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As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery
of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively
investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research
focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively
dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and
prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been
the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using
miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have
been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent
preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-
to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
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INTRODUCTION
MicroRNAs (miRNAs) are one of the shortest endogenous
noncoding RNAs, consisting of 20–25 nucleotides1. Since the
discovery of the first miRNA, lin-4 in Caenorhabditis elegans (C.
elegans) in 1993, miRNA processing and functional machinery
have been elucidated, and thousands of miRNAs have been
identified across species1–3. Although the expression and proces-
sing machinery of miRNAs are relatively well understood, the
majority of miRNAs are processed by the canonical miRNA
biogenesis pathway employing the Drosha/DGCR complex,
Exportin-5/RAN-GTP complex, and Dicer/TRBP complex4,5. Primary
miRNA transcripts (pri-miRNAs) transcribed by RNA polymerase II
(Pol II) are precisely cut into precursor miRNAs (pre-miRNAs) with a
stem‒loop (hairpin) structure by the Drosha/DGCR complex, and
pre-miRNAs are transported into the cytosol by the Exportin-5/
RAN-GTP complex. In the cytosol, the stem‒loop pre-miRNAs are
edited to miRNA duplexes by the Dicer/TRBP complex, removing
the loop structure. In the canonical functional mechanism, the
RNA-induced silencing complex (RISC) built by Ago (Ago2 in
humans), a mature miRNA strand derived from the miRNA duplex,
and other accessories binds to the 3′ UTR of target mRNAs. The
seed sequence, defined as the first 2–8 nucleotides of the 5′ end
of miRNAs, typically contributes to the interaction between the
RISC and target mRNAs (Fig. 1)1,4,5. Intriguingly, recent investiga-
tions have shown that some miRNAs, such as miR-212-5p and miR-
221-5p, upregulate the protein levels of target mRNAs through the
interaction of the canonical functional machinery with the 3′ UTR
of these mRNAs, and these miRNAs are called up-miRs6. In

addition, nuclear miRNAs employ different functional mechan-
isms. For instance, nuclear miR-466c activates the transcription of
the VEGFA gene by interacting with long noncoding RNAs
expressed from the promoter of the VEGFA gene (Fig. 1)7. To
determine the significance of novel functional mechanisms of
miRNAs, further studies are needed.
Since the discovery of miRNA, their functions have been

revealed at the molecular and cellular levels. Nonetheless, there
was a lack of biomedical or clinical data regarding the roles of
miRNAs in human diseases. In 2002, the first evidence showing the
role of miRNAs in human disease was reported. The frequently
deleted 13q14.3 region in chronic lymphocytic leukemia (CLL)
contains two tumor suppressor miRNAs, miR-15 and miR-168.
Deletion of these miRNAs in the 13q14.3 region is a critical cause
of CLL development. This finding sparked active research on
noncoding RNAs, including miRNAs, as causes of human diseases,
including cancer. For instance, miRNAs such as mir-34 and miR-
200 are upregulated by the tumor suppressor p53, which is
frequently deleted, mutated, and/or inactivated in most types of
cancer9–11. Therefore, suppression of these tumor-suppressive
miRNAs by p53 inactivation promotes cancer development. On
the other hand, miR-17-5p and miR-20a are transactivated by
MYC, which is an oncogene that is hyperactivated and/or
overexpressed in various cancer types12. The oncogenic miRNAs
activated by MYC are involved in the initiation and progression of
MYC-driven cancers. Currently, the human genome is believed to
encode more than 2500 miRNAs (miRBase database,
www.miRBase.org). Numerous miRNAs show unique expression
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patterns and context-dependent functions in different types of
cancer13. In addition to the general functions of miRNAs in cancer,
each cancer type features unique miRNA expression patterns.
The increase in research on the role of miRNAs in human

