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Trends and prospects in mitochondrial genome editing
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Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium
concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several
diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of
mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as
cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc
finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we
depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base
editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases.
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INTRODUCTION
Mitochondria, double membrane-bound organelles referred to as
the “powerhouses of the cell”, play an indispensable role in
eukaryotic cells, as they are associated with metabolism1,2 and
orchestrate a variety of other cellular functions, such as apoptosis,
cell pluripotency, autophagy, calcium homeostasis, and innate
immunity3–9. The mitochondrial genome is independent and
distinct from that of the nucleus10. Human mtDNA, with a few
hundred to several hundred thousand copies contained in each
cell11,12, encodes 37 genes (22 tRNAs, 2 rRNAs, and 13 oxidative
phosphorylation protein subunits) in a small circular 16.5 kb
double-stranded piece of DNA13,14. The exceeded heteroplasmic
threshold of mtDNA mutations manifests in multiple disorders
(Fig. 1a)14. Specifically, a vast array of more than 250 mitochondrial
defects have been implicated in various pathogenic mtDNA
variants that primarily affect muscle and nervous tissues15,16.
Notably, among the 97 known pathogenic mtDNA variants, point
mutations accounted for 92 variants (approximately 95%), which
indicated transition point mutations, including A > G, T > C, G > A,
and C > T, accounting for 87% (MITOMAP: A Human Mitochondrial
Genome Database. www.mitomap.org) (Fig. 1b). For instance, the
MT‑TL1 mutation m.3243 A > G can trigger multiple mitochondrial
syndromes, such as chronic progressive external ophthalmoplegia
(CPEO); maternally inherited diabetes and deafness (MIDD); and
mitochondrial myopathy, encephalopathy, lactic acidosis, and
stroke-like episodes (MELAS) syndrome. Meanwhile, three major
mtDNA mutations, m.3460 G > A, m.11778 G > A, and
m.14484 T > C, are present in more than 95% of patients suffering
from Leber hereditary optic neuropathy (LHON), a maternally
inherited disease that is associated with a loss of vision17,18.
Myoclonus epilepsy and ragged-red fiber (MERRF) syndrome, a
severe neurodegenerative defect, is predominantly caused by the
point mutation m.8344 A > G in the MT-TK gene19. Furthermore, a

spectrum of mutations in the SPG7 gene, including c.861dupT,
c.2221 G > A, c.2224 G > A, c.2228 T > C, c.1672A > T, c.1192 C > T,
c.1529 C > T, c.1454_1462del, c.1067 C > T, c.184-3 C > T,
c.233 T > A, c.1046insC, c.1457 G > A, and c.1053dup, were
revealed in patients suffering from many mitochondrial diseases,
such as progressive external ophthalmoplegia (PEO), ptosis, ataxia,
spastic paraparesis, cerebellar atrophy, and proximal myopathy20.
Strikingly, the C5024T mutation in the mtDNA gene MT-TA was
uncovered via mouse models of heteroplasmic mitochondrial
defects in the smooth muscle surrounding the colon and
cardiomyocytes21. Although single-base substitutions can theore-
tically be corrected using base editors, precise and efficient
therapeutics for several mtDNA mutations and mitochondria-
involved diseases, have not been reported thus far. The
development of and advances in base editing technology for
correcting mtDNA base variants promise a potential therapeutic
strategy for mitochondrial diseases and the generation of disease
models in living cells and animals.

The development of and advances in mitochondrial gene
editing tools
Research on mitochondrial DNA editing started with the use of
restriction endonucleases, such as PstI, SmaI, and ApaLI, engi-
neered to be expressed exclusively in mitochondria (called
mitoRes)22–24. The specific elimination of pathogenic mtDNA is
followed by repopulation with normal mitochondrial DNA via
heteroplasmy. Since mitoRes cannot be easily redesigned, it is
difficult to use them to correct various clinical mutations, as there
is the limitation of potentially editing the off-target loci22–24.
Programmable DNA nucleases, such as clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9), which recognize a short sequence known as the
protospacer adjacent motif (PAM) and follow the DNA sequence
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targeted by a functional complex of Cas nucleases and a single
guide RNA (sgRNA), has revolutionized gene modification and
enabled the editing of mtDNA mutations25–27 (Fig. 2a). Of note,
the CRISPR/Cas9 system, the most applied CRISPR construct, has
recently been reported to efficiently cleave targeted mtDNA in
HEK293T cells and zebrafish26,27. However, a key impediment to
this approach is the import of the exogenous sgRNA into
mitochondria28. Although several researchers have shown sig-
nificant attempts at sgRNA delivery, this as-yet-unresolved

