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Macrophages are essential innate immune cells found throughout the body that have protective and pathogenic functions in many
diseases. When activated, macrophages can mediate the phagocytosis of dangerous cells or materials and participate in effective
tissue regeneration by providing growth factors and anti-inflammatory molecules. Ex vivo-generated macrophages have thus been
used in clinical trials as cell-based therapies, and based on their intrinsic characteristics, they outperformed stem cells within
specific target diseases. In addition to the old methods of generating naive or M2 primed macrophages, the recently developed
chimeric antigen receptor-macrophages revealed the potential of genetically engineered macrophages for cell therapy. Here, we
review the current developmental status of macrophage-based cell therapy. The findings of important clinical and preclinical trials
are updated, and patent status is investigated. Additionally, we discuss the limitations and future directions of macrophage-based
cell therapy, which will help broaden the potential utility and clinical applications of macrophages.
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INTRODUCTION

History of cell-based therapeutics

Deploying working resources is an exciting and necessary solution
when further improvements are not expected from existing pools.
Cell therapy conceptually meets this expectation by delivering
‘workable’ cells within the body as medical treatments. The first
cell therapy in modern medical history was the intravenous
transfusion of whole blood from a donor to a recipient in 1900'.
Based on the identification of human blood groups, allogeneic
blood transfusion became a consolidated medical practice during
the First World War and remains a central component of medicine
today. Bone marrow transplantation (BMT) facilitated the era of
stem cell therapy via the action of long-term self-renewing
hematopoietic stem cells transferred from donor to patient®. For
decades, cell therapy was predominantly limited to BMT for
hematological diseases and epidermis transplantation for large
burns®. Recently, however, cell-based therapeutics have experi-
enced exponential growth within the pharmaceutical industry”. A
noteworthy clinical application of genetically engineered cells,
chimeric antigen receptor T cell (CAR-T) therapy, has emerged and
will be an important component of cell therapy in the future®.

Current categories of cell therapy in clinics
With regard to cell origin, the donor and the recipient can be the
same (autologous transplantation) or different individuals (allogeneic
transplantation)®. Although they do not require cell transplantation,
the mobilization of autologous cells is also considered cell therapy.
Regarding the differentiation status of cellular sources, stem cells and
fully differentiated cells are both applied.

Stem cells are mainly obtained from samples of tissues (skin,
cornea, adipose tissue) obtained through biopsy and blood or

cord blood samples®®. Embryonic stem cells and induced
pluripotent stem cells (iPSCs) will be used more extensively in
the future if their utility is proven to outweigh the ethical
problems®. Except for blood, bone marrow and adipose tissue-
derived stem cells, most patients require ex vivo expansion of cells
to obtain appropriate therapeutic efficacy’®. For example, in 2014,
the first cell therapy product to receive market authorization in
Europe was that for cornea transplantation, which requires two
interventions: (1) limbal biopsy and (2) in vitro cell expansion to
generate the new cornea'".

Directly applying differentiated cells is considered the halfway
point between cell and organ transplantation. Islet transplantation
is an established therapy for patients with diabetes and has shown
limited long-term success rates'?. Several clinical trials using
differentiated cells have been conducted in patients with heart
infarction (cardiomyocytes)'?, Parkinson’s disease (dopaminergic
neurons)', and Duchenne muscular dystrophy (myoblasts)'>.
These trials had inadequate clinical outcomes, and overcoming
the barrier of cellular sources remains problematic. Obtaining
differentiated cells from genetically modified iPSCs is an intriguing
solution but currently requires further development.

CAR-T therapy uses engineered DNA constructs introduced
into patient T cells to redirect their cytotoxicity to tumor cells
that bear CD19, a B lymphocyte-associated antigen'®. This
therapy has led to significant advancements in the use of
differentiated cells. Engineered alterations in cellular function
potentiated the therapeutic use of specific cell types®. Innova-
tions in engineering disciplines are currently being explored, and
some of these approaches have been successfully used to
generate commercialized products'’, although many remain at a
preclinical stage.
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Macrophage-based cell therapy

Immune cells have specialized characteristics. Their unique ability to
move throughout the body enables them to actively search for their
target sites and perform their specific roles in the body; this is what
we aim for in immune cell-based therapeutics. In this regard,
macrophages have great potential as a cell source in cell therapy.