diseases has allowed the identification and characterization of
various miRNAs exclusively expressed or downregulated in
specific human diseases14. As a result, a number of miRNAs have
been assessed in preclinical studies and clinical trials15. The drug
MRG-110 is an inhibitor of miR-92a16. Mir-92a plays an antiangio-
genic role in the development of cardiovascular disease and
retards wound healing in multiple organ systems17. Therefore,
inhibition of miR-92a increases angiogenesis and improves wound
repair in cardiovascular disease. In 2019, a phase 1 clinical trial of
the miR-92a inhibitor MRG-110 was completed, showing the
safety and efficacy of MRG-110 in humans18. The drug miravirsen
(SPC3649) is an inhibitor of miR-122 that forms an oligomeric
complex with the HCV genome to stabilize it, thus promoting HCV
replication in liver cells19. Given the results of a preclinical study
and a phase 1 clinical trial, a phase 2 clinical trial of miravirsen was
completed in 201220. Although more clinical trials using mir-
avirsen have been completed or registered, the results or updates
are not yet available. In addition, RGLS8429 is an inhibitor of miR-
17. In autosomal dominant polycystic kidney disease (ADPKD),
mir-17 accelerates kidney cyst growth by targeting mRNAs of the
PKD1 or PKD2 genes21. Following preclinical evaluation and a
phase 1 clinical trial of the first-generation miR-17 inhibitor
RGLS4326, the second-generation miR-17 inhibitor RGLS8429 has
been developed and tested22,23. The phase 1 clinical trial of
RGLS8429 was completed in 2022. RGLS8429 is a very promising
drug candidate for ADPKD that is currently being tested in an
active clinical trial. The drug MRG-201 is also an miRNA drug that is
being tested in a clinical trial; MRG-201 is a mimic of miR-29 that
represses the expression of collagen and other proteins

promoting scar formation24. To test the clinical potential of the
miR-29 mimic the treatment of keloid and fibrous scar formation, a
phase 1 clinical trial was completed in 2021. In addition, MRG-229,
an updated miR-29 mimic with improved chemical stability, was
developed and tested as a treatment for pulmonary fibrosis in the
preclinical stage25. Mimics of miR-466c increase VEGFA expression,
and they are also being tested in the preclinical stage as a
treatment for peripheral artery disease (PAD) and heart failure
(HF)7.
Similar to the examples of miRNA therapies in other diseases,

various mimics or inhibitors of miRNAs have been clinically tested
in cancer24. Though a number of preclinical and clinical trials were
in progress, some of them were interrupted because of clinical
and business issues. Nevertheless, several studies of clinical
applications of miRNA therapy are ongoing. In this review, we
introduce miRNA therapies currently in the preclinical or clinical
stage of development for cancer treatment and diagnosis.

MIRNAS AS BIOMARKERS OF CANCER DIAGNOSIS AND DRUG
EFFICACY PREDICTION
Many clinical trials examining the clinical potential of miRNAs as
biomarkers for cancer therapy response prediction, diagnosis, and
prognostication are underway. As diagnostic markers, miRNAs in
blood or tissue samples from cancer patients have been tested. A
few clinical trials of diagnostic miRNAs were recently completed,
although the results have not been reported. For instance, miR-
155 was used to diagnose non-muscle-invasive bladder cancer
(ClinicalTrials.gov identifier: NCT03591367), and miRNA profiling
was used to predict the development of multicentric breast cancer
(ClinicalTrials.gov identifier: NCT04516330). A number of addi-
tional diagnostic clinical trials using patient blood or tissue
samples are ongoing. The ability of let-7a and miR-124 to
diagnose non-Hodgkin’s lymphoma and acute leukemia is being
tested (ClinicalTrials.gov identifier: NCT05477667). Plasma miRNAs
are also being profiled to discover novel diagnostic miRNAs in
lung and gynecologic cancers (ClinicalTrials.gov identifier:
NCT02247453 & NCT03776630). In addition, the ability of some
miRNAs to characterize unclassified cancer cell types is being
tested in clinical trials. The ability of ten miRNAs to define and
characterize undetermined types of thyroid cancer is being tested
(ClinicalTrials.gov identifier: NCT04285476). Interestingly, novel
miRNA markers for colorectal cancer screening are being searched
for in fecal samples (ClinicalTrials.gov identifier: NCT05346757).
Clinical trials is to study miRNA markers regulated by probiotics
are also underway. Probiotic supplementation with Helicobacter
pylori (H. pylori) eradication promotes the regression of intestinal
metaplasia by regulating the Wnt/beta-catenin signaling path-
way26–31. Because miRNAs play crucial roles in regulating the Wnt/
beta-catenin signaling pathway in gastric carcinogenesis, probio-
tics may modulate miRNAs implicated in the Wnt/beta-catenin
signaling pathway and gastric carcinogenesis32–50. Therefore, one
clinical trial (ClinicalTrials.gov identifier: NCT05544396) aimed to
identify and characterize miRNA markers regulated by probiotics
in gastric carcinogenesis. In addition to these clinical trials, more
clinical trials aiming to identify miRNAs or test the diagnostic
utility of miRNA biomarkers in cancer have been completed or are
ongoing according to ClinicalTrials.gov.
The ability of miRNAs to predict the efficacy of various cancer

