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Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides
(AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the
intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary
supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range
of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have
revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the
gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions,
and new opportunities for therapeutic strategies to treat metabolic disorders.
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INTRODUCTION
Twenty-five years ago, the brain, muscle, adipose tissue, and
pancreas were believed to be the key organs involved in
regulating energy balance and glucose levels. However, current
treatments for obesity and diabetes focus primarily on leveraging
the GI tract to achieve sustained weight loss and improved
glycemic control1–3. This strategy has increased the research
attention given to the GI tract with the hope of identifying
additional treatment strategies.
Much of this additional research attention has focused on the

enteroendocrine cells that are known to produce hormones that
can act on other organ systems. Our belief is that there are other
cell types and gut functions that play equally important roles. For
example, gut antimicrobial peptides have essential roles as a part
of the innate immune response, which protects the host from
external microorganisms4–6. One of these antimicrobial peptides,
Reg3γ, is abundantly expressed throughout the small intestine,
where it is an important component of the barrier that maintains
spatial segregation of the gut bacteria from the host7,8. While the
gut microbiota contributes to digestion and healthy gut function,
it has also been hypothesized to be an important regulator of
various aspects of energy homeostasis and glucose regulation9.
However, the mechanism by which the microbiota influences host
physiology remains contentious. Data obtained over the past few
years highlight Reg3γ as a link between the gut microbiota and
metabolic regulation. In this review, we describe key features of
the physiological role and therapeutic potential of Reg3γ.

ANTIMICROBIAL EFFECTS OF REG3γ
Reg3 proteins, as a part of the Reg family, were first isolated from rat
regenerating islets in 198810,11. This protein is also termed

hepatocarcinoma-intestinal pancreas/pancreatitis-associated protein
(HIP/PAP) because it was also identified in acute pancreatitis
hepatocarcinoma12,13. The Reg3 family can be divided into four
members termed Reg3α, Reg3β, Reg3δ and Reg3γ in mice, whereas
humans have only REG3A and REG3G14–16. Members of the Reg3
family are abundantly expressed in the intestinal tract (Reg3α, Reg3β
and Reg3γ) and pancreas (Reg3δ)14,15. Reg3γ containing an
N-terminal prosegment maintains a biologically inactive state,
whereas prosegment removal by trypsin or structural mutation
enhances its antibacterial activity in the gut17,18. Reg3γ is mainly
produced by Paneth cells and enterocytes in the small intestine,
where it is secreted into the gut lumen (Fig. 1) and can exert
bactericidal activity that preferentially targets gram-positive bacteria.
Bacterial colonization is a key factor that triggers the production of
Reg3γ in the gut under normal conditions7,19. Inhibition of bacterial
colonization by antibiotic treatment or germ-free conditions
suppresses the expression of Reg3γ, whereas supplementation with
certain probiotics enhances Reg3γ expression7,19–21. Mechanistically,
Paneth cells directly recognize and respond to bacterial signals
through the TLR-MyD88-dependent signaling pathway22. Alterna-
tively, IL-22 produced by innate lymphoid cells stimulates Reg3γ
production23 (Fig. 1). It is important to note that Reg3γ does not
impact the overall composition of the microbiome, but it affects
mucus distribution and maintains the spatial separation of the gut
bacteria from the intestinal epithelium8,21.
Furthermore, the production of Reg3γ can be altered by

pathophysiological conditions. Studies have highlighted that
bacterial infections cause a significant induction of Reg3γ,
suggesting that Reg3γ has a protective role against infection24,25.
Mucosal infection with Listeria monocytogenes and Salmonella
enteritidis increases Reg3γ levels in the intestine, and Reg3γ is
required to regulate mucosal inflammation in response to
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pathogenic bacterial infections24,26. Despite several lines of
evidence indicating the causal role of Reg3γ in bactericidal
activity as a part of host innate immunity, all of the data are not
consistent. For instance, Reg3γ expression is increased in the
urinary tract following uropathogenic Escherichia coli infection,
while Reg3γ fails to kill pathogenic E. coli, and Reg3γ deficiency
does not increase susceptibility27. These results suggest that
Reg3γ production is induced not only by responses against
microorganisms but also by directly recognizing bacterial
products such as lipopolysaccharide or flagellin19,28.
Recent rodent studies from our laboratory and others reported

