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Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher
efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been
used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as
cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as
small-molecule or chemotherapeutic drugs via linkers to synthesize peptide–drug conjugates. In addition, peptides selectively bind
to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently
blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular
proteins and interfere with protein–protein interactions. Thus, peptides demonstrate great application potential as multifunctional
players in cancer therapy.
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INTRODUCTION
Compared with antibodies, peptides exhibit certain disadvan-
tages, such as lower affinity, rapid excretion from the body (or
shorter half-life in the body), and vulnerability to protease-
mediated degradation. Conversely, the advantages of peptides
include deep tissue penetration, efficient internalization into cells,
lower immunogenicity and toxicity to the bone marrow and liver,
and easy modification via chemicals compared with antibodies1–4.
The pros and cons of peptides relative to antibodies are
summarized in Table 1. Presently, >80 peptide therapeutics are
available on the market; these include liraglutide (Victoza®), a
glucagon-like peptide-1 used to treat type 2 diabetes mellitus, and
leuprolide (Lupron®), a somatostatin analog used to treat prostate
cancer4. In addition, peptides have been employed to identify
peptide mimotopes5, generate vaccines6, and map
protein–protein interaction epitopes7. Herein, we focused on the
multifunctional application of peptides in targeted therapeutics;
peptides can deliver carriers (such as nanoparticles, extracellular
vesicles (EVs), and cells) and cargoes (such as cytotoxic peptides,
radioisotopes, and small molecules) to target cells; inhibit or
antagonize cell surface receptors and proteins; and interfere with
intracellular protein–protein interactions. The various peptides,
carriers, and cargoes described herein are summarized in Fig. 1.

TUMOR-HOMING PEPTIDES AS TARGETING LIGANDS
Peptide-targeted delivery of nanoparticles
Tumor-homing peptides have been used for guiding nanoparti-
cles to cancer cells through direct interactions between the
peptides and receptors or binding partners on the cell surface8. In

general, they are designed to be tumor cell-specific to enhance
the internalization of nanoparticles into tumor cells. Multivalent
labeling of peptides on nanoparticles increases the binding avidity
of the peptide. In addition, the conjugation of peptides with
nanoparticles tends to protect the peptide from protease-
mediated degradation. The most well-known tumor-homing
peptide is the RGD peptide, including RGD4C (ACDCRGDCFCG)
and Cilengitide™ (RGDfV), which bind to overexpressed αvβ3
integrin in the angiogenic endothelial cells of tumor blood vessels,
thereby inhibiting angiogenesis9–11. The conjugation of the RGD
peptide with drugs or drug-loaded nanoparticles has been
intensively investigated for cancer therapy12. Internalized RGD or
iRGD (CRGDR/KGPDC), a modified version of the RGD peptide, not
only bound to αV integrins but also increased the tissue
penetration of drugs. The binding of the RGD motifs to the αV
integrins expressed in tumor endothelial cells induces the
protease-mediated cleavage of the iRGD peptide, producing two
peptides, namely, CRGDR/K and GPDC. Subsequently, the CRGDR/
K peptide containing the C-terminal CendR motif (R/KXXR/K) binds
to neuropilin-1, activating an endocytic pathway13–15. Thus, iRGD
increases the tissue penetration of drugs regardless of whether it
is conjugated to or coadministered with the drug16–18.
The mitochondrial protein p32 or gC1qR is overexpressed in

tumors with aberrant cell surface expression in tumor cells, tumor
lymphatics, and a subset of myeloid cells such tumor-associated
macrophages (TAMs)19. When conjugated with the p32-binding
LyP-1 peptide (CGQKRTRGC), Abraxane, a nanoparticle albumin-
bound paclitaxel, accumulated in tumor tissues and inhibited
tumor growth more efficiently than untargeted Abraxane19,20.
Vascular endothelial growth factor receptor 2 (VEGFR-2) is
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predominantly expressed on the surface of tumor endothelial
cells21. Paclitaxel-loaded nanoparticles conjugated with K237
peptide (HTMYYHHYQHHL), a VEGFR-2-binding peptide, efficiently
inhibited angiogenic activity and induced apoptosis of tumor
endothelial cells and necrosis of tumor tissues22. Interleukin-4

receptor (IL4R), particularly type-II IL4R, is composed of IL4Rα and
IL13Rα1, and it is upregulated in major tumors such as breast,
lung, head and neck tumors and glioblastoma compared to their
corresponding control tissues23–25. IL4RPep-1 peptide
(CRKRLDRNC), an IL4R-binding peptide, can enhance the delivery

Table 1. Comparison between peptides and antibodies as tumor-homing ligands.

