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Clinical molecular subtyping reveals intrinsic mesenchymal
reprogramming in gastric cancer cells
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The mesenchymal cancer phenotype is known to be clinically related to treatment resistance and a poor prognosis. We identified
gene signature-based molecular subtypes of gastric cancer (GC, n= 547) based on transcriptome data and validated their
prognostic and predictive utility in multiple external cohorts. We subsequently examined their associations with tumor
microenvironment (TME) features by employing cellular deconvolution methods and sequencing isolated GC populations. We
further performed spatial transcriptomics analysis and immunohistochemistry, demonstrating the presence of GC cells in a partial
epithelial-mesenchymal transition state. We performed network and pharmacogenomic database analyses to identify TGF-β
signaling as a driver pathway and, thus, a therapeutic target. We further validated its expression in tumor cells in preclinical models
and a single-cell dataset. Finally, we demonstrated that inhibition of TGF-β signaling negated mesenchymal/stem-like behavior and
therapy resistance in GC cell lines and mouse xenograft models. In summary, we show that the mesenchymal GC phenotype could
be driven by epithelial cancer cell-intrinsic TGF-β signaling and propose therapeutic strategies based on targeting the tumor-
intrinsic mesenchymal reprogramming of medically intractable GC.
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The current standard of care for localized gastric cancer (GC)
includes curative surgery followed by adjuvant chemotherapy to
prevent disease recurrence and improve survival1. However,
approximately one-third of cases treated with standard treatment
reoccur within the 5-year follow-up2, indicating inconsistent
therapeutic benefits. Biological tumor heterogeneity in GC
contributes to the differences in the clinical course and outcomes
of the disease. While microsatellite instability (MSI) and
Epstein–Barr virus (EBV) positivity are associated with a favorable
prognosis, genomically stable (GS) tumors demonstrate a poor
prognosis and resistance to chemotherapy3,4. GS tumors are
characterized by enrichment of diffuse histology, mesenchymal
gene expression, and stem cell-like properties5–7. On the other
hand, MSI is related to intestinal histology, epithelial gene
expression, and proliferative features. In addition, EBV positivity
and high MSI were predictive of an objective response to immune
checkpoint inhibitors in a prospective clinical trial8. Although the
chromosomal instability (CIN) subtype is generally considered to
be responsive to chemotherapy and targeted therapies given its
molecular characteristics of oncogene amplification, the CIN
subtype is heterogeneous and has an unfavorable prognosis.
These findings indicate that although there are unmet clinical

needs for multiple TCGA subtypes, the GS and CIN subtypes
should be prioritized in research considering their dismal
prognosis and treatment resistance.
The tumor microenvironment (TME) composition is the key

factor contributing to tumor heterogeneity. The stromal compo-
nent and the activation of transforming growth factor (TGF)-β
pathway in stromal cells have been associated with a poor
prognosis in multiple cancer types, including GC and colorectal
cancer (CRC)9,10. In particular, it has been demonstrated that
cancer-associated fibroblasts (CAFs) promote the mesenchymal
phenotypes of tumor cells via the TGF-β pathway11,12, implying
that the composition of the stromal component alone could be
clinically meaningful for classifying consensus molecular subtype
(CMS) 4 in CRC. Moreover, epithelial-mesenchymal transition
(EMT), which is critically regulated by TGF-β signaling, has been
suggested as the key biological mechanism that is activated in
tumor cells to promote invasion and metastasis13. Although some
previous studies indicated that CRC may be resilient to TGF-
β-induced EMT and that mesenchymal genes are mainly
expressed by stromal cells but not by cancer cells11,14, another
study reported activation of the TGF-β pathway in a cancer-cell
intrinsic CRC subtype15. More recent studies using single-cell
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analysis demonstrated continuous regulation of EMT genes16 and
revealed tumor cells within the intermediate EMT stages in head
and neck squamous cell carcinoma and pancreatic ductal
adenocarcinoma17,18. These results raise questions regarding the
presence of a tumor cell-autonomous EMT state and its
association with TGF-β signaling in GC.
We previously identified clinically relevant molecular subtypes

and associated molecular signatures of GC to develop a clinical
test for predicting the chemotherapy response of resectable GC19.
In this study, we performed reanalysis of molecular subtypes,
spatial transcriptome data, and RNA sequencing data of FACS-
sorted GC cells to clarify the clinical implication of the TME,
focusing on identifying the tumor cell-intrinsic mesenchymal
phenotype. We discovered substantial differences in TME compo-
sition in the two subtypes with a dismal prognosis [Intestinal with
stemness (INT/S) and Mesenchymal (MSC)] among 5 biological
subtypes [Inflammatory (INF), Intestinal (INT), Gastric (GST), INT/S
and MSC], but the EMT signature was expressed in both the INT/S
subtype and the MSC subtype, indicating the presence of different
molecular mechanisms driving the EMT phenotype in GC.
Furthermore, spatial transcriptomics analysis supported the
presence of cancer cells that have undergone EMT. Then,
unbiased network analysis identified the TGF-β pathway as the
therapeutic target to reverse mesenchymal gene expression in
both subtypes. Finally, we tested a TGF-β inhibitor in medically
refractory preclinical models, including patient-derived xenograft
(PDX) models.

MATERIALS AND METHODS
Patient cohorts and datasets
We obtained fresh-frozen tumor specimens and clinical data from patients
with GC who underwent gastrectomy as primary treatment at Yonsei
Cancer Center (YCC, Seoul, South Korea) between 2000 and 2010. Using
these samples, we then generated three cohort datasets (n= 547;
GSE13861 [Illumina HumanWG-6 v3.0 expression beadchip], GSE84437
and GSE147163 [Illumina HumanHT-12 v3.0 Expression BeadChip array]).
Published datasets, such as GSE15459, GSE62254 (ACRG), and TCGA
(STAD), were downloaded from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) and Genomic Data Commons Data
Portal (GDC, https://portal.gdc.cancer.gov/).
For analysis of the response to standard adjuvant chemotherapy, we

pooled cohorts from the GSE13861, GSE26942, and GSE147163 datasets. Of
the 178 patients with American Joint Committee on Cancer (AJCC) stage II
or III GC, 121 patients received standard adjuvant chemotherapy (either
single-agent 5-FU or a combination of 5-FU/capecitabine and cisplatin/
oxaliplatin, doxorubicin, or paclitaxel). For analysis of the response to
adjuvant chemotherapy or chemoradiotherapy, AJCC stage II and III
patients were selected from the GSE62254 cohort. For comparative
analysis of primary tumors and preclinical models, we obtained matched
transcriptomic data from GSE98708 and GSE128459. For single-cell
analysis, we took utilized the Tumor Immune Single-cell Hub20, a web
resource that employs Single-Cell Signature Explorer for visualization of
gene signatures21.
Transcriptomics and tumor growth curves of PDX models were obtained

from HuBase (Crown Bioscience, CA, USA), an online PDX database. A total
of 21 GC PDX models were treated with 5-FU (10 mg/kg, i.p., Day 1–5/week
for 3 weeks) or vehicle. The response was considered significant if there
was no overlap on the error bars on the last day.