limitation demonstrates the inefficiency of this approach26,29,30.
Recently, one group demonstrated that not only Cas9 (type II) but
also Cas12a (one of the type V CRISPR effectors) could access
mitochondrial DNA editing31. However, although they tried to
engineer the guide RNA using the RP loop related to importing
mtRNA, clear evidence of efficient Cas12a-mediated mtDNA
genome editing was not obtained31. Hence, to date, CRISPR-
based systems have not been reliably applied to mtDNA
manipulation.
Soon after the development of site-specific nucleases such as

zinc-finger nuclease (ZFN) and transcription activator-like effector
nuclease (TALEN)32–34, mitochondrially targeted ZFN (mtZFN) and
mitochondrially targeted TALEN (mitoTALEN) versions emerged,
optimized for delivery capacity into mitochondria, and they have
been effectively used for heteroplasmic manipulation in several
models of pathogenic mtDNA variants by inducing mtDNA
double-strand breaks (DSBs)35,36. The sequence specificity of the
mtZFN or mtTALEN monomers is demonstrated through interac-
tions between the protein and DNA via tandemly organized
repetitive elements derived from either zinc-finger protein (ZFP) or
TALE DNA-binding protein (see Table 1 for a summary).

Development of the structure and use of ZFP technology for
mtDNA editing
Zinc-finger nucleic acid-binding modules are some of the most
profuse proteins in eukaryotes and comprise the first program-
mable nucleic acid-binding domain applied in epigenome
engineering37–39. Each ZFN strategy for nuclear DNA modification
includes two DNA‐binding domains recognizing and binding a
specific DNA sequence and a nonspecific FokI cleavage domain,
which is a mediator for DNA excision and fragment insertion or
frameshift variants of the DNA target (Fig. 2b). Structurally, the
DNA-binding domain, consisting of three ZFP groups (each a 30-
amino-acid module) bound to a 3-nucleotide DNA sequence, is
composed of two adjacent β-sheets and an α-helix that interact
with a single zinc atom, whereas the nuclease activity of the FokI
cleavage domain, which must contain two distinct yet comple-
mentary parts, requires its dimerization32. Based on the favorable
qualities of the components, the combination of the flexible and
specific DNA-binding characteristics of ZFPs and the vigorous
ablation ability of the FokI restriction enzyme in the ZFN
architecture makes it credible for genome editing. To date, the
potential of ZFN technology has been harnessed and effectively

Fig. 1 Distribution of the rate of human pathogenic mitochon-
drial DNA mutations. a The overall concept of heteroplasmic
shifting. Although mutant and wild-type mtDNA can coexist, the
exceeded threshold of mtDNA mutations compromises oxidative
phosphorylation (OXPHOS). The mutations can be corrected by
using gene editing platforms, which change the heteroplasmic level
toward reducing the threshold. b Pie chart demonstrating the
percentage of pathogenic mitochondrial DNA mutations in the
MITOMAP database (accessed November 03, 2022). The white text
reveals the distribution of transition point mutations, while the black
text indicates transversion point mutations, deletions, insertions, or
inversions. Parentheses indicate the number of pathogenic mito-
chondrial DNA mutations.

Fig. 2 The architectures of several technologies for mitochondrial DNA editing. a A schematic of the architecture of CRISPR/Cas9 in the
interactions with single-guide RNA and target DNA. The structures of b mtZFN, c ZFD, d mitochondrially targeted mitoTALEN, e DdCBE, and
f TALED. ZFP zinc-finger protein, MTS mitochondrial targeting sequence, NES nuclear export signal, CTD (NG) C-terminal domain with NG
repeat variable diresidues, NTD N-terminal domain.
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used for mtDNA manipulation. Initial reports revealed a site-
specific methylase status using a three-finger monomeric ZFP
equipped with an N-terminal mitochondrial targeting sequence
(MTS) and a nuclear export signal (NES) fused to DNA
methyltransferase 3a (DNMT3A), specifically targeting the
m.8993 T > G mutation40. Furthermore, a single ZFP monomer
conjugated to two FokI endonuclease domains tethered together
via a flexible linker of 35 amino acids was engineered to target
m.8993 T > G in heteroplasmic cybrid cells. However, this
approach raises a safety concern that the combination of a four-
finger ZFP monomer binding only 12 bp and a constitutively
active nuclease might excessively reduce the mtDNA copy
number41. However, attempts to improve its characteristics are
still far from being efficient42.
Alternatively, optimizing the heterodimeric mtZFN architecture