therapies has also been studied. MiRNAs are being clinically
profiled as predictive markers of chemotherapeutic efficacy in
metastatic castration-resistant prostate cancer (ClinicalTrials.gov
identifier: NCT04662996). To improve the efficacy of adjuvant
therapy in colon cancer, six miRNAs (miR-21, miR-20a, miR-103a-
3p, miR-106b, miR-143, and miR-215) are under clinical investiga-
tion (ClinicalTrials.gov identifier: NCT02466113). The potential of
miRNA markers to predict targeted immunotherapy efficacy has
also been examined. In NSCLC, exosomal miRNAs were profiled

Fig. 1 The biogenesis and the canonical and noncanonical
functional machinery of microRNAs. Mature miRNAs are generated
from pri-miRNAs through pre-miRNAs by implicating various
proteins including DGCR8, Drosha, Exportin-5, TRBP, Dicer, and
Ago. Mature miRNAs function through the canonical machinery at
the posttranscriptional level or the non-canonical machinery at the
transcriptional or posttranscriptional levels.
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and characterized before or after administration of immunother-
apy targeting PD-1 or PD-L1 (ClinicalTrials.gov identifier:
NCT04427475). To examine the ability of miRNAs to predict the
efficacy of multiple chemotherapy drugs (epirubicin, cyclopho-
sphamide, paclitaxel, and carboplatin), the correlation between
blood miRNA levels and drug resistance was studied in triple-
negative breast cancer (ClinicalTrials.gov identifier: NCT04771871).
MiR-371a-3p in serum is being evaluated as a marker of resistance
to chemical drugs (carboplatin, etoposide, and cisplatin) and
radiotherapy in testicular germ cell tumors (ClinicalTrials.gov
identifier: NCT05529251). The correlation of miR-141 and miR-
375 with radiation resistance is also being investigated in prostate
cancer (ClinicalTrials.gov identifier: NCT02391051). Because many
lines of evidence have shown that many miRNAs are involved in
resistance to various therapeutic modalities and strategies in
cancer, more clinical trials evaluating the utility of miRNAs as
predictive and prognostic markers of cancer treatments should be
developed51–57.
Since the discovery of miRNA functions in cancer, many miRNAs