Subtype and module identification and characterization
Analyses were primarily conducted in the R language environment (RGUI
version 3.5.3) or using web tools. Datasets were merged using the
“Combating Batch Effects When Combining Batches of Gene Expression
Microarray Data (ComBat)” method. Unsupervised clustering of patients
and genes was conducted using the R package “Algorithms and
Framework for Nonnegative Matrix Factorization (NMF)” and “WGCNA,”,
respectively. For subtype clustering, the ComBat-merged data were
classified using the package “Algorithms and Framework for Nonnegative
Matrix Factorization (NMF)”. The number of clusters, k, was set from 3 to 7.
The Brunet method was used as an updating algorithm for iterative

approximation, and factorization was repeated 100 times for each
condition. Prior to the characterization of NMF-derived clusters, we
excluded outlier samples from each cluster using the Silhouette function
in the “NMF” R package. To define genes significantly representative of
each of the NMF clusters, SAM and PAM were conducted using the
Bioconductor packages “siggenes” and “pamr”, respectively. For module
annotation, WGCNA was conducted on the ComBat-merged data from 547
GC samples using the R “wgcna” package. For network construction,
weighted network adjacency was defined by coexpression similarity with a
power of 6. To avoid choosing an arbitrary cutoff, we followed the “soft-
thresholding procedure” provided by WGCNA. Dynamic hybridization in
the R “dynamicTreeCut” package was employed as a module detection
method. To assess whether each module was associated with survival and
clinicopathological variables, various module characteristics, such as
connectivity, module significance, and module eigengene, were assessed.
For annotation of subtypes and modules, gene set enrichment analysis was
performed using the R “GSEABase” package, gene sets from the Molecular
Signatures Database (MSigDB; www.broadinstitute.org/msigdb), and gene
ontology (GO) information from the GO Consortium (http://
geneontology.org). Single-sample GSEA was performed with GenePattern
(https://www.genepattern.org/). Survival analysis was conducted using the
Cox proportional hazard model and multivariate analysis in the R “survival”
and “survivalAnalysis” packages, respectively.

Immunohistochemistry
Paraffin-embedded tissue blocks were sliced into 4 μm sections and
subjected to staining using a Ventana XT automated stainer (Ventana
Corporation, Tucson, AZ, USA) with an anti-SFRP4 antibody (ab122905;
Abcam, Cambridge, UK) as previously described22.

Tumor microenvironment analyses
The estimated tumor purity, leukocyte fraction, and non-leukocyte stromal
fraction of the STAD cohort samples were determined based on previously
published data23. Briefly, sample purity was inferred from copy number
variations (CNVs) using the ABSOLUTE24 algorithm to the whole-exome
DNA sequencing data. The leukocyte fraction was extracted from DNA
methylation data using methylation signatures of pure leukocyte cells25.
Epithelial, immune, and fibroblast cell contents of the YCC cohort samples
were measured with the xCell algorithm, which uses gene signatures
derived from pure human cell type transcriptomes26. We performed RNA-
seq of FACS-isolated cell populations from human primary GC samples
(n= 9). Details are described in the supplementary information.

Spatial transcriptomics (ST) analysis
ST sequencing of four GC primary tumors was performed with the Visium
Spatial Gene Expression assay (10x Genomics, CA, USA) by its certified
service provider (Geninus, Seoul, Republic of Korea). Fresh tissue was
embedded in Optimal Cutting Temperature TissueTek (VWR, PA, USA) and
stored at −80 °C until use. Tissues were tested using nProfiler 1 Stomach
Cancer Assay (Novomics, Seoul, Republic of Koera) to classify into the
Single Patient Classifier subtype19. Using Space Ranger software v1.1.0 and
Loupe Browser software v5.0, we performed analysis of a sample that
included normal epithelium, the cancer region, stroma, and lymphoid
tissue.

Network analysis
Ingenuity Pathways Analysis (Ingenuity Systems, www.ingenuity.com) was
used to identify the upstream transcriptional regulators that can explain
the gene expression differences between GC subtypes. The expression log
ratio of PAM genes in the YCC cohort was used for analysis. The
Connectivity Map (https://clue.io/) was queried to identify reference
perturbagen signatures most similar (positive score) or dissimilar (negative
score) to each GC module.

Cell sorting from GC specimens and RNA sequencing
Primary tumor tissues were minced, and single-cell suspensions were
obtained. A detailed procedure is provided in the supplementary methods.
The collected cells were incubated with antibody for 30min on ice as
follows: 10 μL anti-EpCAM (R&D Systems, FAB9601F) per 106 cells in 100 μL
buffer; 5 μL anti-CD45 (BD, 557748) per 106 cells in 100 μL buffer; 10 μL
anti-CD31 (Miltenyi Biotec, 130-092-652) per 107 cells in 100 μL buffer; and
2.5 μg of FAP (R&D systems, MAB3715) per 106 cells in 100 μL buffer. After
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washing with Hank’s balanced salt solution (Lonza) twice, the cells were
incubated with mouse IgG (H+ L) PE as follows: 10 μL per 106 cells in
100 μL buffer for 30min on ice. After washing away the unstained
secondary antibody, the cells were resuspended in 1 mL PBS and then
sorted using a BD FACSARIA III (BD Biosciences). Total RNA sequencing
libraries were prepared according to the manufacturer’s instructions
(Illumina TruSeq RNA Access Library kit). The flow cell was then loaded on a
HiSeq 2500 sequencing system (Illumina), and sequencing was performed
using 2 × 100 bp read lengths.