consisting of NARPd(+), an mtZFN specifically binding to a mutant
sequence, and COMPa(−), a nonmutant sequence-bound mtZFN
monomer, caused an effective shift in the heteroplasmy of cybrid
cells bearing the m.8993 T > G mutation and “common dele-
tions”35. Changes in the heteroplasmy shifting efficiency have also
been demonstrated in a fine-tuned m.8993 T > G model43,44.
Specifically, approximately 80% of the cybrid cells bearing the
m8993T > G mutation were successfully transfected with
the specific mtZFN that induced a considerable shift toward the
wild-type mtDNA. Strikingly, substantial depletion of the mtDNA
copy number was revealed at 24 h, followed by a return to a level
comparable to nontransfected cells 28 days post-transfection.
Moreover, the model was further capitalized to investigate the
metabolic defects in mtDNA mutation-bearing cells43. In a later
study44, the authors exploited a model called mTUNE to produce
several isogenic cell lines (mT7, mT45, and mT80) with various
levels of m8993T > G mutation (7%, 45%, and 80%, respectively).
These m8993T > G heteroplasmic cell types augmented cell
migration, a finding supported by reports of MDH1 increasing
ATP generation via glycolysis.
Of interest, mtZFNs exert their potential applications in vivo45.

In particular, a construct containing an m.5024 C > T-specific
monomer (MTM25) and a wild-type-specific monomer (WTM1)
was produced by encoding the monomers in a distinct adeno-
associated virus (AAV) genome, followed by their encapsidation
into AAV9.45 vectors subsequently administered to mice21,45.
Recently, a ZFP-based base editor for mtDNA called ZFD has

been developed for catalyzing the conversion of C to T in human
cells46. ZFD constructs were created by connecting ZFPs to the
split interbacterial toxin deaminase DddAtox and a uracil
glycosylase inhibitor (UGI) via linkers (Fig. 2c). The optimized
architecture of ZFDs showed successful base editing in
HEK293T cells with frequencies of 2.6–30%46. Interestingly, the
conversion of C to T mediated by ZFDs was performed in most Cs
in both the TC and TCC sequence contexts. Although the rates of C
to T conversion are currently low, further studies on engineering
ZFDs to enhance both efficiency and precision may open a new
door for correcting pathogenic mtDNA mutations in human
embryos, fetuses, and specific adult tissues46.

Development of the structure and use of TALEs technology for
mtDNA manipulation
MitoTALENs have been platform-engineered via the fusion of the
DNA-binding domain of TALEs, comprising monomers from the
plant pathogenic bacteria genus Xanthomonas, and the non-
specific cleavage domain of FokI endonucleases47,48. The DNA-
binding domain that recognizes the specific nucleotide in the
target DNA sequence consists of tandem conserved repeats of 33-
35 amino acids (Fig. 2d). Among them, two positions (residues 12
and 13), known as the repeat variable diresidue (RVD), show high
variation in the recognition ability for a specific nucleotide49.
Notably, 4 out of 25 RVDs (HD, NI, NG, and NN), which were the
most prevalent, could identify C, A, T, and G, respectively50. In

contrast to ZFNs, the structural foundation of the TALE DNA-
binding specificity is more amenable to engineering and requires
a minimal number of RVD panels encoding all base specificities51.
The first study on the development of mitoTALENs demon-