Macrophages are strategically distributed throughout the body
as tissue-resident innate immune cells. They perform a vital
homeostatic role as prodigious phagocytic cells that clear intruding
pathogens and large amounts of endogenous harmful materials,
such as apoptotic cells, dying erythrocytes, amyloid beta and
surfactants, to maintain normal organ function'®, Macrophages are
highly heterogeneous cells that can rapidly change their function in
response to local microenvironmental signals'>. They have an
extremely plastic nature in vivo and are involved in many human
diseases with both protective and pathogenic functions'®. Insights
into the development of macrophage-based cell therapies have
focused on their notable actions, such as promoting tissue
regeneration and clearing cancer cells or pathogens®°.

In this review, we update and discuss the current develop-
mental status of macrophage-based cell therapy. In line with the
characteristics of macrophages, a wide variety of target diseases
are briefly introduced. We also discuss their limitations along with
potential future directions.

Clinical trials on macrophage-based therapy

A clinical trial search in ClinicalTrials.gov was conducted with one
keyword (Macrophage). In total, 366 search results were found,
and it was manually determined whether the trial was relevant to
macrophage cell therapy. Only 11 out of the 366 search results
were macrophage cell therapy-related clinical trials, and these 11
trials were included in this review (Table 1). Among the 11 selected
clinical trials, nine (81.8%) were regarding the adoptive transfer of
macrophages and ex vivo polarization with different strategies.
Two studies (18.1%) were chimeric antigen receptor-macrophage
(CAR-M) trials. Not all clinical trials reported the patient response
publicly, either through ClinicalTrials.gov or a paper publication.
Interestingly, all studies with publicly reported response data
focused on ‘ex vivo polarization and adoptive transfer'.

Most of the clinical trials that used ex vivo polarization and
adoptive transfer of macrophages are in phase 2 or 3, and the target
diseases are well known, including cardiomyopathy, osteonecrosis,
limb ischemia, stroke, arterial disease, and chronic anal fissure,
indicating the clinical usefulness of the methodology in regenerative
medicine. One of the representative studies was entitled “Treatment
of Anal Fissure by Activated Human Macrophages” (registration
number: NCT00507364) and was a phase 3 trial consisting of chronic
anal fissure treatment?'. In this trial, 199 patients were divided into
control and macrophage-treated groups. In the macrophage-treated
group, a macrophage suspension (0.05 mL/injection) was injected
0.5-1cm from the edge of the ulcer. Complete recovery was
achieved in 27% of the macrophage-treated group, whereas only
6% of the control group showed complete recovery. No adverse
effects were noted in the trial. Another trial with publicly reported
response data was a phase 1 trial entitled “Safety of Autologous M2
Macrophages in the Treatment of Non-Acute Stroke Patients”
(registration number: NCT01845350), which focused on ischemic
and hemorrhagic stroke treatment?’. Autologous peripheral blood
mononuclear cells were obtained from patients with nonacute
stroke, polarized to M2 macrophages, and injected intrathecally by a
lumbar puncture after premedication with dexasone. Thirteen
patients were enrolled and divided into control and treatment
groups. Clear improvement in the NIH Stroke Scale/Score (NIHSS)
was observed in 75% of the treatment group and 18% of the control
group. No adverse effects related to cell therapy were noted
throughout the trial. In the phase 2 trial “Use of Ixmyelocel-T
(Formerly Catheter-based Cardiac Repair Cell [CRC]) Treatment in
Patients with Heart Failure Due to Dilated Cardiomyopathy”,
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Ixmyelocel-T, including autologous bone marrow-derived activated
macrophages, was administered to patients through intramyocardial
injection®®. Positive effects with improved symptoms were found in
patients with ischemic dilated cardiomyopathy but were not found
in the nonischemic population. Major adverse cardiovascular events
were markedly decreased in the treatment group of ischemic
patients, indicating good efficacy of Ixmyelocel-T.