have been identified in various cancer types8,13. Furthermore,
additional miRNAs have been found to be specifically dysregu-
lated in different cancer types because of the discovery of novel
miRNAs and the development of new detection technologies over
the last decade58–61. For example, miR-34697, miR-45165, miR-638,
and miR-152 have been identified to play a role in non-small cell
lung cancer (NSCLC); miR-885-5p has been identified to play a role
in kidney cancer; and miR-1285 has been identified to play a role
in prostate cancer58,62. More recently, it has been revealed that
genetic and epigenetic modifications of miRNAs can be used as
diagnostic and prognostic markers in cancer. The single nucleo-
tide polymorphisms found in miRNAs are associated with cancer
susceptibility63. ADAR proteins frequently participate in A-to-I
editing, making them important diagnostic and prognostic
markers because they modulate miRNA processing, expression,
and activity in cancer64,65. In addition to A-to-I editing, N6-
methyladenosine (m6A) modification of miRNAs is a critical
epigenetic modification associated with cancer diagnosis and
prognosis. The development of new technologies such as MeRIP-
Seq (m6A-seq) has led to the identification of miRNAs with m6A
modifications66. MiRNA methylation is also associated with
prognosis and drug resistance in cancer67,68. Therefore, in addition
to the miRNAs identified in early miRNA research, newly
discovered miRNAs and miRNA modifications are being recog-
nized as potential diagnostic and prognostic markers for clinical
trials.

MIRNAS AS CANCER THERAPEUTIC TARGETS
MiRNA-34a
The miR-34 family members, including miR-34a, miR-34b, and miR-
34c, were highlighted as p53-regulated tumor suppressor miRNAs
in 20079,10. The primary transcripts of miR-34 family members are
directly transactivated by the transcription factor p53, and
members of the miR-34 family that are induced by the tumor
suppressor p53 modulate the effects of p53 on the cell cycle, cell
growth, apoptosis, and the DNA damage response69. The tumor
suppressor p53 is frequently mutated, deleted, and/or down-
regulated in most cancer types. miR-34a is upregulated by p53
and is a main member of the miR-34 family; miR-34a is
correspondingly downregulated in various cancers70. For these
reasons, miR-34a is one of the most promising candidates for
miRNA drugs in cancer.
The drug MRX34 is a synthetic double-stranded miR-34a mimic

encapsulated in a liposomal nanoparticle. The phase 1 clinical trial
(ClinicalTrials.gov identifier: NCT01829971) of MRX34 was the first-
in-human clinical trial of miRNA therapy71. In the clinical trial, the
drug was tested in various cancer types, such as primary liver
cancer, small-cell lung cancer (SCLC), lymphoma, melanoma,

multiple myeloma, renal cell carcinoma, and NSCLC. However,
the clinical trial was terminated owing to serious immune-
mediated adverse events resulting in four patient deaths72,73. As
a consequence, another clinical trial (ClinicalTrials.gov identifier:
NCT02862145) using MRX34 combined with dexamethasone in
melanoma was withdrawn. The first trials of miRNA therapy
provided critical lessons, although the clinical trial using MRX34
did not achieve dramatic success. Exogenous miRNA mimics
require further development and improvement to avoid toxicity in
humans. In the trial, the liposomal delivery system was not the
cause of the immune-related adverse events73. Furthermore, a
tumor-targeted delivery system could reduce the off-target
toxicity of miRNA drugs. Despite the side effects, treatment with
MRX34 decreased the expression of miR-34 target genes,
oncogenes, and immune escape-related genes in cancer
patients72,73. Therefore, if improvements in synthetic miRNA
mimics and delivery systems can be made, miR-34a is still a
promising target of miRNA cancer therapy. Consequently, miRNA
therapy has potential as a next-generation therapy despite the
early termination of the MRX34 clinical trial.