strated the elimination of common deletions and the
m.14459 G > A point mutation in mtDNA by applying two
engineered constructs: Δ5-mitoTALEN and 14459A-mitoTALEN,
respectively36; these architectures cause heteroplasmic shifting in
heteroplasmic cybrid cells. Interestingly, a design based on the
requirement of a T at position 0 in the sequence responsible for
DNA recognition, called the T0 strategy, was used for
m.13513 G > A mutation elimination in heteroplasmic cybrid
cells52. However, attaining the binding specificity for a single
nucleotide at a mutation position that is neither N > A nor N > T is
currently far from easy. Furthermore, the T0 strategy requires two
monomers, thus limiting the packaging capacity in various
vectors, especially AAVs. To improve these hurdles, the authors
showed that a shortened mitoTALEN monomer could also be
applied for the efficient elimination of m.8344 A > G mutations. In
addition, later studies depicted changes in the heteroplasmic
shifting efficiency in iPSCs harboring m.13513 G > A and
m.3243 A > G53,54. Treatment with mitoTALENs targeting the CD5’

region of mtDNA was shown to induce DSBs, resulting in a
common deletion, followed by an accumulation of mtDNA49,55,56.
In addition, human LHON m.14459 G > A and NARP m.9176 T > C
mutations were specifically eliminated by injecting mitoTALENs
into MII stage mouse oocytes57.
Interestingly, a monomeric variant of mitoTALENs known as

mitoTev-TALEs, which are engineered by fusing a TALE-binding
domain with a T4 phage-derived I-TevI homing endonuclease
catalytic domain through a linker, has been used to manipulate
m.8344 A > G mutant mtDNA in heteroplasmic cybrids58. However,
this architecture has apparent disadvantages, such as requiring a
CNNNG cleavage site for I-TevI.
To further explore the potential of TALE, hybrid platforms have

been constructed by the fusion of solely mtDNA-binding TALEs
and base-editing deaminases for precise modification of mtDNA.
Recently, DdCBEs that can precisely and specifically convert C to T
in human mtDNA have been formed by adding TALE proteins and
UGI to split-DddA (Fig. 2e)59. Combining two TALE proteins with
the mtDNA target resulted in the activation of the inactively
nontoxic split-DddA halves. Surprisingly, the addition of UGI,
protecting U from base excision by glycosylase, improved the
efficiency of base editing by approximately 8-fold. Most excitingly,
DdCBEs have been successfully exploited for mtDNA base editing
in various species, such as human embryos, zebrafish, mice
(embryos and adults), rats, and plants60–68.
Although the discovery of DdCBEs is a huge step forward, this

technology is limited by the dependence of DddA on editable
sites where Cs in the 5’-TC-3’ contexts are preferably converted to
Ts (conversion from 5′-TCC-3′ to 5′-TCT-3′ or 5′-TTT-3′ is also
available depending on the target). As a consequence, methods
based on the original DdCBEs could correct only 10% of
pathogenic mtDNA point mutations69. Soon after, the authors
developed DddA variants using rapid phage-assisted continuous
evolution. DddA6-containing DdCBEs conduct C•G to T•A conver-
sion at TC sites 3.3-fold more efficiently than canonical DdCBEs.
Furthermore, base editing with the DddA11 variant revealed
strong compatibility over a range of settings (TC, AC, and CC), in
which the editable levels for CC and AC in both the nucleus and
mtDNA were increased by 15–30%70. Despite effective base-
editing improvements, engineered DdCBEs are still limited to only
being able to edit C-to-T residues. However, this limitation has
been circumvented by the advent of TALEDs, a novel tool that
enables the conversion of A-to-G69. This platform consists of an
mtDNA-targeting TALE, adenosine deaminase TadA8e, and
inactive DddAtox as a cytosine deaminase (Fig. 2f). Moreover,
TALEDs have been shown to successfully correct 47% of known
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pathogenic mtDNA point mutations in human cells69. More
intriguingly, TadA8e, which supposedly operates on single-
stranded DNA, was shown to possess an unexpected capability
of adenine deamination in double-stranded DNA. This observation
was explained by the presence of DddAtox, which enables the
unwinding of the double-stranded DNA and provides TadA8e
superfast access to the DNA for the necessary modifications69.
However, this technology has the limitation of bystander editing,
which converts nucleotides adjacent to the desired targets in the
same editing window. Optimization in the engineering of DddAtox

or TadA might eliminate this undesired editing69. In addition, it
would be intriguing to enhance the specificity and efficiency of
TALEDs, which might provide further possibilities for mtDNA
editing. Novel methods for the TALED-mediated manipulation of
ES cells or direct editing in mouse embryos are certain to be
developed in the near future.