that the expression of intestinal Reg3γ is downregulated in
metabolic disorders induced by nutrition (high-fat diet, alcohol) or
genetic modification (ob/ob, db/db) that result in obesity and
impaired glucose regulation. Interestingly, multiple types of
bariatric surgery result in increased intestinal expression of
Reg3γ21,29–31. In addition, bile acids in the intestine and
exogenous GLP-1 agonists in the pancreas stimulate Reg3γ
production32,33. These data suggest that Reg3γ production is
influenced by various metabolic conditions.

BIOLOGICAL EFFECT OF REG3γ
Studies in mouse models have suggested that Reg3 has beneficial
effects in skin injury, such as psoriasis, colitis, pancreatitis, asthma,
cardiac inflammation, alcoholic fatty liver, damaged brain neurons
and graft-versus-host disease (GVHD) in allogeneic bone marrow
transplantation34–40 (Fig. 2). The release of proinflammatory
cytokines during the cutaneous inflammatory response stimulates
antimicrobial peptides, including Reg3γ, which are critical for
keratinocyte proliferation, differentiation and wound reepithelia-
lization38. Reg3γ (or human REG3A) is abundantly expressed in
skin lesions. In such situations, IL-17-induced IL-33 enhances
Reg3γ expression in keratinocytes, in which Reg3γ inhibits TLR3-
JNK2-induced inflammation via SHP-137. In diabetic conditions,
hyperglycemia reduces IL-33, which decreases Reg3γ and SHP-1
levels. This situation leads to increased TLR3 signaling, activation
of JNK2, and impaired wound healing with more inflammation37.
During acute colitis in mice, IL-33 and Reg3γ are highly expressed

in the colon34,41. IL-33 is produced by intestinal epithelial cells and
promotes the production of Reg3γ in the gut during inflammation

and mucosal recovery42. Studies in mice suggest that Reg3γ is a
downstream mediator of IL-33 and has a protective role in colitis by
reducing inflammation and oxidative stress21,34,41. Reg3γ also
promotes anti-inflammatory responses via the JAK2/STAT3 signaling
pathway, which can stimulate β-cell regeneration36,43. Treatment
with an immunosuppressant drug, tacrolimus, inhibits STAT3-
mediated transcript activation and causes β-cell failure, which is
reversed by Reg3γ treatment by restoring insulin secretion and
mitochondrial functions44–46. Reg3γ expression is elevated in a dose-
dependent manner in caerulein-induced pancreatitis, and its
deficiency exacerbates pancreatic inflammation47,48. However, in a
murine model of chronic pancreatitis, Reg3γ promotes inflammation-
associated pancreatic cancer progression49. These findings suggest a
complex role of Reg3γ in inflammatory conditions.
While it is possible that many of these effects are a product of

Reg3γ’s antimicrobial properties, there is strong evidence that Reg3γ
can act to alter cellular signaling directly. Although Reg3γ is expressed
at relatively low levels in the healthy pancreas14, its expression is
elevated in diabetic islets in humans and mice50,51. Reg3γ over-
expression in the pancreas via lentivirus injection promotes
pancreatic β-cell regeneration, attenuates lymphocyte infiltration,
and decreases the development of type 1 diabetes in NOD mice by
activating the JAK2/STAT3 pathway36. Recently, exostosin-like 3
(EXTL3) has been identified as a binding protein for Reg3γ, and the
Reg3γ-Extl3 signaling pathway has been implicated in regulating
various cellular processes, including keratinocyte proliferation and
differentiation, wound healing, and glucose homeostasis37,38,52. In
addition, Extl3-deficient pancreatic β-cells have been shown to
exhibit impaired glucose regulation and insulin secretion, along with
abnormal islet morphology in mice52. These data suggest that Reg3γ
provides metabolically beneficial effects that can act directly upon
the endocrine pancreas to regulate glucose homeostasis. The exact
mechanisms underlying the physiological and pharmacological
actions of Reg3γ in metabolic tissues need further investigation.