In vitro and in vivo experimental validation
We generated gene expression profiles of 27 GC cell lines (GSE146361;
Illumina HumanHT-12 v3.0 Expression BeadChip array). Details are
described in the supplementary information. For experimental validation,
invasion assays, migration assays, tumor spheroid assays, and in vivo
orthotopic tumorigenicity assays were performed using GC cell lines.

Invasion assay
For this assay, 2 × 104 HUVECs in culture medium (M199) were added to
the upper chamber of a transwell plate coated with fibronectin (the
bottom chamber was coated with 0.2% gelatin) and subsequently
incubated for 48 h until the formation of a monolayer. Thereafter,
1 × 105/50 µL Hs746T and NCI-N87 cells incubated with CellTracker™
(Molecular Probes, C2925) without FBS were separately added to the upper
transwell chamber. Culture medium with 10% FBS was added to the lower
chamber. After incubation for 48 h, the cells on the upper membrane were
removed with a cotton swab, and the cells on the lower membrane were
lysed with 200 µL of lysis buffer for 2–3 h at room temperature.
Fluorescence was measured with an Ex/Em of 492/517. To examine the
effect of the TGF-beta inhibitor on the invasion ability of cells, 50 µM
LY2157299 (AdooQ, CA, USA) was administered.

Migration assay
Hs746T and NCI-N87 cells were grown into monolayers in culture media
with 10% FBS and 1% antibiotics. When the confluency reached 70%, the
cell monolayers were scratched with a 100 μL pipette tip. Wound width
was measured after 72 h and then normalized to wound width measured
immediately after scratching. To assess the effect of the TGF-β inhibitor on
cellular migration, LY2157299 (50 µM) was administered.

Tumor spheroid assay
In 96-well plates, 10 cells were cultured in 50 μL DMEM/F12 (Gibco)
supplemented with bFGF, EGF, B27, 10% FBS, and 1% antibiotics. After
30 days of incubation, spheres were counted in each well. Additionally,
LY2157299 (50 µM) was administered to investigate the effect of a TGF-β
inhibitor on tumor spheroid formation.

In vivo tumorigenesis in an orthotopic mouse model
To establish the orthotopic xenograft mouse model, 1 × 107 GC cells
(Hs746T and NCI-N87) were transplanted into the walls of the stomachs of

BALB/c nude mice (male, 6 weeks old, 20–24 g) exteriorized by incision of
the skin and peritoneum along the upper midline for approximately 5 mm.
The stomach was returned to the peritoneum, and the abdominal wall was
closed with a wound suture in one layer. To observe tumor growth in the
model, we performed in vivo magnetic resonance imaging (MRI)
experiments using a 9.4 T animal MRI instrument with a Bruker animal
coil (RF SUC 400 1H M-BR-LIN ROAD, Bruker Medical Systems). The
sequences were performed at room temperature with the following
parameters: Echo = 1, TR= 2300ms, TE= 22.0 ms, FA= 180 deg, TA=
Oh4m54s400ms, NEX= 2, and FOV= 4.00 cm.

Drug response in xenograft mouse models
To establish the heterotopic xenograft mouse model, 1 × 107 GC cells
(Hs746T and NCI-N87) were transplanted into the proximal thigh region of
BALB/c nude mice (male, 6 weeks old, 20–24 g). Tumor-bearing mice were
randomly assigned to three groups for treatments (PBS control, Oxal +
5FU/PBS, and Oxal + 5FU/LY-treated groups; n= 8 per group) when the
tumor volume increased to approximately 400mm3. Oxaliplatin (60 µg per
single dose) and fluorouracil (1 mg per single dose) in combination were
intraperitoneally injected into mice three times per week. LY2157299
(1.5 mg per mouse) was administered to the mice by intratumor injection
two times per week. All administrations were blinded to group assignment
and outcome assessment. The size of the implanted tumor was assessed
three times per week and calculated as follows: (4/3) × π × (minor axis/
2)2 × (major axis/2) mm3. Protocols for establishing the PDX models were
previously described27.

Statistical analysis and visualization
We performed the hypergeometric test/Fisher’s exact test, Pearson’s
correlation, point-biserial correlation, Spearman’s correlation, Student’s t
test, and the Wilcoxon rank-sum test for statistical analysis using R. The
center values and error bars represent the mean and standard deviation,
respectively. We used 5% as the significance level for all tests. For
visualization, the R packages “ggplot2” and “ggpubr” were used.

RESULTS
Clinically relevant molecular subtypes of gastric cancer
A study flow chart is shown in Fig. 1. We obtained fresh-frozen
tumor specimens and clinical data from GC patients who under-
went gastrectomy as a primary treatment at the Yonsei Cancer
Center (YCC, Seoul, South Korea). Using the YCC cohort dataset
(n= 547; GSE13861, GSE84437, and GSE147163), we clustered the
patients and genes using the consensus-based NMF method28. The
NMF method classified GC patients into five distinctive molecular
subtypes with high consensus (ρ5 > 0.99) (Fig. 2a and Supplemen-
tary Fig. 1; prediction analysis of microarray (PAM) genes and their
scores are listed in Supplementary Data 1; see Supplementary
Results and Discussion for further information). Based on the
expression of genes relevant to GC biology and the results from

Fig. 1 Study Profie. Flow chart of this study.
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gene set enrichment analysis (GSEA; Supplementary Table 1), we
named each subtype as follows: (i) gastric (GST): characterized by
high expression of gastric-specific genes TFF1, TFF2, and GKN1; (ii)
inflammatory (INF): characterized by high expression of immune
genes, including CXCL9, GBP5, and NKG7; (iii) mesenchymal (MSC):
characterized by high expression of myogenetic (MYLK and MYH11)
and EMT (SFRP1 and TAGLN) genes; (iv) intestinal (INT): character-
ized by high expression of cell cycle (CDC20 and AURKA)- and
intestinal epithelial differentiation (CDH17 and CDX1)-related
genes; and (v) intestinal with stem-like features (INT/S): character-
ized by high expression of cell cycle and intestinal epithelial
differentiation-related genes, as well as EMT-related genes
(COL11A1 and CTHRC1) and Wnt signaling genes (NKD2 and DKK3).