Off-target effects by mitochondrial gene editing tools
Solving unintended editing problems is of foremost importance
for safe gene editing applications in clinical therapies. In the
utilization of programmable editing platforms such as mtZFN and
mitoTALEN, attenuating the temporary total mtDNA copy number
is of paramount concern due to the depletion of mutant mtDNA
before the repopulation of the wild-type mtDNA. Notably, the
depletion might be significantly affected by the off-target editing
of mtDNA as a consequence of inadequate reagent specificity or
inappropriate concentrations of cleavage agents. Although off-
target events of mtDNA editing using DdCBEs are relatively rare in
HEK293T cells59, this platform can cause considerable mtDNA off-
target editing in zebrafish and plants62,65,66,68. Most strikingly, two
recent studies using DdCBEs have elucidated substantial off-target
editing of the nuclear genome and mtDNA in mammalian cells
and mice71,72. For instance, DdCBEs preferably caused undesired
low-frequency mtDNA editing events at 5′-TC-3′ sequences, which
were most prominent in the spacer regions to the left and right of
the TALE binding sites, with some lying outside the regions71.
Most unexpectedly, when delivered to fertilized 2-cell stage
embryos by the genome-wide off-target analysis by two-cell
embryo injection (GOTI) method, DdCBEs also induced remarkable
sequence-independent off-target effects, resulting in single-
nucleotide variants (1000–1500) in the nuclear DNA. The
unexpected results are likely due to the unique characteristics of
the DddAtox cytosine deaminase used in DdCBE, which favors
dsDNAs as substrates, unlike the substrate preference of cytosine
deaminase APOBEC1 in the BE3 protein for ssDNA71. Further
studies will be necessary to clarify the effects of various MTSs on
off-target editing events by DdCBEs as well as to develop novel
approaches to reduce the adverse effects. Using an unbiased
method (Detect-seq) to evaluate genome-wide specificity, Lei.
et al.72 demonstrated that hundreds of nuclear off-target edited
sites were induced by DdCBEs in both TALE array sequence-

dependent and sequence-independent cases. The studies sug-
gested that certain interactions between the DdCBE and the CTCF
binding region seem to be associated with sequence-independent
off-target effects. However, the exact mechanism underlying this
observation remains to be determined. Interestingly, this off-
target editing issue was significantly improved by applying several
advanced DdCBE constructs: UGI-NES-DdCBE, to which NES
sequences were added to hinder the localization of DdCBE in
the nuclei, and DddIA-DdCBE, in which DddIA, a natural immunity
protein of DddA, was used to preclude nuclear DNA editing by
DdCBE by obturating the active center of DddAtox

59,72. None-
theless, further thorough analyses of off-target editing of both
mtDNA and nuclear DNA by various mtDNA editing technologies
will be necessary for both basic research and clinical applications
in the future.

CONCLUSION
The potential of ZFPs and TALEs is promising, and their
approaches for the base editing of mtDNA have been demon-
strated. However, these platforms are limited by size compatibility,
which makes their delivery to mitochondria less efficient using
viral systems such as AAVs. In addition, there is a need for more
efficient design and assembly methods for mtZFN and mitoTALEN
monomers to recognize a wide spectrum of mtDNA
sequences52,73. Consequently, the production of these proteins
requires cost- and labor-intensive processes. These challenges
could be overcome by using CRISPR/Cas9, a powerful editing
system applicable to a wide number of organisms, including
plants and mammals. CRISPR/Cas9 relies on only two components:
(i) sgRNA, which recognizes a specific DNA sequence, and (ii) Cas9
nuclease, which cleaves the DNA sequence. However, as
mentioned above, a major challenge in applying this system in
mtDNA editing is to find effective methods for delivering
exogenous sgRNA into the mitochondrion. If this could be
achieved, the CRISPR/Cas9 system could potentially be broadly
applied to manipulate mtDNA.
In fact, several stem‒loop motifs mediating the shuttling of