Peptide Antibody

Affinity Lower (nM–μM) Higher (pM–nM)

Stability More vulnerable to degradation Less vulnerable to degradation

Body clearance and half-life in the blood Faster clearance and shorter half-life
(~hours)

Slower clearance and longer half-life (~3 weeks)

Target tissue accumulation Faster Slower

Size (molecular weight) Smaller (1–3 kDa) Larger (150 kDa)

Tissue penetration Deeper and faster Perivascular and slower

Internalization into cells More efficient Less efficient

Controlled chemical modification Easier More difficult

Immunogenicity and toxicity (liver, bone
marrow)

Lower Higher

Production, quality control (QC), and cost Chemical synthesis, easier QC, and lower
cost

Cell culture or animal, more difficult QC, and
higher cost

Fig. 1 Types of peptides, carriers and payloads. Tumor-homing peptides bind to their receptors on tumor cells and selectively deliver cargoes
therein, causing cell damage and death. Antagonist peptides target cell surface receptors on tumor cells, such as hormone receptor and PD-L1,
and inhibit their biological activities. Interference peptides with or without tumor-homing peptides enter cells, bind to their intracellular targets,
and inhibit the interaction between the target and its binding partner. Various types of carriers, such as nanoparticles, exosomes and cells, and
cargoes, such as cytotoxic peptides, radionuclides, and drugs (PDCs), are used for targeted delivery via tumor-homing peptides.
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of nanoparticles to IL4R-overexpressing tumors26–30. In addition,
IL4R is highly expressed in M2-polarized, protumoral TAMs
compared with M1-polarized, antitumoral macrophages, making
IL4R a potential target for targeted drug delivery to TAMs31,32. The
mannose receptor CD206 is also considered a cell surface marker
of M2-type macrophages33. Nanoparticles labeled with a mUNO
peptide (CSPGAK), which is a CD206-binding peptide, promote
selective drug delivery to M2-type TAMs and induce M2 to M1
reprogramming of the macrophage phenotype33. The tumor-
homing peptides used for the delivery of nanoparticles are
summarized in Table 2.

Peptide-targeted delivery of EVs or exosomes
EVs or exosomes are endogenous nanoparticles secreted from
cells into circulation. They can carry DNA, RNA, proteins, and lipids
and distribute them among cells. Labeling tumor-homing
peptides on the surface of exosomes loaded with therapeutics
can reduce major adverse side effects in cancer therapy34. The
surface modification of exosomes is performed via two methods:
genetic and nongenetic engineering. Using genetic engineering,
dendritic cells (DCs) have been engineered to secrete exosomes
expressing Lamp2, an exosomal membrane protein, fused with
the neuron-specific RVG peptide (YTIWMPENPRPGTPCDIFTNSRGK-
RASNG)35. Subsequently, RVG peptide-guided exosomes were
employed to deliver short interfering RNA to neurons, microglia,
and oligodendrocytes in the brain by targeting the gamma-
aminobutyric acid (GABA) receptor, inducing target gene knock-
down with negligible nonspecific uptake in other tissues35.
Similarly, mouse immature DCs were genetically engineered to
secrete exosomes expressing the Lamp2 protein fused with the
iRGD peptide (CRGDR/KGPDC) and demonstrated highly efficient
targeted drug delivery to αv integrin-positive breast cancer cells,
consequently inhibiting tumor growth36. Cellular exosomes
engineered to express the transmembrane domain of platelet-
derived growth factor receptor fused with the GE11 peptide
(YHWYGYTPQNVI), an epidermal growth factor receptor (EGFR)-
binding peptide, selectively delivered let-7a microRNA to breast
cancer tissues37. Moreover, tumor cell-derived exosomes geneti-
cally engineered to express a pH-sensitive fusogenic GALA
peptide (WEAALAEALAEALAEHLAEALAEALEALAA) efficiently deliv-
ered tumor antigens to the cytoplasm of DCs and promoted the
tumor antigen presentation of DCs via the major histocompat-
ibility complex class I molecule38.

Exosomal surfaces have also been nongenetically modified
using lipid-based membrane anchors, electrostatic interactions,
and ligand–receptor interactions. M1 macrophage-derived exo-
somes were transfected with NF-κB p50 siRNA and miR-511-3p to
foster M1 polarization and subjected to surface modification with
the IL4R-targeting IL4RPep-1 peptide (CRKRLDRNC) using a
phospholipid anchor; these constructs inhibited tumor progres-
sion by reprogramming IL4R-high and M2-polarized TAMs to an
M1-like phenotype39. The surface modification of blood exosomes
with transferrin-conjugated superparamagnetic nanoparticles via
interaction with the transferrin receptor, with L17E endosomolytic
peptides (IWLTALKFLGKHAAKHEAKQQLSKL) via electrostatic inter-
actions, and with cholesterol-conjugated miR-21 inhibitor by
anchoring to the lipid membrane increased tumor accumulation
and drug delivery and enabled efficient endosomal escape40.
Exosome surface labeling with a chimeric peptide (C16K-proto-
porphyrin IX-PKKKRKV) comprising an alkyl chain (C16), photo-
sensitizer (protoporphyrin IX), and nuclear localization signal
peptide (PKKKRKV) can enhance the nuclear delivery of the
photosensitizer and efficiently inhibit tumor growth via photo-
dynamic therapy41. The tumor-homing peptides used for the
delivery of EVs are summarized in Table 3.