There were no publicly reported response data from any of the
studies on CAR-M therapy; it is necessary to note that clinical trials
on the technology are in the early stages of development. One
representative clinical trial is “CAR-Macrophages for the Treatment
of HER2-Overexpressing Solid Tumors”, which is an ongoing phase
1 trial targeting HER2-overexpressing solid tumors. In this clinical
trial, CAR-M targeting HER2 was constructed (CT-0508) and
intravenously injected into the treatment group. As it is an
ongoing trial and the recruitment status is “recruiting”, no
response results could be expected as yet. Another important
phase 1 clinical trial, “Intraperitoneal MCY-M11 (Mesothelin-
targeting CAR) for the Treatment of Advanced Ovarian Cancer
and Peritoneal Mesothelioma”, targeted relapsed/refractory ovar-
ian cancers, including peritoneal mesothelioma, fallopian tube
adenocarcinoma, adenocarcinoma of the ovary, and primary
peritoneal carcinoma. MYC-M11 (mesothelin-targeting CAR) was
administered by intraperitoneal infusion to 14 participants; the
response data have yet to be publicly reported through
ClinicalTrials.gov or a publication of the study findings.

Another important clinical trial should be noted; however, it was
conducted in the UK and is not presented in Table 1. Research
groups at the University of Edinburgh successfully completed
autologous macrophage therapy for liver cirrhosis®®. They
conducted a phase 1 dose escalation trial of autologous
macrophage therapy in nine adults and found that all participants
survived and were transplant-free at the one-year follow-up.

Patent status

To identify the international patent status of macrophage-based
cell therapy, we conducted a patent analysis and an analysis of
market and technology trends. MJL Bio Co. retrieved patent
samples with a priority date before 15 June 2021 using a series of
search terms, including macrophage, treat, prevent, wound,
regeneration, recover, repair, anticancer and inhibit or suppress.
In total, 9045 patent documents were initially obtained. From
these, we excluded 8833 patents. These were patents for which
the aim was the modulation of in vivo resident macrophages by
drugs or where macrophages were not used for cell therapy.
Ultimately, 212 patent documents were included for further
interpretation (Supplementary Table 1).

Looking at the overall application trend by year in the field of
macrophage cell therapy, research has been conducted since 2015
(Fig. 1). Recently, considering the existence of undisclosed cases,
macrophage cell therapy is on the rise and in the early stages of
technological growth worldwide. The top inventors are located in
the United States (26%), Europe (20%) and PCT (20%). Among
them, the University of Pennsylvania developed CAR-M for the
treatment of cancer (Table 2). Duke University has the second-
highest number of inventions and primarily focuses on methods
for treating cancers and pathogen infections using antigen-
presenting cells loaded with RNA. Most patents were related to
cancer, but many were related to regenerative medicine. For
example, XCELL medical solutions and INSERM applied for patents
with regenerative diseases as an indication. XCELL's patent
provides in vitro methods to induce macrophage polarization in
an M2 phenotype that overexpresses NGAL and IL-10, which is
useful for tissue recovery.

Regarding genetic modification status, 107 patents (55%) were
for unmodified macrophages, and 83 (43%) were for modified
macrophages. Unmodified macrophages were most frequently
applied as activated macrophages and M2 macrophage types.
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Fig. 1 Publication trend of macrophage-based cell therapy patents. Macrophage cell therapy patent documents by publication year and

the top six countries in which assignees applied.

Modified macrophage-related patents were mainly aimed at CAR-
M therapy, with 25 studies.

Animal experimental trials

The most widespread example of the experimental success of
macrophage cell therapy is in the pulmonary alveolar proteinosis
(PAP) disease model®®. This disease is prevalent in children who
have mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor a
or B, respectively, which cause hPAP by impairing GM-CSF-
dependent surfactant clearance by alveolar macrophages, result-
ing in progressive surfactant accumulation in alveoli and
hypoxemic respiratory failure?*?’. There are currently no pharma-
cological therapies for hPAP, and surfactants must be removed by
whole-lung lavage, an inefficient and invasive procedure to
physically remove excess surfactant. Suzuki et al. showed the
efficient therapeutic potential of pulmonary macrophage trans-
plantation (PMT) of either wild-type or Csf2r8 gene-corrected
macrophages without myeloablation in Csf2r3 mutant mice. PMT
was safe and efficient, and only one administration was required
to treat lung disease. These exciting results highlighted the need
for the development of allogeneic macrophage-based cell
therapies based on genetic modifications.