MiRNA-16
MiR-16 and miR-15 were the first two miRNAs revealed to cause
human diseases, in particular, cancer8. Mir-16 (miR-16-1) and miR-
15 (miR-15a) are clustered at chromosome 13q14.3, which is
frequently deleted in various types of cancer74. Monoallelic or
biallelic deletion of the 13q14.3 region is the most common
cytogenic abnormality in CLL and is found in more than 50% of
CLL cases8. In addition, deletion of 13q14.3 is frequently found in
other cancer types: ~50% of mantle cell lymphoma, ~60% of
prostate cancer, and 16–20% of multiple myeloma cases8,75.
Although several genes, including DLEU1, DLEU2, TRIM13, KCNRG,
and SPRYD7, are localized at the 13q14.3 region, those genes do
not show consistent tumor suppressor functions8. The discovery of
the presence of the miR-16-1/15a cluster in the intron of the
DLEU2 gene revealed a potential mechanism by which 13q14.3
deletion is associated with cancer development8. In particular,
miR-16 and miR-15 suppress the translation and stability of BCL2
mRNA, inhibiting cell apoptosis76. Consequently, deletion of the
13q14.3 region, which includes the tumor suppressors miR-16 and
miR-15, increases the expression of the oncogene BCL274. In
addition to BCL2, a number of genes, including ROR1, RPS6KB1,
WIP1 (PPMID), MCL-1, CHK1, WEE1, CCND1, CCND2, CCNE1, E2F,
WNT3A, STAT-3, VEGF, and BMI-1, are known as targets of miR-16
and miR-1577. Tumor-suppressor roles of miR-16 and miR-15 were
also revealed in other cancers, including lung cancer, malignant
pleural mesothelioma (MPM), nasopharyngeal cancer, breast
cancer, squamous cell adenocarcinoma, retinoblastoma, and
gastric cancer. Although 13q14.3 deletion is not as frequent in
these cancer types as it is in CLL, miR-16 is also frequently
downregulated in these cancer types77. Another miR-16/15 cluster
is also found in chromosome 3 in the intron of the SMC4 gene.
This miR-16/15 cluster at chromosome 3 may play a critical role
with the cluster in chromosome 13q77.
The drug TargomiR is a synthetic double-stranded mimic of

miR-16 encapsulated by a bacterial minicell system known as
EnGeneIC Dream Vectors (EDVs)78. In particular, TargomiR employs
the EGFR-targeting EDV system to precisely deliver miR-16 mimics
into EGFR-overexpressing tumor cells in patients with recurrent
MPM or NSCLC. In the second-in-human clinical trial (Clinical-
Trials.gov identifier: NCT02369198) of miRNA therapy, the
improved synthetic double-stranded RNA mimic and delivery
system were better tolerated and showed early signs of tumor
suppression78. Although the result was not dramatic and there
were minor adverse events in this clinical trial, the results provide
clues for successful miRNA therapy. In the MRX34 clinical trial, the
double-stranded miRNA mimics and the dose were thought to be
major causes of immune-related toxicity72,73. However, the relative
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success of the clinical trial of the double-stranded mimic TargomiR
suggests that the carrier system is more responsible for the
inflammatory toxicities35. In addition, the moderate response seen
in the clinical trial might be due to the low dose of miR-16 mimics.
Overall, the results of this trial indicate that a more cancer-specific
and safe delivery system is needed for miRNA therapy.

MiRNA-155
Mir-155 is an oncogenic miRNA overexpressed in lymphoma,
leukemia, and most solid cancers79,80. The expression of miR-155 is
also associated with poor prognosis in various cancers. The
functions of miR-155 have been reported not only in cancer but
also in other diseases, including viral infection, immune diseases,
neurological diseases, diabetes, and cardiovascular diseases81. Mir-
155 is processed from the primary transcript miR-155HG (host
gene), which was formerly known as BIC (B-cell integration
cluster)80. Like many other miRNAs, miR-155 is conserved between
humans and mice79. Therefore, the functions of miR-155 have
been derived from mouse models as well as in vitro cell models81.
Studies using in vivo models of miR-155 have shown that the
critical roles of miR-155 in inflammatory diseases are directed by
impairment of immune cells, including B cells, T cells, mast cells,
dendritic cells, and macrophages. In particular, transgenic mouse
models of miR-155 show uncontrolled T-cell proliferation,
abnormal natural killer cell development, and myeloproliferative
disorders, validating the oncogenic role of miR-15581,82. Indeed,
administration of miR-155 inhibitor led to the depletion of
tumorigenic lymphoid cells in vivo, suggesting that miR-155 is a
promising target miRNA for treating leukemia and lymphoma83.
The drug MRG-106 (cobomarsen) is an miR-155 inhibitor