Peptide-guided delivery of cells
Enhancing the tumor homing of cytotoxic T lymphocytes (CTLs) in
adoptive cell therapy is of high demand. Thus, chimeric antigen
receptor (CAR)-T cells have been used to address this limitation.
CAR-T cells are genetically engineered to express a chimeric
receptor composed of an antibody against a tumor antigen (such
as CD19), a cytoplasmic domain of the zeta chain of the T-cell
receptor, and a costimulator domain42,43. In contrast, the non-
genetic modification of the cell surface can reduce unexpected risks
caused by genetic engineering of cells. CTLs labeled with the IL4R-
binding IL4RPep-1 peptide (CRKRLDRNC) using a phospholipid-
based membrane anchor showed enhanced tumor homing and
antitumor growth activity in mice bearing B16F10 melanoma44.
Apart from CTLs, mesenchymal stem cells (MSCs) conjugated with
an E-selectin-targeting peptide (CGSDITWDQLWDLMK) on the cell
surface showed controlled adhesion and rolling through an
interaction between the peptide on the stem cells and E-selectin
on the endothelial cells45. In addition, the nongenetic surface
modification of MSCs with sialyl LewisX carbohydrate using a
polyacrylamide linker and biotin/streptavidin interaction showed

Table 2. Tumor-homing peptides used for guided delivery of nanoparticles to tumors.

Name Sequence Target Target disease Reference

RGD4C ACDCRGDCFCG Integrin αvβ3 Melanoma, colon tumor ovarian tumor glioblastoma 9–11

iRGD CRGDR/KGPDC Integrin αvβ3 Glioblastoma, melanoma 16–18

LyP-1 CGQKRTRGC P32 Melanoma 20

K237 HTMYYHHYQHHL VEGFR-2 Breast tumor 22

IL4RPep-1 CRKRLDRNC IL4R Lung tumor, breast tumor, colon tumor 26–30

mUNO CSPGAK CD206 Breast tumor 33

Table 3. Tumor-homing peptides used for guided delivery of extracellular vesicles or exosomes.

Name Sequence Target Target disease Reference

RVG YTIWMPENPRPGTPCDIFTNSRGKRASNG GABA receptor Brain disease 35

iRGD CRGDR/KGPDC Integrin αvβ3 Breast tumor 36

GE11 YHWYGYTPQNVI EGFR Breast tumor 37

GALA WEAALAEALAEALAEHLAEALAEALEALAA Acidic pH melanoma 38

IL4RPep-1 CRKRLDRNC IL4R Breast tumor Lung tumor 39

L17E IWLTALKFLGKHAAKHEAKQQLSKL Endosomal membrane Glioblastoma Breast tumor 40
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robust rolling on the endothelium and homed inflamed tissues
in vivo more efficiently than unlabeled MSCs46.

Peptide-targeted cytotoxic peptides
Cationic amphipathic peptides with inherent cytotoxicity exhibit
advantages: they can attenuate multidrug resistance in tumor cells
and present broad-spectrum antitumor activities47,48. In contrast,
they have drawbacks, including poor membrane permeability,
suboptimal therapeutic activity, and structural instability48. A
typical example is the KLAKLAKKLAKLAK or (KLAKLAK)2 proapop-
totic peptide, which was originally developed as an antimicrobial
peptide. In mammalian cells, it triggers mitochondrial membrane
disruption and cytochrome C release, subsequently inducing cell
apoptosis49,50. The (KLAKLAK)2 peptide encapsulated into meso-
porous nanoparticles induced mitochondrial swelling and apop-
tosis51. Combining the (KLAKLAK)2 peptide with the CNGRC
peptide, an aminopeptidase N-targeting peptide, efficiently
inhibited tumor growth by targeting the enzyme present in
angiogenic tumor endothelial cells52. The (KLAKLAK)2 peptide
fused with the IL4R-binding IL4RPep-1 peptide (CRKRLDRNC)
exhibited selective cytotoxicity toward IL4R-expressing tumor cells
and enhanced the sensitivity of cells to chemotherapy53. The IL4R-
targeted (KLAKLAK)2 peptide acted on IL-4R-high and M2-
polarized TAMs as well as tumor cells and reduced the proportion
of M2-type TAMs in the tumor microenvironment54. Moreover, the
(KLAKLAK)2 peptide guided by CD44v6-binding (CNLNTIDTC and
CNEWQLKSC), Her-2-binding (YCDGFYACYMDV), prostate tumor-
targeting (SMSIARL), and bladder tumor-targeting (CSNRDARRC)
peptides efficiently inhibited tumor growth with minimal effects
on normal tissues55–59.
In addition, other cytotoxic or lytic peptides, such as defensin 1

(ACYCRIPACIAGERRYGTCIYQGRLWAFCC), cecropin B (KWKVFKKIEK
MGRNIRNGIVKAGPAIAVLGEAKAL), magainins (GIGKFLHSAKKFGKA
FVGEIMSNS), and dermaseptin (ALWKEVLKNAGKAALNEINNLVG),
can increase membrane permeability and promote cell death60,61.
The lactoferrin 5 derivative (PAWRKAFRWAWRMLKKAA) also
showed selective cytotoxicity to tumor cells62. The eMTD peptide
(KLNFRQKLLNLISKLFCSGT), consisting of the BH3 domain and
mitochondrial targeting domain of the Noxa protein, causes cell
membrane damage and necrotic cell death by interacting with
voltage-dependent anion channel 263. Moreover, a peptide
consisting of a prostate-specific membrane antigen (PSMA)
substrate linked to a membrane-disrupting amoebapore H3
peptide (GFIATLCTKVLDFGIDKLQLIEDK) was highly active against
PSMA-expressing LNCaP prostate cancer cells but not against
PSMA-negative PC3 prostate cancer cells64. The cytotoxic peptides
described in this section are summarized in Table 4.