We examined the relationships between the GC subtypes and
clinicopathological factors. The distributions of the five subtypes
were significantly different in samples grouped based on the
following categories (hypergeometric test; Supplementary
Table 2): patient age (P= 0.0003), pathological T stage
(P= 0.007), World Health Organization (WHO) classification
(P= 1.4e-14), and Lauren type (P= 2.4e-11). Survival analysis
identified distinct clinical outcomes between subtypes (likelihood
ratio test; P= 0.000275; Fig. 2b). The 5-year survival rate was 76.7%
for the INF subtype (95% CI, 67.8–86.4%), 63.1% for the INT
subtype (95% CI, 54.1–73.6%), 66.8% for the GST subtype (95% CI,
56.9–78.4%), 51.4% for the INT/S subtype (95% CI, 42.4–62.4%),
and 47.1% for the STL subtype (95% CI, 38.6–57.5%). We

Fig. 2 Molecular subtyping stratifies gastric cancer (GC) patients based on clinical prognosis. a Nonnegative matrix factorization (NMF)
consensus clustering of the YCC dataset (n= 547). b–d Overall survival curves of patients in the b YCC, c GSE62254, and d GSE15459 cohorts
stratified by NMF consensus clustering using Classifier-PAM965. e Forest plot generated by meta-analysis of the hazard ratio (HR) for overall
survival (OS) according to the five subtypes using a fixed-effects model (P > 0.05 for all subtypes in the heterogeneity test). f, g Chord diagram
for the NMF subtype in f the TCGA cohort and g GSE62254 cohort (EBV Epstein–Barr virus, MSI microsatellite instability, GS genomically stable,
CIN chromosomal instability, EMT epithelial-mesenchymal transition).
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performed NMF analysis in independent cohorts (GSE15459 and
GSE62254) using PAM genes derived from the YCC cohort, and
this demonstrated consistently poor outcomes for the MSC and
INT/S subtypes (Fig. 2c, d). A meta-analysis of the hazard ratio (HR)
for all cohorts revealed that the NMF classification effect was
homogenous (effect-equality test; P > 0.01) and that the HRs
indicated significant differences in risk among the GC subtypes
(Fig. 2e): INF, 0.68 (95% CI 0.52–0.89); INT, 0.75 (95% CI 0.60–0.94);
GST, 0.82 (95% CI 0.65–1.03); INT/S, 1.37 (95% CI 1.13–1.67); and
MSC, 1.52 (95% CI 1.27–1.82).
We compared the GC subtypes with other molecular subtypes

reported in previous studies (Fig. 2f, g and Supplementary
Table 3). Whereas the MSC subtype overlapped with a specific
subtype in all other classification systems (the TCGA GS subtype4,
the ACRG EMT subtype7, and the invasive/mesenchymal subtype
reported by Lei et al.5), the INT/S subtype did not correspond with

a specific subtype. Rather, it was a subset of the TCGA CIN
subtype, ACRG MSS subtype, or the proliferative subtype5 and was
not separated from the INT and GST subtypes.

Association between molecular subtypes and the tumor
microenvironment
We investigated the association between GC subtypes and TME
composition. First, tumor purity was inferred from somatic DNA
alterations with the ABSOLUTE algorithm, and the leukocyte
fraction was measured using DNA methylation signatures in the
TCGA cohort (Fig. 3a)24,25. Compared to other subtypes, the MSC
subtype demonstrated significantly lower tumor cell purity while
displaying a significantly higher fraction of both leukocyte and
non-leukocyte stroma. In contrast, the INT/S subtype exhibited
significantly higher tumor purity but a lower stromal fraction,
similar to the INT subtype. Next, we applied the transcriptome-

Fig. 3 Association between molecular subtypes and the tumor microenvironment. a Tumor purity, nonleukocyte stromal fraction, and
leukocyte fraction estimated by the ABSOLUTE algorithm in the STAD cohort (n= 399). b xCell scores of epithelial cells, fibroblasts, and
immune cells in the YCC dataset. (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, Wilcoxon test against all) (centerline, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers). c The specific cell types were purified from disaggregated
primary GC samples by FACS using the indicated markers: EpCAM for epithelial cells, CD31 for endothelial cells, CD45 for leukocytes, and FAP
for fibroblasts. d The mean expression levels and e z scores of epithelial (CEACAM5, CDX1, MUC2, TFF3, and KRT16), endothelial (CD34, FLT4,
KR, and VEGFB), leukocyte (CD8A, GZMB, IFNG, and NKG7), and fibroblast (CTHRC1, FRZB, DKK1, and FZD1) genes in each FACS-purified cell
population are shown in the heatmap (TMM normalization). f Enrichment of cell type-specific gene expression in the merged cohort (YCC,
TCGA, GSE62254, GSE15459, n= 1412) according to molecular subtype (single-sample GSEA, ssGSEA; normalized enrichment score, NES). Each
gene set was identified by Student’s t test (P < 0.01).
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based xCell algorithm to the YCC cohort (Fig. 3b)26. Concordantly,
the MSC subtype showed significantly lower epithelial cell scores
but significantly higher fibroblast and immune cell scores. On the
other hand, the INT/S subtype did not exhibit a significant
difference in the fractions of epithelial cells or fibroblasts, but its
immune score was significantly lower that than of other subtypes,
at a level similar to that of the INT subtype. Finally, we performed
RNA sequencing of cell populations isolated from GC tissue (n= 9)
based on four markers (EpCAM for epithelial cancer cells, CD45 for
leukocytes, CD31 for endothelial cells, and FAP for CAFs) (Fig. 3c).
Each cell population showed differential expression of cell type-
specific marker genes (Fig. 3d, e). Then, we identified genes
upregulated in each cell type and examined their enrichment in
the five molecular subtypes in the merged cohort (YCC, TCGA,
GSE62254, GSE15459, n= 1412, Fig. 3f). When normal tissues and
GC tissues were compared, the MSC subtype showed increased
enrichment of genes upregulated in stromal cells (endothelial
cells, fibroblasts, and leukocytes) but decreased enrichment of
genes upregulated in epithelial cells. On the other hand, the INT
subtype showed increased enrichment of genes upregulated in

epithelial cells but decreased enrichment of genes upregulated in
stromal cells. The INT/S subtype demonstrated low expression of
genes upregulated in endothelial cells and leukocytes, while the
INF subtype showed high expression of genes upregulated in
endothelial cells and leukocytes.

