Indeed, defects in efferocytosis
have been shown to be causative factors in numerous patholo-
gies, including autoimmune diseases, atherosclerosis, airway
inflammation, colitis, and others. Consequently, a better under-
standing of the multistep process of efferocytosis will provide new
insights into the treatment of multiple immunological and
metabolic diseases.
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