Peptide-targeted radionuclides: Peptide receptor radionuclide
therapy
Peptide receptor radionuclide therapy (PRRT) involves the
combination of a tumor-homing peptide with a radionuclide or
radioactive isotope as the therapeutic substance. The advantages

of PRRT include its selectiveness in delivering radionuclides, which
reduces systemic side effects, and its effective control of
advanced, inoperable or metastatic tumors; however, radiation-
induced toxicity to healthy organs, especially the bone marrow,
remains a major limitation65. Octreotide (Sandostatin®,
FCFWKTCT), an 8-mer peptide of somatostatin analog, plays a
vital role in treating patients with neuroendocrine tumors66. PRRT
with octreotide aims to selectively irradiate somatostatin receptor
2 (SSTR2)-expressing neuroendocrine tumor cells and the
surrounding blood vessels to inhibit the angiogenetic response
during treatment67. 111In is linked to octreotide using diethylene-
triamine pentaacetic acid, while 90Y and 177Lu (Lutathera®) are
linked using tetraazacyclododecane tetraacetic acid as a chela-
tor68. In addition to SSTR2, PRRT has been extended to other
receptors, such as the gastrin-releasing peptide (GRP) and
cholecystokinin-2 (CCK-2) receptors. 99mTc-conjugated RP527
peptide (VPLPAGGGTVLTKMYPRGNHWAVGHLM), a GRP analog,
has been exploited for treating human malignancies, including
colon and prostate carcinomas69. 111In-labeled minigastrin
(LEEEEEAYGWMDF), a CCK-2 receptor-selective peptide, has been
employed to treat human colorectal and pancreatic tumors70.

Peptide-targeted small-molecule drugs: peptide–drug
conjugates
Peptide–drug conjugates (PDCs) comprise three elements: a
tumor-homing peptide, linker, and cytotoxic agent (Fig. 2). Small
molecule-based cytotoxic agents have advantages of high oral
availability, metabolic stability, and high membrane permeability,
while having disadvantages of high toxicity, poor solubility, and
lower selectivity than alternatives71. The delivery of PDCs into
tumor cells via tumor-homing peptides can exert a tumoricidal
effect in the intracellular compartments of tumor cells where
tumor-specific pH or enzymes can break the linkers, releasing the
drugs. Considering that PDCs increased the local concentration of
cytotoxic agents in tumor tissues, they can reduce cytotoxic
effects to normal tissues and increase therapeutic efficacy. For
antibody–drug conjugates (ADCs), the market size in terms of
revenue is predicted to exceed 16 billion dollars by 202672.
Compared with ADCs, PDCs exhibit better tumor penetration
because of their small molecular weight, lower systemic exposure
(owing to rapid clearance from the body), lower risk of
immunogenicity and liver damage, and easier and cheaper
production methods.
Diverse linkers have been designed to conjugate drugs or

cytotoxic agents with tumor-homing peptides73,74. Selecting an
appropriate linker is crucial for designing PDCs. Furthermore, the
microenvironment where PDCs function should be considered
because linkers impact drug efficacy or binding affinity depending
on structural differences of the linkers. For example, certain types
of peptide linkers are designed to be cleaved by enzymes
abundant in tumor cells to selectively release drugs to these cells.
These linkers include the GFLG peptide which is cleaved by
cathepsin B75, the PLGLAG peptide which is cleaved by matrix

Table 4. Cytotoxic peptides.

Name Sequence Target disease/cell type Reference

(KLAKLAK)2 KLAKLAKKLAKLAK Breast cancer, lung cancer, bladder cancer 52–58

Defensin 1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC Skin diseases, breast cancer, lung cancer, Prostate cancer 60,61

Cecropin B KWKVFKKIEKMGRNIRNGIVKAGP AIAVLGEAKAL Skin diseases, breast cancer, lung cancer, Prostate cancer 60,61

Magainin GIGKFLHSAKKFGKAFVGEIMSNS Skin diseases, breast cancer, lung cancer, Prostate cancer 60,61

Dermaseptin ALWKEVLKNAGKAALNEINNLVG Skin diseases, breast cancer, lung cancer, Prostate cancer 60,61

Lactoferrin 5 PAWRKAFRWAWRMLKKAA Sarcoma, leukemia, colorectal cancer 62

eMTD KLNFRGKLLNLISKLFCSGT HeLa cervical cancer cells 63

H-3 GFIATLCTKVLDFGIDKLQLIEDK Prostate cancer 64
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metalloprotease (MMP)-2/976, and the oxime-hydrazone bond
which is hydrolyzed in an acidic pH77.
The SSTR2-binding octreotide was conjugated to doxorubicin

via a cleavable disulfide bond and used for the treatment of
pituitary, pancreatic, and breast tumors78. The disulfide bonds can
be cleaved by reduced glutathione (GSH) in cells. The αvβ3
integrin-binding RGD4C peptide was conjugated to PD0325901,
an MEK1/2 inhibitor, via a GGGGG peptide linker, which enhanced
the antitumor activity of the drug against glioblastoma79. The
RGDfK peptide-camptothecin conjugate linked by a Lys splitter
enhanced cytotoxicity to melanoma and non-small cell lung
cancer cells80. EGFR-binding GE11 peptide was linked to
doxorubicin via the disulfide bond and used for hepatocellular
tumors81. The angiopep-2 peptide that binds to low-density
lipoprotein receptor-related protein-1 (LRP-1) was conjugated to
paclitaxel via a succinyl group (named ANG1005) and applied to
the treatment of glioma and metastatic breast cancer82. The
tumor-homing peptides and linkers involved in the generation of