Discovery of molecular signatures describing GC subtypes
Considering the distinct TME composition of the two dismal
subtypes, we performed unsupervised genewise clustering to
reveal de novo gene modules and assessed their association with
molecular subtypes. Weighted correlation network analysis
(WGCNA) detected 32 gene modules in the YCC cohort
(Supplementary Data 2), and these gene modules were relevant
to GC biology [digestion29, spasmolytic polypeptide-expressing
(SPEM) and intestinal metaplasia (IM) lineages30,31, immune
system32, extracellular matrix regulation33, angiogenesis34,
EMT35, Wnt signaling pathway36, and the cell cycle37] (Fig. 4a).
We selected 14 modules that were conserved across independent
cohorts (hypergeometric test; P < 0.01) and categorized them into
five core GC signatures based on module eigengene analyses

Fig. 4 Subtype-defining gene modules and their prognostic association. a Dendrogram from the weighted correlation network analysis
(WGCNA) of the YCC dataset. Modules detected in the YCC dataset and corresponding module maps of the GSE62254, TCGA, and GSE15459
datasets. Mapping of the predefined gene sets. b Heatmap of point-biserial correlation between the five GC subtypes and conserved GC
signatures. GST, gastric; INF, inflammatory; MSC, mesenchymal; INT/S, intestinal with stem-like features; INT, intestinal. c Multivariate analysis
(overall survival) of the normalized enrichment score (NES) for each GC module in the STAD cohort adjusted for age, sex, race (Asian vs. Non-
Asian), AJCC stage, histologic grade, and histologic type (Diffuse vs. Non-Diffuse). d–f Overall survival of the STAD cohort stratified by d pink
module NES, e nonleukocyte stromal fraction, and f tumor purity estimated by the ABSOLUTE algorithm. Median values were applied as
thresholds.
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(Supplementary Fig. 2) and gene ontology enrichment analysis
(Supplementary Table 4): (i) the immune meta-module (modules
depicted as black, green, cyan, light yellow, and dark green colors
in the figure), which is highly associated with the immunoregu-
latory system; (ii) the mesenchymal meta-module (turquoise, red,
tan, pink, and salmon), which is closely related to the stromal
component, angiogenesis, EMT, TGF signaling, Wnt signaling, and
the extracellular matrix regulatory system; (iii) the proliferative
meta-module (brown and magenta modules), which is associated
with the cell division regulatory system; (iv) the gastric module
(light green module) which is indicated by gastric epithelial
markers and associated with digestion; and (v) the intestinal
module (dark red module), which is indicated by intestinal
epithelial markers. In particular, the pink module among the
mesenchymal meta-module predominantly overlapped with the
predefined EMT gene set. A correlation analysis confirmed a
significant association between EMT marker protein expression
and the pink module enrichment score (pink score) calculated by
single-sample GSEA (ssGSEA) of the TCGA dataset (Supplementary
Fig. 3).
Then, we performed point-biserial correlation analysis between

the conserved modules and the five subtypes, which identified
remarkable associations between mesenchymal modules and the
MSC subtype (Fig. 4b). Notably, only the pink module was
positively correlated with both unfavorable subtypes—the MSC

and INT/S. A significant association between poor prognosis and
the mesenchymal meta-module enrichment score was confirmed
with multivariate analysis adjusted for age, sex, race, AJCC stage,
histologic grade, and histologic type in the TCGA cohort (Fig. 4c).
Furthermore, we evaluated the associations of overall survival with
the stromal score and tumor purity measured by the ABSOLUTE
algorithm in the TCGA cohort. While a high pink score was
significantly associated with short survival (P= 0.0071), the
stromal score (P= 0.099) and tumor purity (P= 0.14) were not
significantly associated with survival outcome (Fig. 4d–f).

Association between molecular signatures and the tumor
microenvironment
We analyzed the spatial transcriptomics of a primary GC sample,
which was classified as the high-risk type using Single Patient
Classifier19, to study the associations between the tumor
microenvironment and the molecular signatures that we dis-
covered. First, an individual pathologist annotated the malignant
portion in the hematoxylin and eosin (H&E)-stained slide (Fig. 5a
and Supplementary Fig. 4). Then, tissue spots were clustered by
gene expression similarity based on a nearest-neighbor graph
approach (Fig. 5b). When we looked at the log-normalized
expression of CD44, a well-recognized marker of cancer stem
cells38 that is not expressed in benign mucosa39, it was highly
expressed in Clusters 2, 4, and 6, which were pathologically

Fig. 5 Implication of the pink module in EMT demonstrated by spatial transcriptomic analysis. a Pathological annotation of malignant
lesions in a H&E slide of GC tissue. b Graph-based clustering of the Visium data. c Violin plot demonstrating the log-normalized expression of
CD44, a cancer stem cell marker, for each cluster. d, e Log-normalized average count of gene modules displayed by color coding. Red
represents high expression, whereas yellow represents low expression. f Violin plots representing the log-normalized average count of gene
modules for Clusters 2, 4, and 6. g Violin plots for epithelial (EPCAM and CDH1) and mesenchymal (VIM and FN1) marker genes (****P ≤ 0.0001,
Wilcoxon test for these genes vs. all genes).
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annotated as malignant lesions (Fig. 5c). Partial expression of CD44
in Clusters 5 and 7 can be explained by leukocyte infiltration
observed in the H&E slide, which suggests chronic inflammation
accompanied by cancer39. Next, we identified high expression of
the gastric (light green) module in benign mucosa and the
immune (black) module in lymphoid follicles (Fig. 5d, e). Among
the malignant cell clusters, Cluster 4 highly expressed the
intestinal (dark red) module, while Cluster 2 highly expressed
the mesenchymal (pink) module (Fig. 5f). Concordantly, epithelial
marker genes (EPCAM and CDH1) demonstrated higher expression
in Cluster 4 than in Cluster 2, while mesenchymal marker genes
(VIM and FN1) displayed higher expression in Cluster 2 than in
Cluster 4 (Fig. 5g). Moreover, Cluster 6 moderately expressed both
dark red and pink modules and showed coexpression of EPCAM
and VIM. Additionally, protein expression analysis of a different GC
sample revealed that epithelial cancer cells showed coexpression
of cytokeratin with SFRP4 (Supplementary Fig. 5), which belongs to
the pink module and was top-ranked in a correlation analysis
between the matched transcriptome and proteome dataset
(GSE122401). Altogether, these data indicate that the intratumoral
heterogeneity of GC might originate from the intermediate EMT
status, which is represented in the GC modules derived from
intertumoral analysis.
In addition, we examined the association of the pink module