GUT MANIPULATIONS FOR METABOLIC IMPROVEMENTS AND
THE ROLE OF REG3γ
Bariatric surgery provides sustained weight loss and improved
glucose metabolism in patients with obesity and/or type 2 diabetes
(T2DM)53,54. Bariatric surgical procedures such as Roux-en-Y gastric

Fig. 1 Regulatory mechanism of Reg3γ production. Reg3γ is mainly produced by Paneth cells, which directly respond to the gut bacteria
through the Toll-like receptor (TLR)-Myd88 signaling pathway22. Reg3γ expression also induces IL-22 from innate lymphoid cells23. The figure
was created with BioRender.com.
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bypass (RYGB) and vertical sleeve gastrectomy (VSG) manipulate the
gut anatomy, which in turn forces the intestine to adapt to the new
anatomy55. We and others have reported that RYGB and VSG in
obese patients and rodents leads to increased levels of Reg3γ in the
circulation and intestine21,56,57. VSG-operated WT mice lost weight
and kept it off relative to their sham-operated controls. Reg3γ KO
mice lost weight initially but regained weight such that they had the
same weight and body fat as sham-operated controls21. Further-
more, the improved glucose homeostasis and decreased hepatic fat
accumulation that occurs after VSG were not observed in mice
lacking Reg3γ21. These data strongly suggest that Reg3γ is
necessary for the beneficial effects of VSG. Nevertheless, Reg3γ’s
primary role is not to respond to surgical alterations of the gut. A key
question is what other manipulations of the gut alter Reg3γ to also
benefit metabolic endpoints. Prebiotic treatment with oligofructose
or inulin fiber reduces the deleterious effects of a high-fat diet to
induce gut and metabolic dysfunction58,59. These dietary supple-
mentations also restore Reg3γ production in the intestine21,58,59.
Recently, we found that supplementation of a HFD with inulin fiber
improves glucose tolerance relative to isocaloric cellulose fiber
supplementation, while inulin’s ability to improve glucose tolerance
is absent in Reg3γ-deficient mice21. The ability of both high-inulin-
fiber diets and VSG to enhance gut barrier function is reduced in
Reg3γ KO mice21. What do both bariatric surgery and high soluble
fiber have in common? Notably, surgical and dietary interventions
lead to an increased abundance of so-called “good bacteria” such as
Lactobacillus and Bifidobacterium in the small intestine, and this
happens in both WT and Reg3γ KO mice21. This outcome indicates
that Reg3γ is not critical to the ability of these manipulations to
induce changes in the composition of the gut microbiota. Are
alterations in themicrobiota driving changes in the increased Reg3γ
expression? Specific bacteria such as Bifidobacterium breve, Lacto-
bacillus rhamnosus GG, or probiotics containing multiple strains of
Lactobacillus and Bifidobacterium spp. appear to increase Reg3γ
expression in the intestine20,21,60. The protective effects of the good
bacteria against gut barrier damage are reduced in mice that lack
Reg3γ21,61. These data provide strong evidence that Reg3γ is
required for these potent beneficial effects of the gut microbiota on
host physiology in disparate gut manipulations by surgery, diet, or

healthy options, such as VSG, inulin fiber diet or healthy bacteria
intervention.
Recent studies have reported that the biological effects of

metformin, a widely used treatment for T2D, arise from the
intestine, which impacts key processes related to the glucoregu-
latory pathway62,63. Metformin not only induces Reg3γ expression
but also enhances intestinal AMPK activity, which is required to
mediate the therapeutic effect of metformin62,64. Zhang et al.64

showed that unlike WT DIO mice, metformin fails to restore
intestinal Reg3γ expression in mice with intestine-specific deletion
of AMPK. Given that metformin alters the gut microbiome by
increasing the abundances of Lactobacillus and Bifidobacterium
spp. in both humans and rodents65–67, these findings suggest that
Reg3γ may modulate the glucose-lowering effects of metformin
through the gut microbiota-AMPK-Reg3γ pathway.