PDCs are summarized in Table 5. Several PDCs are being
considered for approval by the Food and Drug Administration
(FDA) for commercial use. For example, BT8009, comprising a
bicyclic peptide (CP(1Nal)dCM(hArg)DWSTP(HyP)WC) as a target-
ing moiety and monomethyl auristatin (MMAE) as a cargo, targets
Nectin-4 on tumor cells. This PDC is in phase I/II clinical trials for
the treatment of patients with metastatic non-small cell lung
cancer. The PDCs currently under clinical/preclinical trials are
summarized in Table 6.

PEPTIDE INHIBITORS OR ANTAGONISTS OF CELL SURFACE
PROTEINS
Immune checkpoint inhibitors
The advent of immune checkpoint inhibitors (ICIs) has revolutio-
nized the field of tumor therapy and promoted the development
of more immune checkpoint blockades83. ICIs work by blocking
the interactions between immune checkpoints such as CTL-

Fig. 2 Structure of peptide–drug conjugates (PDCs). PDCs comprise a tumor-homing peptide, linker, and cytotoxic agent. The linkers used
for PDCs are cleaved by intracellular enzymes or the acidic pH environment inside tumor cells, whereas some linkers are noncleavable. Small
molecules are commonly used as cytotoxic agents for PDCs, and in certain cases, bacterial toxins are used.

Table 5. Peptides and linkers used for generating peptide–drug conjugates.

Peptide name Sequence Target Linker Target disease Reference

Octreotide FCFWKTCT SSTR2/5 disulfide Pituitary tumor, pancreatic cancer, breast
tumor

78

RGD4C ACDCRGDCFCG Integrin αvβ3 GGGGG Glioblastoma, Kaposi’s Sarcoma 12,79

RGDfK cyclic, RGDfK Integrin αvβ3 Lys splitter Melanoma, non-small cell lung cancer 80

GE11 YHWYGYTPQNVI EGFR disulfide Hepatocellular carcinoma 81

Angiopep-2 TFFYGGSRGKRNNFKTEEY LRP-1 Succinyl group Glioma, metastatic breast cancer 82

Table 6. Peptide–drug conjugates in clinical/preclinical trials for Food and Drug Administration approval.

PDC name (Manufacturer) Sequence Drug Target Target disease Status

ANG1005 (AngioChem) TFFYGGSRGKRNNFKTEEY (Angiopep-2) Paclitaxel LRP-1 Breast cancer with
brain metastasis

Phase III

BT1718 (Bicycle Therapeutics) - Mertansine
(DM1)

Membrane type
1-matrix
metalloprotease

Esophageal tumor Phase II

BT8009 (Bicycle Therapeutics) CP(1Nal)dCM(hArg)DWSTP(HyP)WC MMAE Nectin-4 Metastatic non-
small cell cancer

Phase I/II

CBX-12 (Cybrexa Therapeutics) ACEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTG (pHLIP®) Exatecan Low pH Advanced solid
tumors

Phase I/II

OPD5 (Oncopeptides AB) - Melflufen Aminopeptidase Relapsed multiple
myeloma

Phase I

SBI-1301 (Soricimed Biopharma) - Paclitaxel Transient receptor
potential vanilloid
subfamily member 6

Solid tumors Preclinical

SG3299 (Spirogen) NAVPNLRGDLQVLAQKVARTC Tesirine αvβ6 integrin Pancreatic tumor Preclinical

TH1902 (Theratechnologies) GVRAKAGVRN(Nle)FKSESY Docetaxel Sortilin Triple-negative
breast cancer

Phase I
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associated protein 4 (CTLA-4), programmed cell death-1 (PD-1),
and programmed cell death ligand-1 (PD-L1) and their ligands,
which releases the inhibitory brakes of T cells and results in the
robust activation of immune responses (Fig. 3). For example, CTLA-
4, an inhibitory receptor expressed primarily by T cells, dampens

T-cell activity and is upregulated upon T-cell activation84,85. At
present, ICIs are used as first-line therapies for various solid
tumors. Over the past decades, antibodies have been widely used
ICIs. Ipilimumab was the first CTLA-4-blocking antibody approved
by the US FDA for the treatment of human cancers. Anti-PD-1
antibodies such as pembrolizumab and nivolumab were included
the second set of antibodies to be approved for the treatment of
human malignancies, followed by anti-PD-L1 antibodies such as
atezolizumab, durvalumab, and avelumab86.
PD-L1 is frequently upregulated in the tumor cell microenviron-

ment as well as in DCs, macrophages, myeloid-derived suppressor
cells (MDSCs), and regulatory T cells87–90. PD-L1 interacts with its
ligand PD-1. Although T cells recognize tumor cells in the human
body and kill them, the interaction between PD-1 on T cells and
PD-L1 on tumor cells leads to T cell exhaustion91–93. Peptides that
can block the PD-1/PD-L1 interaction and restore T cell activity
against tumor cells have been identified94–101; these include
peptide-57 (F(NMeAla)NPHLSWSW(NMeNle)(NMeNle)RCG),
CLP001 (HYPERPHANQAS)/CLP002 (WHRSYYTWNLNT), and PD-