with stem-like characteristics in epithelial cells using external
datasets. First, human gastric pyloric stem cells, isolated based on

the expression of AQP5, showed higher expression of the pink
module genes than AQP5- cells (Supplementary Fig. 6a)40. Second,
multipotent endodermal progenitors induced from human gastric
epithelial cells demonstrated upregulation of pink module genes
(Supplementary Fig. 6b)41. Apart from GC, in transcriptomic
datasets of breast cancer metastasis models, epithelial cells within
the metastatic niche exhibited higher expression of the pink
module genes than distal epithelial cells (Supplementary Fig. 7a),
and the same pattern was observed for disseminated indolent
cancer cells compared to proliferative cancer cells (Supplementary
Fig. 7b). These results indicate that the pink module genes may be
implicated in the stemness features of epithelial cells.

The pink module is associated with the responsiveness to
chemotherapy
Given that the pink module is associated with a poor prognosis
and mesenchymal/stemness features, we further examined
whether it is also associated with the response to adjuvant
treatments. First, we classified the patients in the ACRG cohort,
who received adjuvant chemotherapy ± radiotherapy or surgery
alone (n= 193; stage II–III patients from GSE62254), based on the
pink score (Supplementary Fig. 8a). We observed a significant
benefit (P= 0.0028) from adjuvant treatments in patients with a
low pink score, whereas no benefit (P= 0.3) was observed among
patients with a high pink score. Moreover, when the ACRG cohort
was stratified by stromal score calculated by xCell analysis26, both

Fig. 6 TGF-β signaling regulates pink module gene expression in refractory subtypes. a, b Top 5 activated upstream regulators identified
by Ingenuity Pathway Analysis of a the MSC subtype and b the INT/S subtype. Expression log ratio of Classifier-PAM965 genes in the YCC
cohort was used as input. c Compounds reversing the pink module gene expression identified by the Connectivity Map. d Log fold change
mean of conserved GC module genes in TGF-β1-treated gastric epithelial cell lines compared with untreated cell lines (GSE44055; three
replicates for each group). e Correlation analysis of the pink module enrichment score with the pancancer TGFβ-induced EMT signature and
core TGF-β signaling genes in the TCGA cohort (n= 450). f Core TGF-β signaling enrichment scores according to NMF and TCGA subtypes in
the TCGA cohort (***P ≤ 0.001, ****P ≤ 0.0001, Wilcoxon test) (centerline, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, outliers).
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subgroups showed moderate benefit (P= 0.039 and P= 0.035)
(Supplementary Fig. 8b). Additionally, when the patients were
stratified by tumor purity measured based on SNP array data
(GSE62717) with ASCAT analysis42, there was no statistically
significant benefit (P= 0.11) from adjuvant treatments in patients
with high tumor purity (Supplementary Fig. 8c). Next, we classified
a pooled cohort treated with standard adjuvant chemotherapy or
surgery alone (n= 178; stage II–III patients from GSE13861,
GSE26942, and GSE147163) in the same manner. We similarly
found that only patients with a low pink score showed a survival
benefit (P= 0.011 vs. P= 0.55) from chemotherapy, and there were
no significant differences when the patients were stratified by
stromal score (P= 0.15 and P= 0.13) (Supplementary Fig. 8d, e).
These findings reemphasize that the pink module gene score is
more clinically significant than the stromal score or tumor purity.
Along the same lines, we examined a previously established

pharmacogenomic database of PDX models, where fresh tumor
fragments were directly implanted into BALBC/nude mice43. The 21
PDX model mice were treated with a fixed dose of a standard GC
drug (5-FU) or control; we compared their responses to 5-FU and the
vehicle and queried the expression levels of the pink module genes
(Supplementary Data 3 and Supplementary Fig. 9a). Compared to
the chemosensitive models, the PDX models refractory to 5-FU

treatment demonstrated significant (P= 0.041) upregulation of pink
module genes (Supplementary Fig. 9b). Additionally, in cohorts in
which patients received adjuvant chemoradiotherapy or palliative
chemotherapy, we witnessed a trend of poor prognosis among the
patients with high pink scores (Supplementary Fig. 9c, d).

Regulation of the pink module by TGF-β signaling in
refractory subtypes
On the basis of the subtypes and modules studied above, we
identified a potential therapeutic target among the poor
prognostic subtypes via network analyses. First, Ingenuity Path-
ways Analysis, a knowledge-based bioinformatic analysis soft-
ware44, revealed that TGFB1 was the top upstream regulator of
both the MSC and INT/S subtypes (Fig. 6a, b). Second, TGF-β
receptor inhibitor was identified as the top opposing perturbagen
against the pink module genes according to the Connectivity Map,
a gene expression database of cancer cell lines treated with
chemical and genetic perturbations45 (Fig. 6c). In addition, TGF-β
receptor inhibitor was one of the top inducing perturbagens for
epithelial and proliferative modules (enrichment scores of 95.7 for
light green, 93.04 for dark red, 99.89 for brown, and 99.83 for
magenta), supporting its actionability against EMT and dormancy.
Indeed, the “cellular response to TGF-β stimulus” was one of the