We previously showed the obvious regenerative capacity of
wild-type macrophages when transferred into Ptger4 mutant mice
with a defect in proper intestinal epithelial regeneration postin-
flammation?®. This study thereby highlighted the need for
allogeneic sources of macrophage cell therapy in patients with
IBDs who carry genetic mutations at the PTGER4 locus.

Neurodegenerative diseases are another promising target for
macrophage cell therapy because stem cell engraftment has clear
limitations due to the large size of the human brain; moreover, the
need for stereotactic injection complicates the homogeneous
distribution of grafted cells even when highly migratory cells such
as oligodendrocyte precursors are transplanted®®. Transferred bone
marrow cell-derived macrophages showed the capacity to efficiently
distribute to the brain and clear accumulated glucosylsphingosine in
place of malfunctioning microglia in a Parkinson’s disease model*°.

As in vivo studies have been continuously reported in recent
years, articles published from 2019 to 2023 were searched using
PubMed (https://pubmed.ncbi.nim.nih.gov/) with the search
string ((macrophagel[Title/Abstract]) AND (cell therapyl[Title/
Abstract])). In total, 263 search results were manually deter-
mined to be relevant to macrophage cell therapy. With regard to
review papers, references were also considered in our search
and were reviewed to determine their relevance. Most studies
were related to CAR-T therapy using granulocyte-macrophage
colony-stimulating factor (GM-CSF) or analyzed the effects of
stem cell therapy on macrophages and were excluded from our

SPRINGER NATURE

candidate study list. Studies that included only in vitro experi-
ments were also excluded to limit this review to studies
demonstrating clinical possibilities. As a result, 38 papers were
included as macrophage cell therapy-related studies and were
further classified into five different groups according to
methodology as follows: CAR-M, induced pluripotent stem cell
(iPSC)-derived macrophages, macrophages loaded with nano-
particles; ex vivo polarization and/or adoptive transfer of
macrophages, and surface-anchoring engineering of macro-
phages (Supplementary Table 2). Among the 38 studies, 12 were
considered promising and representative and thereby selected
and presented in Table 3 and Fig. 2.

Niu et al. (2021) generated CAR-M targeting CCR7 with a
cytosolic domain from Mer receptor tyrosine kinase for tumor
growth suppression, metastasis prevention, and subsequent
prolongation of survival®*'. The application of anti-CCR7 CAR-M
successfully resulted in the suppression of immunosuppressive
cell migration from tumor tissue to distal immune organs,
showing effective systemic antitumor immunity in vivo.

One issue that requires elucidation in order to use macrophages for
therapeutic purposes is how to sufficiently increase the supply
quantity. Since the replication capability of macrophages is limited,
Pouyanfard et al. (2021) performed a new trial by directly
differentiating iPSCs into macrophages to meet the needs on a large
scale while still maintaining a homogenous population®, This method
effectively induced both M1 and M2 macrophages; in particular, the
resulting M2 macrophages were found to reduce fibrogenic gene
expression and associated histological markers in liver fibrosis in vivo.

Because of the good penetration efficacy of macrophages into
lesions, they can also be used as good transporters of loaded
nanoparticles. Wang et al. (2022) used a RAW264.7 cell line polarized
to M1 macrophages and loaded with nanospheres composed of the
nucleic acid therapeutic and chemotherapeutic drug cisplatin. The
loaded cells were injected and targeted A549 human alveolar basal
epithelial cell adenocarcinoma; significant antitumor performance
without significant adverse effects was observed*>,

Shields et al. (2020) reported one of the most innovative
approaches to maintaining macrophage subtypes for a longer
duration based on the geometric principles of macrophage
phagocytosis®®. They anchored soft particles called ‘backpacks’
on the surface of the macrophages, which are phagocytosis-
resistant owing to their morphology and, at the same time,
contain IFNa to help macrophages maintain the M1 subtype for
longer. The cells with ‘backpacks’ significantly reduced tumor
growth and improved survival without significant toxicity when
used in a 4T1 breast cancer cell model in vivo.