Fig. 3 Types of immune checkpoints and their ligands. Interactions between immune checkpoints, such as CTLA-4 and PD-1 on T cells as
well as CD80/CD86 and PD-L1 on antigen presenting and tumor cells, respectively, suppress T-cell activity. In addition, TIGIT, TIM3, and LAG3
on T cells play roles as immune checkpoints by interacting with their partners, such as CD155, galectin 9, and major histocompatibility
complex, respectively. Blue arrows represent stimulatory signals, while red lines represent inhibitory signals.

Table 7. Peptides that inhibit immune checkpoints.

Name Sequence Target Reference

− NYSKPTDRQYHF PD-L1 94

− YASYHCWCWRDGRS PD-L1 95

Peptide-57 F(NMeAla)NPHLSWSW(NMeNle)(NMeNle)RCG PD-L1 96

− GSGSGSTYLCGAISLAPKAQIKESL PD-L1 97

CLP001, CLP002 HYPERPHANQAS, WHRSYYTWNLNT PD-L1 98

− SRLKEIANSPTQFWRMVARNTLGNGAKQSLNIEHARL PD-L1 99

PD-L1Pep-1, PD-L1Pep-2 CLQKTPKQC, CVRARTR PD-L1 101

YT-16 YRCMISYGGADYKCIT (cyclic) PD-1 100

P26 GLIPLTTMHIGK TIM-3 104

C25 CVPMTYRAC (cyclic) LAG-3 105

− GGYTFHWHRLNP TIGIT 106

Table 8. Peptides that serve as inhibitors or antagonists of cell surface
proteins.

Name Sequence Target Reference

CM7 DQIIANN c-Met 108

HB10 DRWVARDPASIF,
TVGLPMTYYMHT

sHB-EGF 109,110

v6pep KEQWFGNRWHEGYR CD44v6 112,113

NLN, NEW CNLNTIDTC,
CNEWQKLSC

CD44v6 55

A8 peptide SPWPRPTY Hsp72 115
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L1Pep-1 (CLQKTPKQC)/PD-L1Pep-2 (CVRARTR) peptides. In addi-
tion to inducing T-cell reinvigoration through their PD-L1-blocking
activity, PD-L1-binding peptides enable the targeted delivery of
chemotherapeutic drugs to PD-L1-high tumors using PD-L1 as a
tumor target. For example, PD-L1Pep-2 peptide-labeled doxor-
ubicin-loaded liposomes increased the CD8+ T-cell/regulatory
T-cell ratio in mouse colon tumor tissues more efficiently than
combined treatment with PD-L1Pep-2 peptide and untargeted
doxorubicin-loaded liposomes101. A prodrug nanoparticle synthe-
sized by conjugating PD-L1Pep-2 with doxorubicin via cathepsin
B-cleavable peptide linker (FRRG) inhibited tumor progression in
the 4T1 mouse breast tumor model by inducing doxorubicin-
mediated immunogenic cell death and blocking PD-L1 through
PD-L1Pep-2102. Moreover, labeling peptides in nanoparticles
increases the binding affinity of the peptide. For example, ferritin
nanocages with multivalent PD-L1Pep-1 peptide bound to PD-L1
with a higher affinity than free PD-L1Pep-1 (~30 nM vs. 300 nM)103.
Recently, peptides that target next-generation immune check-

points, such as T-cell immunoglobulin-3 (TIM-3), lymphocyte
activation gene 3 (LAG-3), and T-cell immunoreceptor with Ig
and ITIM domains (TIGIT), have attracted increasing attention. A
TIM-3-binding peptide (GLIPLTTMHIGK) interferes with the binding
of TIM-3 to Gal-9, the main ligand of TIM-3, thereby enhancing
T-cell activity. Combining this peptide with a PD-L1 inhibitor
exerted a tumor-suppressive effect in a mouse model104. A
disulfide-bound cyclic LAG-3-binding peptide (CVPMTYRAC) inter-
fered with the binding of LAG-3 to HLA-DR, the main ligand of
LAG-3, activating CD8+ T cells while reducing the proportion of
regulatory T cells105. A D-form version of a TIGIT-binding peptide
(GGYTFHWHRLNP) identified from mirror-image phage display
exhibited proteolytic resistance and prolonged half-life; it blocked
the binding area of TIGIT to the poliovirus receptor (or CD155),
enhanced the function of CD8+ T cells, and inhibited tumor
growth106. The peptides that block immune checkpoints are
summarized in Table 7.