synthesized as a locked nucleic acid (LNA)-modified oligonucleo-
tide84. A phase 1 clinical trial (ClinicalTrials.gov identifier:
NCT02580552) tested MRG-106 in cutaneous T-cell lymphoma
(CTCL), CLL, diffuse large B-cell lymphoma (DLBCL), and adult
T-cell leukemia/lymphoma (ATLL)83. Given the successful results of
the phase 1 clinical trial, a phase 2 clinical trial (ClinicalTrials.gov
identifier: NCT03713320) in CTCL was developed. Unfortunately,
the phase 2 clinical trial was terminated early due to business
reasons of the sponsored company according to the updated
information on ClinicalTrials.gov. This clinical trial was the first trial
using miRNA inhibitors, unlike the previous two clinical trials using
miRNA mimics. A single miRNA can have broad functions by
targeting numerous targets. Therefore, as shown in the previous
two clinical trials of the tumor suppressors miR34 and miR-16, the
mimics are likely to cause unintended side effects if the strategy
lacks mechanisms for specific delivery and targeting of cancer
cells. On the other hand, the targeting of oncogenic miRNAs using
miRNA inhibitors may at least partly avoid the risk of exogenous
overexpression of specific miRNAs as long as the inhibitors are
specific to the target miRNAs. Because the early termination of the
phase 2 clinical trial for MRG-106 was not caused by issues of
safety or efficacy, this drug may still be tested in further trials and
may be promising for clinical applications in the future.

MiRNA-193a-3p
MiR-193 consists of miR-193-3p and miR-193-5p, which are
derived from the 3′ arm and the 5′ arm, respectively, of the
stem‒loop structure of premiR-193 (most miRNAs in this review
are derived from the 5′ arm unless otherwise indicated)85. PremiR-
193 is expressed from two loci: miR-193a on chromosome 17 and
miR-193b on chromosome 1685. The sequences of miR193 family
members, including miR-193a-5p, miR-193a-3p, miR-193b-5p, and
miR-193-3p, are homologous but slightly different, leading to
differential mRNA targeting85. Members of the miR-193 family
were studied as potential modulators of the apoptosis pathway86.
Indeed, overexpression of miR-193 family members induces
apoptosis by indirectly activating caspase-3 and caspase-787.
However, it was also reported that miR-193 accelerated the

proliferation of mesenchymal stem cells88. This could be due to
the unique sequence- and cell context-dependent roles of the
miR-193 family members. Nonetheless, most lines of evidence
indicate a tumor-suppressive role of miR-193 family members, in
particular, miR-193a-3p, in a variety of cancers, including breast
cancer, lung cancer, colorectal cancer, squamous cell carcinoma,
melanoma, acute leukemia, osteocarcinoma, pleural mesothe-
lioma, and thyroid carcinoma85. Although the function of miR-
193a-3p has not been specifically defined, miR-193 also represses
the growth of gastric cancer, endometrial carcinoma, hepatocel-
lular carcinoma (HCC), ovarian cancer, pancreatic cancer, and
prostate cancer tumors85. Consistently, miR-193a-3p is often
downregulated in the tissues of diverse cancers compared to
their adjacent normal tissues85.
The drug INT-1B3 is a lipid nanoparticle (LNP)-formulated miR-