THERAPEUTIC IMPLICATIONS OF REG3γ
Our understanding of how different pathological conditions
impact Reg3γ’s role in metabolism and gut function remains
limited. For example, recent studies have found conflicting results
on body weight and glucose metabolism in mouse models
overexpressing or lacking Reg3 proteins in the gut34,68–70. Secq
and colleagues reported that mice overexpressing PAP/HIP
protein (REG3A) became obese with relatively high levels of
glucose under normal nutritional conditions68. In contrast, Huang
et al. found that Reg3γ overexpression in the gut protected mice
from the negative effects of a high-fat diet, such as obesity and
impaired glucose regulation. Additionally, increased Reg3 led to
an increased abundance of Lactobacillus and expansion of
macrophages that promote an anti-inflammatory response69.
Another recent study, however, showed that neither Reg3γ
deficiency nor intestinal overexpression affected diet-mediated
obesity and glucose dysregulation21,70. As discussed above,
studies using mouse models have suggested that enhancement
of Reg3γ or Reg3γ-associated pathways might have a beneficial
impact on metabolic homeostasis. Recently, studies have shown
that the Reg3γ molecule could be leveraged for novel treatment
strategies for type 2 diabetes21,71,72. Human REG3A administration

Fig. 2 Pivotal role of Reg3γ as a host defense. Reg3γ acts on various organ systems by responding to damage or inflammatory disease.
Abbreviation: MRSA, methicillin-resistant Staphylococcus. The figure was created with BioRender.com.
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through a transgene or recombinant protein improved glucose
regulation in mice with obesity caused by high-fat diet or ob/ob
mutation72. This effect was due to increased glucose uptake and
decreased oxidative damage in skeletal muscle through activation
of AMPK72. Moreover, the intramuscular expression of REG3A is
negatively correlated with insulinemia, HOMA-IR, intramyocellular
triglyceride and waist-hip ratio in healthy subjects71. Likewise, our
finding that acute single injection of Reg3γ improves glucose
tolerance in diet-induced obese mice supports the beneficial
impact of Reg3γ21. The glucoregulatory action of Reg3γ can be
mediated by interacting with Extl3 in the pancreas. Not
surprisingly, Reg3γ-treated mice that lack Extl3 specifically in
pancreatic β-cells displayed no improvement in glucose toler-
ance21. These data imply that Reg3γ can act via the circulation to
exert beneficial effects.
While pharmacological application can be challenging without

a clear understanding of efficacy, safety, and potential side effects,
a promising approach is to modulate the composition of the gut
microbiota that enhances Reg3γ activity by increasing the
consumption of probiotics, prebiotics or fermentable fiber
components that can confer beneficial effects to the host.
Probiotic and prebiotic treatment prevents obesity, improves
glucose homeostasis, and enhances gut function in both humans
and rodents73–77. Intriguingly, Lactobacillus and Bifidobacterium
species-containing probiotics and fermentable fiber-containing
prebiotic supplementation not only stimulate Reg3γ production,
but their beneficial effects also appear to be dependent on
Reg3γ21,30,78. These observations lead to the question of how
these bacteria exert their influence on Reg3γ. One possibility is
that bacterially derived metabolites may increase Reg3γ. For
example, propionate is a microbially produced metabolite that
increases Reg3 lectin expression in cecal tissues and intestinal
organoids. Propionate also ameliorates colitis in mice79. Interest-
ingly, hepatic overexpression of REG3A has an effect inside the
lumen to rescue the gut microbiota from oxidative stress and

thereby attenuates inflammation in mice with colitis34. These
recent reports imply that the protective effect of propionate on
experimental colitis could be mediated through Reg3γ. Lactate
and bile acids also have the potential to induce Reg3γ-related
signaling as important mediators of metabolic function21,32. While
further understanding of these pathways is needed, stimulation of
endogenous Reg3γ in the gut may be a critical component for the
treatment of metabolic diseases.