nuclear RNA molecules into mitochondria have been character-
ized at the 5′ or 3′ ends of a variety of endogenous RNAs, such as
5S rRNA, RNase MRP, and H1 RNA, which play an essential role in
the functioning of mammalian mitochondria74–76. In particular,
stem‒loop motifs from H1 RNA, which are appended to cytosolic
RNA, facilitate the efficient importing of the RNA molecules into
mitochondria56. Furthermore, it has been suggested that some 5S
RNA motifs and two domains (yeast cytosolic tRNALys (CUU)-
derived F-arm and D-hairpin) can also assist the uptake of
synthetic RNA into mitochondria77–79. Moreover, it has been
reported that the fusion of an MTS with the AAV2 capsid protein
VP2 helped to target the NADH-encoding ND4 gene
in mitochondria80. Strikingly, a recent study revealed that the

Fig. 3 Strategies for delivering gene editing platforms into mitochondria. ZFP- and TALE-based gene editors or engineered CRISPR/Cas
systems modified with MTS and stem‒loop motifs can be imported into mitochondria via transfection with AAVs or eVLPs, which encapsulate
plasmid DNA or mRNA encoding the gene editing platforms. mtZFN, mitochondrial zinc-finger nuclease; TALEN transcription activator-like
effector nuclease, DdCBE DddA-derived cytosine base editor, ZFD zinc-finger deaminase, TALE-linked deaminase (TALED); CRISPR/Cas
clustered regularly interspaced short palindromic repeats/Cas.
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use of an engineered Cas9 nuclease linked with N- or C-terminus
MTSs for editing mtDNA mutations in HEK293T cells and zebrafish
resulted in a significant reduction in mtDNA copy number27. These
reports provide a critical proof of concept for the delivery of
sgRNA appended to a stem‒loop element into mitochondria,
followed by an interaction with the Cas9 nuclease and cleavage of
specific mtDNA sequences. Moreover, not only Cas9 but also
Cas12a can enter the mitochondria by using MTSs, and there have
been attempts at mitochondrial delivery by engineering various
stem‒loop motifs on guide RNAs31. Together, the studies suggest
that efficient delivery of sgRNA via stem‒loop motifs show great
promise for mtDNA-editing systems (Fig. 3).
Recently, a transient ribonucleoprotein (RNP) delivery plat-

form using engineered virus-like particles (eVLPs) has been
reported81 (Fig. 3). Essentially, eVLPs are empty viral shells into
which therapeutic RNPs can be packed and delivered to the
target DNA with minimal off-target editing effects81. Specifi-
cally, a newly engineered variant of eVLPs (v4 eVLPs) showed
16- and 4.7-fold increases in the packaging capacities of base
editor RNPs and Cas9, respectively, compared to earlier
architectures82. Most excitingly, eVLPs have been successfully
used for delivering therapeutic packages to various organs in
mice (liver, brain, and retina). These studies underscore the
possibility of utilizing eVLP to deliver gene-editing cargoes for
mtDNA to cells or multiple targeted organs in both animals and
humans with minimal off-target editing81. Despite the potential
of transient and efficient delivery of eVLPs, further studies on
their pharmacokinetics, such as half-lives, are imperative.
Additionally, determining the adequate requirements for
base-editing cargoes may be a genetic therapy milestone for
mtDNA editing in the future. Recently, extraordinarily novel
applications based on both TALEs and ZFPs have been
developed for highly specific mtDNA editing platforms toward
heteroplasmic shifting with minimal cytotoxicity.
Optimizing the engineering of these platforms will surely pave

the way for genetic approaches toward clinical trials by reducing
the size to improve the packaging capability of viral systems and
promoting efficiency and specificity for mtDNA manipulation. In
fact, novel types of CRISPR systems, mini CRISPR-AsCas12f1 and
miniature CRISPR-SpaCas12f1, consisting of 422 and 497 amino
acids, respectively, can be feasibly and readily delivered to
bacteria, cells, and tissues employing various delivery methods,
such as AAV, plasmid, and RNP, have been reported83,84. Due to
the advantages of editing efficiency and delivery, miniature
platforms should also be considered an effective approach for
mtDNA editing. Although the successful delivery of exogenous
sgRNA into mitochondria using CRISPR‒Cas systems could prompt
a revolution in mtDNA editing, it is undeniable that there are still
real-world obstacles that need to be resolved for exceptional
competence in the application of TALEs and ZFPs.
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