193a-3p mimic (1B3)89. A phase 1 clinical trial (ClinicalTrials.gov
identifier: NCT04675996) of INT-1B3 is ongoing. The function of
the novel synthetic miR-193a-3p mimic 1B3 was tested in cell lines
derived from several cancers, such as triple-negative breast cancer
(TNBC), NSCLC, melanoma, colon cancer, and HCC. Treatment with
1B3 resulted in the upregulation of the tumor-suppressive PTEN
pathway and the downregulation of many oncogenic pathways in
cancer-derived cells90. In addition, despite the different genetic
backgrounds of these cancer cell lines, 1B3 showed consistent
effects in suppressing cell proliferation, the cell cycle, and cell
migration and inducing apoptosis, cell senescence, and DNA
damage91. These results suggest the potential of IB3 in a broad
range of cancers. Given the notable effects of 1B3, a novel LNP
formulation of 1B3 was developed (INT-1B3). Studies of INT-1B3 in
orthotopic mouse models have revealed that INT-1B3 can be
safely and efficiently delivered to tumors in vivo89. Following these
successful preclinical studies, INT-1B3 is currently being tested in a
phase 1 clinical trial to determine the maximally tolerated dose,
safety, pharmacokinetics, pharmacodynamic response, and anti-
tumor activity in patients with various solid cancers. In addition to
INT-1B3, another LNP-formulated tumor-suppressive miRNA
mimic, INT-5A2, is under development for HCC and glioblastoma
therapy (https://interna-technologies.com). The identity of the
miRNA that INT-5A2 mimics has not yet been publicly released.

MiRNA-10b
MiR-10b is a member of the miR-10 family. The miR-10 family
resides in the evolutionarily well-conserved HOX gene cluster91.
Similar to the HOX gene, miR-10 family members are also highly
conserved across species. MiR-10a is localized in the intron of the
HOXB3 gene in chromosome 17, and miR-10b is found near the
HOXD4 gene in the HOXD cluster in chromosome 2. In cancer
research, miR-10b has drawn considerable attention as a key
regulator of tumor invasion and metastasis in breast cancer. Mir-
10b, which is transcriptionally activated by epithelial-
mesenchymal transition (EMT) induced by the transcription factor
TWIST, indirectly increases the expression of the prometastatic
gene RHOC by directly targeting and suppressing HOXD10
mRNAs92. In addition to the HOXD10 gene, various genes,
including HOXB1, HOXB3, NF1, KLF4, and TIAM1, have been
revealed as miR-10b targets regulating the invasion, migration,
and metastasis of cancer cells91. In several primary cancers, such
as glioblastoma, pancreatic cancer, and esophageal cancer, miR-
10b is upregulated, supporting the oncogenic role of miR-10b. On
the other hand, in primary breast cancer, miR-10b is not
upregulated. Interestingly, however, miR-10b is highly upregu-
lated in metastatic breast cancers, indicating the critical role of
miR-10b in cancer metastasis. The upregulated expression of miR-
10b in nasopharyngeal metastatic carcinoma cells and neurofi-
bromatosis type 1 metastatic cells also supports the critical role of
miR-10b in cancer metastasis91. Consistent with these findings, an
miR-10b inhibitor (antagomir) efficiently prevented metastasis of
breast cancer in a mouse model93.
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The drug TTX-MC138 is an miR-10b inhibitor conjugated with
advanced dextran-coated iron oxide nanoparticles (https://
www.transcodetherapeutics.com). Recent findings showed safe
and noticeable effects of LNA-based miR-10b inhibitors (antag-
omirs) conjugated to magnetic nanoparticles in vitro and in vivo,
with the inhibitors significantly decreasing the high expression of
miR-10b in breast cancer. The miR-10b inhibitor TTX-MC138 was
developed based on these promising results and advances in
nanotechnology. TTX-MC138 is currently being tested in the
preclinical stage for the treatment of metastatic breast cancer94–96.
MiR-10b is frequently overexpressed and plays an oncogenic role
not only in metastatic breast cancer but also in other cancers91,97.
Not surprisingly, a clinical trial (ClinicalTrials.gov identifier:
NCT01849952) to assess miR-10b expression in patients with
several subtypes of brain cancer is also ongoing. Prior to the
development of the drug TTX-MC138, another miR-10b inhibitor,
RGLS5579, was developed and preclinically tested for glioblas-
toma multiforme (GBM)98,99. Although clinical trials of RGLS5579
have not yet been initiated, RGLS5579 combined with temozolo-
mide (TMZ) safely and meaningfully extended the survival of an
orthotopic mouse model of GBM100. Based on the outcome of
RGLS5579 treatment, TTX-MC138 also has the potential to treat
various primary cancers, including brain cancer, in addition to
metastatic breast cancer. Indeed, TTX-MC138 is being preclinically
tested in GBM, pancreatic cancer, SCLC, and osteosarcoma
according to the information provided by the company working
on TTX-MC138 (https://www.transcodetherapeutics.com).