Fig. 7 TGF-β signaling factors are intrinsically expressed by GC cells. a Box plot comparing, for core and hallmark TGF-β signaling genes
tested on human arrays, average expression in human primary (PR) GC samples and corresponding PDX derivatives (n= 18) (GSE98708).
b, c Correlation plot matrix comparing, for b core and c hallmark TGF-β signaling genes tested on human arrays, average expression in
matched GC models (n= 7) (GSE128459). ORG, organoids derived from xenografts; CELL, frozen cells derived from xenografts. d UMAP plot of
GSE134520 with major-lineage cell-type annotation from Tumor Immune Single-cell Hub (TISCH). e Gene set enrichment analysis (GSEA) score
of hallmark TGF-β signaling from Single-Cell Signature Explorer.
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significantly enriched biological processes of the pink module
(Supplementary Table 4). Accordingly, we observed that the
growth-inhibitory activities of three TGF-β receptor inhibitors were
significantly (P < 0.05) associated with the pink score in human
cancer cell lines from the PRISM Repurposing dataset46 (Supple-
mentary Table 5). Furthermore, the pink module was the most
upregulated GC module in the TGFβ-induced EMT model of a
gastric epithelial cell (GSE44055)47, whereas both epithelial (dark
red and light green) modules were the most downregulated GC
modules (Fig. 6d). Finally, the pink score was highly correlated
with the enrichment scores of a TGFβ-induced EMT signature
(R= 0.94), which were derived from a meta-analysis of pancancer
datasets48, and the levels of the core TGF-β signaling genes
(R= 0.75), which were selected by consensus of TCGA network
members49 (Fig. 6e). These findings suggest that TGF-β signaling
regulates the pink module genes, which is also in accordance with
their implications in EMT status.
We also examined whether the TGF signaling gene set itself is

associated with poor-prognosis-related GC subtypes and whether it

has prognostic value. The core TGF-β signaling gene set enrichment
score (core TGF-β score) was highest in the MSC subtype and then
the INT/S subtype among the NMF subtypes that we identified, and
it was highest in the GS subtype and then the CIN subtype among
the TCGA subtypes (Fig. 6f). In addition, the core TGF-β score was
significantly (P= 0.011) associated with a shorter disease-free
interval in TCGA CIN subtype patients (n= 122) (Supplementary
Fig. 10a). Moreover, among the MSS/epithelial subtype patients in
the ACRG cohort (n= 123), patients with high core TGF-β scores
were resistant to adjuvant therapy, while patients with low core
TGF-β scores were sensitive to adjuvant therapy (Supplementary
Fig. 10b). Together, these findings indicate that TGF-β signaling
gene expression could separate patients with poor clinical outcome
from a population of nonmesenchymal tumors.

TGF-β inhibition against mesenchymal phenotypes and
chemoresistance in preclinical models
We investigated whether TGF-β signaling pathway is intrinsically
induced by cancer cells using transcriptomic data from matched

Fig. 8 TGF-β inhibitor for chemoresistant GC preclinical models. a–d Phenotypes of the high (magenta) and low (sky blue) pink score GC
lines were compared by a in vitro scratch wound-healing assay (n= 8) (P < 0.05), b invasion assay (n= 3), c in vitro tumor sphere formation
assay (scale bars, 100 µm), and d in vivo orthotopic tumorigenesis. The diffuse growth of Hs746T and SNU-484 tumors and confinement of
MKN-45 and NCI-N87 tumors are bordered by white dotted lines in the MRI images (axial section). Photographic illustration in the black
dotted box depicts the orthotopic model construction. e–i Suppression of the mesenchymal behavior of Hs746T cells by treatment with the
TGF-beta inhibitor (LY2157299 (LY)) was observed in the e in vitro scratch wound-healing assay (n= 20) (P < 0.05), f invasion assay (n= 3), and
g in vitro tumor sphere formation assay. h, i In vivo drug-resistance assay measuring the tumor growth of h Hs746t tumors and i NCI-N87
tumors in a mouse xenograft model (n= 8) under the coadministration of a TGF-beta inhibitor during combination drug therapy (oxaliplatin
and fluorouracil) (P < 0.05). j–l A high-risk, chemoresistant GC PDX model (GA077) treated with a TGF-beta inhibitor during combination drug
therapy (P < 0.05). j PDX-bearing mice (n= 6 or greater) were treated with the indicated drug regimens. k Ex vivo tumor weights and
l representative images of excised tumors.
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primary tumors and preclinical models. Since stromal cells in the
xenografted TME are substituted for mouse cells, it is assumed
that human microarray profiling of PDX samples does not detect
transcripts of stromal origin10. Interestingly, the expression levels
of both the core TGF-β signaling genes and the hallmark TGF-β
signaling gene set50 were conserved upon tumor transplantation
in GC PDX models (GSE9870851) (Fig. 7a). Moreover, the expression
levels of both TGF-β gene sets were highly (R > 0.9) correlated not
only between the primary tumor and the PDX but also between
organoids and frozen cells derived from the PDX (GSE12845951)
(Fig. 7b, c), and the two latter models do not include stromal cells.
Finally, we interrogated single-cell RNA sequencing (scRNA-seq)
data for GC (GSE134520) with cell type annotation based on gene
signatures20 (Fig. 7d). Notably, GSEA demonstrated that malignant
cells are enriched with the hallmark TGF-β signaling pathway as
much as CAFs (Fig. 7e). Collectively, the results indicate that cancer
cell-intrinsic TGF-β signaling was demonstrated by multiplatform
and high-resolution analyses in GC.
Finally, we assessed the ability of a TGF-β inhibitor to attenuate