Peptide antagonists of receptor tyrosine kinases, kinase-
associated receptors, and other surface proteins
Tumor cells express abundant cell surface receptors for growth
factors. Thus, receptor blockers or antagonistic antibodies and
peptides can be used as anticancer agents. c-Met is a receptor
tyrosine kinase that is overexpressed in numerous tumors. It binds
to hepatocyte growth factor (HGF) and plays an important role in
tumorigenesis and metastasis107. Using computer simulation,
novel sequences of peptides, including the CM7 peptide
(DQIIANN), have been designed to bind to c-Met with high
affinity. This novel peptide bound to c-Met-expressing cells,
inhibiting c-Met-mediated cell migration and invasion and tumor
progression in mice108. A disulfide-constrained HGF-binding
peptide, namely, HB10 (VNWVCFRDVGCDWVL), inhibits HGF–c-
Met binding109. Soluble heparin-binding epidermal growth factor
(sHB-EGF) is another target in combating cancer tumorigenesis
and metastasis. Two sHB-EGF-binding peptides, namely,
DRWVARDPASIF and TVGLPMTYYMHT, have been identified using
phage display. They suppressed the activity of sHB-EGF to
promote ovarian tumor cell migration and invasion by inhibiting
the EGFR signaling pathway110.
CD44 is a cell surface receptor involved in cell adhesion to the

extracellular matrix111. Although CD44 is expressed in normal cells,
its alternative splicing isoforms, including CD44 variant 6
(CD44v6), are upregulated in tumor cells, contributing to tumor
cell migration and metastasis by interacting with c-Met111. Using
structural analysis, v6pep (KEQWFGNRWHEGYR) was selected from
the human CD44v6 domain that interacts with c-Met and inhibits
tumor growth and metastasis in a pancreatic cancer model112,113.
Presently, v6pep is undergoing clinical trials. By screening a
phage-displayed random peptide library, the NLN (CNLNTIDTC)
and NEW (CNEWQKLSC) peptides that bind to CD44v6-expressing

cells were selected; these peptides hindered HGF-mediated c-Met
activation, thereby inhibiting CD44v6-high tumor cell migration
and invasion55.
Certain tumor-derived exosomes contain heat shock protein 72

(Hsp72) in their membrane and interact with Toll-like receptor 2
(TLR2) on MDSCs, thereby activating cells114. The A8 peptide
(SPWPRPTY) blocked the interaction between Hsp72 and TLR2 and
the subsequent activation of MDSCs, thereby inhibiting tumor
progression and potentiating the antitumor effect of chemother-
apeutic agents, such as cisplatin115. Thus, peptides that act as cell
surface protein antagonists are potential tools for inhibiting tumor
progression and metastasis and can be administered alone or in
combination with chemotherapy. The peptides that block cell
surface receptors described here are summarized in Table 8.

Peptide antagonists of hormone receptors
Some cancers depend on hormones to grow; thus, blocking the
action of hormones can slow or control cancer growth. This kind
of therapy is known as hormone therapy or endocrine therapy. At
present, hormone therapy is applied to certain kinds of cancers,
such as breast and prostate cancers. Hormone therapy, when used
before surgery or radiation therapy as an adjuvant therapy, can
decrease tumor size and lower the risk for tumor recurrence.
Gonadotrophin-releasing hormone (GnRH), also known as

luteinizing hormone-releasing hormone, is released from the
hypothalamus. It binds to a GnRH receptor in the pituitary to
increase the production of follicle-stimulating and luteinizing
hormones, thereby stimulating the release of estrogen by the
ovaries116. When a GnRH analog is first administered, it produces a
surge in ovarian hormones that can also cause several adverse
effects, such as hot flashes. However, the long-term administration
of the GnRH analog reduces ovarian hormone production and
secretion, which downregulates and desensitizes the GnRH
receptor in pituitary gonadotropic cells116. The GnRH receptor is
also found in certain cancers, and the reduction in circulating
estrogen slows the growth of hormone receptor-positive tumors
such as ovarian cancer117, prostate cancer118, and breast
cancer119–121. The use of GnRH analogs in clinical settings has
been complicated because of their short half-life. However, with
some modifications in its amino acids, long-lasting analogs have
been successfully developed and used in the treatment of breast
and prostate cancers. GnRH analogs that are currently used in
clinics include goserelin (Zoladex®), (pGlu)HWSY(D-Ser(Bu

t)LRP),
leuprorelin or leuprolide (Lupron®, (pGlu)HWSY(D-Leu)LRP), and
triptorelin (Decapeptyl®, (pGlu)HWSY(D-Trp)LRPG).
Somatostatin (AGCKNFFWKTFTSC) is a peptide produced by

paracrine cells located throughout the gastrointestinal tract and
binds to somatostatin receptors (SSTRs). Octreotide (FCFWKTCT) is
a somatostatin analog that binds to SSTR2 and SSTR5 and serves
as a growth hormone, insulin, and glucagon inhibitor122. Octreo-
tide is used to treat severe diarrhea caused by certain intestinal
tumors, such as vasoactive intestinal peptide-secreting tumors or
metastatic carcinoid tumors.