Most studies using ex vivo polarization and adoptive transfer
generally make use of M2-polarized macrophages, which reduce the

Experimental & Molecular Medicine (2023) 55:1945 - 1954
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Fig. 2 Promising in vivo studies of macrophage-based cell therapy. Various attempts to increase the efficiency of macrophage-based cell
therapy have been reported. Promising in vivo studies in the previous 5 years (2019-2023) are classified into five different groups. a Direct
differentiation of macrophages from iPSCs enables bulk production of macrophages for therapeutic use2. b Utilizing the function of
macrophages as efficient transporters, various nanoparticles with therapeutic agents can be loaded onto macrophages and delivered to target
lesions*>. ¢ Diverse trials changing the target molecules and intracellular signaling domains of the existing CAR-M structure can increase the
therapeutic efficacy®’. d Macrophages can also be used as delivery cells by anchoring certain materials on the surface of the cell**. e Patient
macrophages can be collected and artificially polarized ex vivo for successive adoptive transfer back to the patient®>*'. iPSC induced
pluripotent stem cell, CpG-ASO unmethylated cytosine-phosphate-guanine motif and anti-P-glycoprotein antisense oligonucleotide, CAR-M
chimeric antigen receptor macrophage, MerTK Mer tyrosine kinase, IFN-a interferon alpha, M-CSF macrophage colony-stimulating factor.

inflammatory response and simultaneously increase wound healing.
Treatment using this method has been studied in a wide variety of
target diseases, including acute kidney injury, autoimmune ence-
phalomyelitis, full-thickness cutaneous wounds, hepatic fibrosis
caused by cystic echinococcosis, heart tissue damage, Achilles
tendon rupture, spinal cord injury, and myocardial infarction®>~*'.

Limitations

For macrophage-based cell therapy to be successful, preclinical
study and clinical trial pathways must be carefully navigated, and
scientific and manufacturing hurdles must be overcome.

Two of the most common indications are cancer and
regenerative diseases, indicating that the most significant
characteristic of macrophages is their plasticity. They have the
ability to alter their phenotypes in response to their surround-
ings*%; however, because of this ability, they have an important
inherent drawback. We expect CAR-M to have phagocytic ability
against cancer cells; however, there is the possibility of acquiring
M2 phenotypes, leading to a tumor-prone microenvironment
when exposed to cancer cells®®. It is worth noting that in every
trial regarding the adoptive transfer of macrophages for cancer in
our preliminary study, eventually, cancer growth was accelerated.
In contrast, ex vivo-generated M2 macrophages can be used to
promote tissue regeneration; however, there is the risk of their
phenotypes reverting to M1 macrophages when they encounter

Experimental & Molecular Medicine (2023) 55:1945 - 1954

chronic, incurable inflammatory environments. In this regard,
macrophage polarization needs to be fully understood with
regards to how long the epigenetic mark perpetuates** and how
we can potentiate desired phenotypes via ex vivo priming. One
way to overcome the uncertainty of phenotype duration is to
create genetically ‘fixed’ macrophages. Because the CRISPR system
works easily in primary macrophages*, the TNF gene could be
deleted to promote tissue regeneration in concordance with
lowering the risk of inducing unnecessary inflammation. The
knockout of a critical enzyme or transcription factor may also be
useful; for example, Prkacb deletion promotes macrophages into
M1 phenotypes even when exposed to the cancer environment*®.

Along with the phenotype duration, the period of substantive
activity of transferred macrophages in vivo requires further
elucidation. In-depth tracking studies of injected macrophages
have yet to be performed. In previous reports using murine iPSC-
derived macrophages, the population maintained the macro-
phage phenotype for at least 1 year*’. While many immunological
studies have shown the persistence of transferred macrophages
using valuable mouse models for cell tracing, few studies on
therapeutic macrophage transfer have considered the duration of
survival with the same function. Preclinical GLP studies should
present the distribution data of injected macrophages over time
using quantitative PCR following different routes of injections.
Intravenously injected macrophages were reported to be trapped
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in the lungs soon after injection due to entrapment inside the
pulmonary capillaries and were rarely observed in tumors; the
same result was also observed for MSCs*®™°°. In this regard,
intravenously injected macrophages may have beneficial effects
even if they are not present in large amounts in the target tissue.
These effects are believed to be ascribed to the production of anti-
inflammatory cytokines, such as growth factors that ameliorate
the damage to organs. However, local injections into the mucosal
layer, skin, or a consolidated tissue structure would lead to
different biodistributions and pharmacokinetics. For example,
gene-corrected macrophages transferred into the lungs of Csf2rb
(CD131)-deficient mice were evaluated by transgene-specific PCR
tracking®. Over a period of 12 months, the proportion of CD1317
cells among bronchoalveolar lavage cells increased from 0 to 69%
due to the proliferation of the transplanted macrophages.
Understanding the in-depth kinetics of injected macrophages
along with their mechanistic actions will allow the further use and
development of macrophage-based cell therapy.