FUTURE PERSPECTIVES
Reg3γ is abundant in the intestine under normal conditions, where it
serves as an antimicrobial peptide that maintains the distance
between the gut bacteria and the host, prevents bacterial transloca-
tion and regulates intestinal inflammation8,26,80. Reg3γ was also
found to be a diagnostic and prognostic biomarker for predicting
host responses to systemic inflammation81–83. In addition to animal
studies, accumulating results indicate the clinical relevance of Reg3γ
and related signaling pathways to metabolic disorders (Fig. 3). Reg3γ
is secreted in the gut lumen and serves as a gut hormone that can act
upon other organs in either an Extl3-dependent or -independent
manner through its receptor. However, many questions about the
tissue-specific actions of Reg3γ remain unanswered. For example,
Reg3γ is produced in nociceptors in the dorsal root ganglion when
exposed to LPS. It protects mice from LPS-induced endotoxemia by
suppressing microglial IDO1 expression via the Extl3-Bcl10 axis84.
Although the direct role of Reg3γ in the CNS has received relatively
little attention, its receptor, EXTL3-positive cells, are widely distributed
throughout the brain, including the cortical areas, hypothalamic
nuclei, and brainstem85. Such data would indicate whether brain-
penetrant analogs of Reg3γ might be useful therapeutically.
Finally, the possibility remains of combining Reg3γ/REG3A with

other gut peptide-based therapeutics since strengthening the
activity of Reg3γ/REG3A can also be directly or indirectly regulated
by other therapeutic targets that have glucose-lowering ability.

Fig. 3 Potent effects of Reg3γ that regulate metabolic function. Reg3γ exerts metabolic benefits in various circumstances. Our analysis
highlights the role of Reg3γ as a link between the gut microbiome and host physiology. Reg3γ is required for improvements in metabolic
function after surgical or dietary interventions21. Reg3γ acts in the gut lumen to improve gut function (reduced oxidative stress, improved
barrier function). Reg3γ enhances insulin secretion in the pancreas. Future studies are needed to examine whether Reg3γ plays a role in the
central regulation of food intake and glucose regulation. Moreover, studies are needed to determine the therapeutic potency of Reg3γ. The
figure was created with BioRender.com.
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For example, Reg3γ expression is downregulated in the small
intestine of Glp-1r-deficient mice86, thus implying that GLP-1
signaling may affect Reg3γ induction. Given that Reg3γ is likely to
be degraded by DPP421, it needs to be further determined
whether the DPP4 inhibitor sitagliptin affects Reg3γ activity, which
is associated with metabolic improvements. Further studies are
needed to gain more molecular insights into its efficacy and
potency, thereby identifying new potential targets.
In summary, Reg3γ, as a part of the host immune system,

counteracts diverse stress factors, including oxidative stress and
the inflammatory response. Reg3γ not only plays a role in the gut
lumen but can also contribute to host physiology through
interactions with the gut microbiota. The current state in the
field of treating metabolic diseases points toward the effective-
ness of manipulating the gut. While research into the role of Reg3γ
in metabolic regulation is relatively new, emerging evidence
indicates a potent role of Reg3γ in impacting metabolic function
in other organs either via paracrine or endocrine action. Hence,
appropriately designed analogs may provide unique therapeutic
advantages by acting both within the gut and on other target
organs. A key question for such analogs will be the degree to
which they should replicate the antimicrobial actions or act as
“Extl3 agonists” to exert beneficial actions. Finally, as we under-
stand more about what drives endogenous Reg3γ, a variety of
dietary supplements may be used to harness the beneficial effects
of the endogenous Reg3γ system.
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