CONCLUSION AND PERSPECTIVES
During the past two decades and since the discovery of miRNAs as
a direct cause of human diseases, numerous miRNAs have been
identified and characterized as oncogenic or tumor-suppressive
miRNAs in almost all types of cancer and many other human
diseases4,8,13,14,31. As a result, a large number of preclinical and
clinical trials centered on miRNAs have been carried out during
the last decade, as cataloged by ClinicalTrials.gov. Studies profiling
miRNAs have identified cancer-specific miRNAs in most types of
cancer, describing the potential of miRNAs as diagnostic
markers13,31. Bioinformatic and biostatistical analyses have also
revealed a strong association of cancer-specific miRNAs with
clinical outcomes, including prognosis, survival, and drug resis-
tance101–104. Hence, clinical trials of the utility of miRNAs in
diagnosis have been initiated. MiRNAs are abundant noncoding
RNAs, and their short length increases their stability compared
with longer RNA molecules, which are readily broken down by
ribonuclease105–107. Furthermore, miRNAs are secreted into
extracellular fluid alone or encapsulated by vesicles such as
microvesicles and exosomes100,107. Subsequently, the secreted
miRNAs are found in the blood circulation108. In summary, cancer-
specific and circulating miRNAs are attractive diagnostic markers.
In addition to diagnostic miRNAs, miRNAs that can be used to
predict drug efficacy and patient prognosis will significantly aid
the advancement of precision cancer medicine. Correspondingly,
as introduced in this review, many clinical trials of diagnostic and
predictive miRNAs are ongoing in various cancer types.
Several clinical trials of improved miRNA drug strategies, such as

synthetic RNA molecules and advanced delivery technologies, are
ongoing despite the failure of the first-in-human clinical trial of
miRNA cancer therapy (Table 1)15. Due to the pleiotropic function
of miRNAs, targeting miRNAs may be challenging and cause
unexpected side effects, as shown in the first trial with tumor-
suppressive miR-34a mimics15,24,109. However, cancer is not a
single disease caused by a single genetic mutation or epigenetic
alteration. Cancer cells develop via the accumulation of numerous
genetic mutations and epigenetic alterations at the genome
level110. Indeed, as confirmed by the limited success of many
cancer therapeutic strategies aiming at a single or few targets,Ta
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cancer is unlikely to be cured by targeting one or a few
factors95,110. Thus, the unique pleiotropic effects of miRNAs make
them an attractive therapy type. Treatment with a single miRNA
drug can have a similar effect as treatment with multiple drugs24.
There remain challenges with miRNA therapy such as toxicity,
adverse effects, and low efficacy at a high dose that need to be
resolved15,24. However, the advancement of biochemistry and
bioengineering technologies has made it possible to address the
obstacles in miRNA therapy as described in this review. Recent
preclinical and clinical trials have shown higher safety, efficacy,
and specificity of new synthetic RNA oligomers for miRNA mimics
and antisense miRNA inhibitors35,41,46. In addition, new promising
delivery systems have been developed and applied for the
effective and precise delivery of miRNA drugs35,46,51–53. As
expected, miRNA-focused preclinical and clinical trials are
common in multiple human diseases, including cardiovascular
diseases. Given the relevant progress of miRNA therapy, miRNA
therapy will likely be a leading next-generation cancer therapy
with the application of advanced synthetic RNA technologies and
cancer-specific delivery systems.
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