Another challenge is producing macrophages on a scale that will
allow the treatment cost to decrease®. Understanding whether and
how it will be possible to produce macrophages on a large scale will
be an important determinant of whether macrophage cell therapy

a. Skin Wound

Skin wound

VEGFA
EGF
IL-10

b. Neurodegenerative
disease_—_

Amyloid beta _

will transition from a boutique, expensive cottage industry to mass
production and take advantage of economies of scale. Manufactur-
ing facilities should provide tightly unified protocols to produce
macrophages with stable and consistent phenotypes. At least ~10°
M-CSF-derived macrophages should be produced from a patient in
one leukapheresis®'™3, but more importantly, macrophages should
be obtained from different sources, including hematopoietic stem
cells. Based on the trend that the development of allogeneic
therapies has drastically increased in recent years®, stable and
unified protocols for genetic modification of different sources of
macrophages are needed.

Genetic engineering

As described throughout this review, genetic engineering of
macrophages has much therapeutic value. To date, the best way
to obtain a specific knockout is mediated by CRISPR/Cas9 complexes.
The delivery of ribonucleoprotein into ex vivo-generated macro-
phages via electroporation is very efficient and safe* and thus will
be used to provide therapeutic macrophage sources from allogeneic
as well as autologous donors. The advantage of electroporation is
that it does not alter the phenotype of macrophages itself. However,
it is more complicated in the case of protein overexpression, such as

c. Cancer
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Fig.3 New therapeutic frontiers in macrophage-based cell therapy. The outstanding phagocytic and wound-healing abilities of macrophages
will extend the scope of target diseases for macrophage-based cell therapies in the future a Ex vivo activated PBMC-derived macrophages promote
skin wound healing via the secretion of growth factors and anti-inflammator cytokmes . b Transferred macrophages efficiently clear accumulated
neurotoxic materials™ . ¢ Genetically engineered CAR M eradiate cancer cells'®. d A specific subtype of macrophages reduces ECM contents around
the heart injury site and promotes regeneration”>*'. e Transferred macrophages clear excessive surfactant and resolve the pathology of PAP?>,
f Macrophages secrete CXCL1 and WNT to coordmate damaged intestinal epithelial cell regeneration“®. g Regenerative macrophages can resolve
fibrosis and promote hepatocyte regeneration®*32. PBMCs peripheral blood mononuclear cells, ECM extracellular matrix, PAP pulmonary alveolar
proteinosis, IBD inflammatory bowel disease, CAR-M chimeric antigen receptor macrophages, VEGFA vascular endothelial growth factor A, EGF
epidermal growth factor.
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CAR-M. The current successive approach to introduce exogenous
DNA sequences is the use of a viral delivery system, which strongly
changes macrophages into the M1 phenotype. This is helpful in
treating cancer but might be a negative factor for the treatment of
regenerative diseases. Further studies are needed to obtain efficient
genetic engineering in primary macrophages in the future.

Future directives

Macrophages have great potential as cellular therapeutic sources
(Fig. 3). Their outstanding regenerative capacity could directly aid
tissue reconstruction in injured organs, such as the intestines, skin,
liver, heart, kidneys, and lungs. Their phagocytic ability could be
used to clear cancer cells or neurodegenerative materials as well
as infectious agents. As efficient pro-inflammatory regulators, they
could be applied to suppress inflammation and deliver active
tissue-healing substances. Based on these unique features of
macrophages compared to other cell types, more data on safety
need to be produced in an effort to make them available for use.
In the future, gene editing will be used to obtain purpose-oriented
macrophage phenotypes. Although numerous hurdles will need
to be addressed, the inherent nature of macrophages will extend
their application to new therapeutic frontiers.
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