mesenchymal/stem-like phenotypes in preclinical GC models.
First, we selected Hs746T and SNU484 cell lines versus NCI-N87
and MKN-45 cell lines as the experimental models based on pink
scores (GSE146361) (Supplementary Fig. 11). Accordingly, Hs746T
and SNU484 cells demonstrated greater migration, invasion, and
spheroid formation abilities than NCI-N87 and MKN-45 cells in
vitro (Fig. 8a–c). Furthermore, magnetic resonance images of
orthotopic models revealed that Hs746T and SNU484 cells
diffused along the wall of the stomach over the course of tumor
growth, whereas NCI-N87 and MKN-45 cells formed confined
tumors in vivo (Fig. 8d). Treatment with galunisertib (LY2157299),
a TGF-β inhibitor, delayed the migration, invasion, and spheroid
formation of Hs746T cells in vitro without eliciting significant
cytotoxicity (Fig. 8e–g). Disruption of TGF-β signaling in diffuse-
type gastric carcinoma cell lines reduced pink module gene
expression (GSE12336, Supplementary Fig. 12a). Next, we coadmi-
nistered galunisertib and an anticancer drug combination
(oxaliplatin+5-FU) to the xenograft mouse model established
using Hs746T cells (n= 8). Although oxaliplatin + 5-FU treatment
was only marginally effective against tumor growth in the Hs746T
model, coadministration with galunisertib significantly attenuated
the drug resistance and reduced the volume of Hs746T tumors
in vivo (Fig. 8h). Conversely, the anticancer drug combination
alone reduced tumor growth in NCI-N87 tumors without the aid of
galunisertib (Fig. 8i). Moreover, we validated the efficacy of
galunisertib in a GC PDX model previously described as the high-
risk type19 and the EMT subtype52 (Fig. 8j–l). Treatment with
galunisertib reduced the expression of genes in the pink module
in a metastatic intestinal tumor model classified as CMS4
(GSE103562, Supplementary Fig. 12b). Taken together, pharma-
cological inhibition of TGF-β signaling may attenuate invasion,
metastasis, and drug resistance in subtypes of GC with a dismal
prognosis.

DISCUSSION
Gene expression profile-based classification has been widely
accepted as a tool providing the groundwork for the development
of precision medicine7. Molecular subtypes are relevant to cancer
biology as well as clinical outcomes, so subtype classification
facilitates the discovery of potential therapeutic targets. Moreover,
the remarkable influence of nontumoral factors within the TME
adds a layer of complexity for classification. The present consensus
for the molecular classification of GC involves stroma-rich tumors
and leucocyte-infiltrated tumors, which correspond to the MSC
and INF subtypes in our study, respectively. The MSC subtype is
consistent with diffuse, mesenchymal, GS, and EMT subtypes
described in other classification systems. The INF subtype mainly
overlaps with the EBV and MSI subtypes. Our classification system

subdivided the CIN subtype, remaining TCGA subtype, into the
GST, INT, and INT/S subtypes. The GST subtype showed high
expression of the gastric gene module, including metabolic genes,
and it was highly associated with two types of preneoplastic
metaplasia (SPEM and IM) in GC progression30. The INT and INT/S
subtypes exhibited high expression of intestine-specific genes and
proliferative genes, but their prognoses strikingly varied across
cohorts. In this study, we further conducted a deeper investigation
focusing on the dismal prognoses of the MSC and INT/S subtypes.
We initially questioned whether the TME composition of the

INT/S subtype was similar to that of the MSC subtype, but it was
more similar to that of the INT subtype—with high tumor purity
and small stromal component. In addition, neither tumor purity
nor stromal score could significantly differentiate clinical outcome
in our study. Therefore, we performed unsupervised network
analyses to identify a common biological trait among the MSC and
INT/S subtypes. First, WGCNA clustering detected a common
“pink” gene module, which consisted of mesenchymal genes and
was associated with the response to adjuvant treatments. Next,
Ingenuity Pathway Analysis identified “TGFB1” as the upstream
molecule that regulates gene expression of both dismal prog-
nostic subtypes. This was substantiated by Connectivity Map
database analysis, which revealed that the TGF-β inhibitors
decreased the expression of the pink module genes to a greater
degree than other treatments. The association of the pink module
with TGF-β-induced EMT was further demonstrated by analyses of
previously reported in vitro47 and in silico48 models. This is also in
agreement with previous studies reporting activation of SMAD2/3,
the canonical signaling molecule of the TGF-β pathway, in
mesenchymal/EMT subtype GC6,53. Moreover, core TGF-β genes
segregated poor prognostic and chemorefractory patients among
the CIN/MSS subgroup. We validated the dependency of
intractable subtype GC on TGF-β signaling in various preclinical
experiments, including an experiment involving combination
treatment in a PDX model. Our findings support that our GC
classification system, which is based on a four gene-based
commercial assay19, merits evaluation as a companion diagnostic
test for subtyping and TGF-β inhibitor treatment guidance.
Additionally, we anticipate results from ongoing clinical trials of
the next-generation TGF-β inhibitor vactosertib54.
In this study, we also provided evidence for the presence of a

partial EMT state and intrinsic expression of TGF-β signaling in GC
cells. Above all, high-resolution spatial transcriptomics analysis
showed differential expression and coexpression of epithelial and
mesenchymal genes within adjacent lesions of a single primary
GC. In addition, we identified the protein expression of SFRP4, a
pink module gene with high compatibility between platforms and
sample types19, in epithelial GC cells. Then, human array analysis
of primary GC and derived preclinical models—with mouse
stroma or without stromal content—showed that TGF-β pathway
genes were consistently expressed with a very high correlation
(R > 0.9). GSEA of scRNA-seq data also demonstrated activation of
TGF-β signaling in cancer cells at a level similar to that in CAFs.
These results are in agreement with those of recent studies: a
scRNA-seq study showed that GC epithelial cells could be divided
into two types based on EMT gene expression55, and a PDX study
showed that cell-to-cell or extracellular matrix interactions were
enriched in both GC cells and the TME56. Furthermore, TGFB1 was
expressed at higher levels in both primary GC deep lesions and
metastatic lymph nodes than in primary GC superficial lesions,
suggesting that this phenotype is cancer cell-related rather than
tumor content-related57. Finally, scRNA-seq of superficial and deep
lesions from diffuse-type GC identified that EMT and the TGF-β
pathway were upregulated in malignant cells within deep
lesions58.
Certain limitations should be noted in this study. First, the

majority of analyses were performed using Asian patient cohorts.
Second, downstream analysis was dependent on previously
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published data, although subtypes and gene modules were
originally defined based on data-driven results. Third, survival
analyses were performed using retrospective cohort data. None-
theless, we believe our framework for therapeutic target discovery
could provide useful information to facilitate the development of
new treatment strategies. Most importantly, treatment with a TGF-
β inhibitor should be considered for the selective treatment of
patients with refractory subtype GC.

AVAILABILITY OF DATA AND MATERIAL
The genomic data used in this study are available from the NCBI
GEO with accession numbers described in each part. Spatial
transcriptomic data will be shared upon appropriate request to
the corresponding author.
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