PEPTIDE INHIBITORS OF INTRACELLULAR PROTEIN–PROTEIN
INTERACTIONS
Intracellular protein–protein interactions (PPIs) play a critical role
in cells; for example, they facilitate the formation of protein
complexes for signal transduction and facilitate the binding of
transcription factors to promoters and enhancers. Thus, pharma-
cological approaches have been exploited to inhibit intracellular
PPIs; related compounds include small molecules based on
chemicals with a molecular weight <500 Da and biologicals based
on proteins with a molecular weight >5000 Da. Small molecules
efficiently cross the cell membrane, and they regulate the action
of intracellular proteins123. However, these drugs cannot recognize
a single mutation at the target site, and tumor cells easily acquire
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resistance against these drugs. In addition, the large surface of
proteins involved in the interaction among proteins is not covered
by small molecules because their sizes are too small124. In contrast,
biologicals can bind to larger interfaces of proteins with high
selectivity. However, they have poor cell permeability125. In
addressing the limitations of small molecules and biologicals,
peptides that interfere with PPIs with a molecular weight ranging
between 500 and 5000 Da have been developed126. Peptides have
the benefits of small molecules and biologicals, including the cell
permeability of small molecules and the high selectivity of
biologicals covering a large surface of proteins127. Considering
that the sequence of peptide inhibitors frequently originates from
endogenous proteins involved in the interaction, most of them
serve as competitors of native protein interactions128.
c-Myc is a transcription factor involved in diverse human

malignant tumors129,130. It usually forms heterodimeric complexes
with its partner transcription factors to bind to DNA and regulate
gene expression131. A peptide comprising 14 amino acids
(RQIKIWFQNRRMKWKK) that originated from the helix 1
C-terminal region of Myc blocks the interaction between c-Myc
and its partner132,133. Another example is OmoMyc, which
comprises 92 amino acids and originates from the bHLHZip
region of Myc but differs from Myc in four amino acid
residues134–136.
Homeobox (HOX) is an important transcription factor for body

segmentation and patterning during vertebrate development137.
HOX gene expression is generally enhanced in tumors and is
associated with angiogenesis, metastasis, and proliferation of tumor
cells138,139. A common cofactor of HOX is preB-cell leukemia

homeobox (PBX)140,141. The HXR9 peptide (WYPWMKKHHRRRRR
RRRR) interferes with the interactions between HOX and PBX in
several mouse tumor models139,142.
KRAS is an oncogenic protein that is commonly activated in

many tumors, including lung cancer and pancreatic cancer, and
it has been considered an undruggable target because it lacks a
classical drug binding site143,144. The KRpep-2d peptide (Ac-
RRRR-cyclo(CPLYISYDPVC)-NH2), a macrocyclic peptide that is a
cyclic peptide containing >12 amino acids, and its derivatives
bind to KRAS and inhibit KRAS-downstream signaling and cell
proliferation145,146.

PERSPECTIVES: IMPROVEMENT OF THE PHARMACOKINETIC
PROPERTIES AND BIOLOGICAL ACTIVITY OF PEPTIDES
Several approaches have been exploited to address or reduce the
drawbacks of peptides as therapeutics (Fig. 4). First, to increase
resistance to degradation, peptides are chemically modified
through cyclization, which involves formation of disulfide bonds
or formation of a stapled peptide; through N-term acetylation or
C-term amidation; through modification to D-form amino acids;
and through replacement of amino acids with unnatural amino
acids or peptoids. Second, to slow down the excretion out of the
body and increase half-life in the blood, peptides can be fused
with the Fc fragment of an antibody and protein scaffolds such as
Staphylococcus A antigen (Affibody) or conjugated with poly-
ethylene glycol and fatty acids to enables the peptides to bind to
albumin. Third, multivalent labeling of tumor-homing peptides on
drug-loaded nanoparticles, EVs, and cells can enhance the binding

Fig. 4 Diverse modifications of peptides to improve pharmacokinetic properties and enhance biological activity. Protease-mediated
degradation and renal clearance of peptides can be reduced via chemical modifications. The long-acting release of peptides can be obtained
by certain formulations, such as “depots”. Peptide-based ProTac, peptide–drug conjugates, and multivalent labeling on nanoparticles can
improve the pharmacokinetic properties and biological activity of peptides.
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activity and stability of peptides. Fourth, a peptide that binds to an
intracellular target protein can be combined with a peptide that
binds to an E3 ligase to degrade the target protein via proteolysis
targeting chimera (ProTac) technology. Such peptide-based
ProTacs have already been reported147,148. Fifth, tumor-homing
peptides are linked with chemotherapeutic drugs to increase the
antitumor activity of peptides. Finally, peptides are loaded into
long-acting release microspheres or depots and injected into
tissues to slowly release peptides for a longer time.
At present, a major portion of peptide therapeutics in the clinic

are diabetes drugs such as liraglutide and dulaglutide. In the current
market, peptide-based anticancer therapeutics include hormone
analogs such as octreotide, leuprolide, and goserelin. In the future,
an increasing number of peptide therapeutics will be developed in
the field of cancer therapy; these could include tumor-homing
peptides for targeted delivery of nanoparticles or EVs, peptide
antagonists against cell surface proteins, and interference peptides
against PPIs. In addition, PDCs could be used as an alternative to
ADCs for certain cancers. Moreover, peptide-based ProTac technol-
ogy will address the resistance of tumor cells to chemotherapy and
will be a potential tool for cancer therapy.
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