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Whole-genome sequencing reveals an association between
small genomic deletions and an increased risk of developing
Parkinson’s disease
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Single-nucleotide variants (SNVs) associated with Parkinson’s disease (PD) have been investigated mainly through genome-wide
association studies. However, other genomic alterations, including copy number variations, remain less explored. In this study, we
conducted whole-genome sequencing of primary (310 PD patients and 100 healthy individuals) and independent (100 PD patients
and 100 healthy individuals) cohorts from the Korean population to identify high-resolution small genomic deletions, gains, and
SNVs. Global small genomic deletions and gains were found to be associated with an increased and decreased risk of PD
development, respectively. Thirty significant locus deletions were identified in PD, with most being associated with an increased PD
risk in both cohorts. Small genomic deletions in clustered loci located in the GPR27 region had high enhancer signals and showed
the closest association with PD. GPR27 was found to be expressed specifically in brain tissue, and GPR27 copy number loss was
associated with upregulated SNCA expression and downregulated dopamine neurotransmitter pathways. Clustering of small
genomic deletions on chr20 in exon 1 of the GNAS isoform was detected. In addition, we found several PD-associated SNVs,
including one in the enhancer region of the TCF7L2 intron, which exhibited a cis-acting regulatory mode and an association with
the beta-catenin signaling pathway. These findings provide a global, whole-genome view of PD and suggest that small genomic
deletions in regulatory domains contribute to the risk of PD development.
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INTRODUCTION
Parkinson’s disease (PD) is the second most prevalent neurode-
generative disease, affecting more than six million people
worldwide1. PD is a multifactorial disease caused by both
environmental and genetic factors. Recent studies have identified
numerous genetic variants associated with the incidence and
progression of PD2. However, most genetic studies have focused
on single-nucleotide variants (SNVs) located mainly in intronic
regions. To date, more than 90 independent risk-associated SNVs,
including those in the SNCA and LRRK2 genes, have been
identified as common genetic components of PD2–8.
PD genetic studies have predominantly been conducted in

patients of European ancestry, and other populations have largely
been overlooked2. Foo et al. 9 recently conducted a large-scale
genome-wide association study (GWAS) on East Asian populations
and identified two novel SNVs in the SVC2 and WBSCR17 genes.
Although SNVs provide paramount explanations of the specific
phenotypes and pathogenesis of PD, high-resolution whole-
genome sequencing (WGS) has revealed structural genomic

variations, including copy number variations (CNVs), that affect
multiple human PD phenotypes10. For example, CNVs are
associated with familial PD but are rarely reported in sporadic
PD11. In general, large-cohort WGS studies of CNVs may uncover
additional mechanisms underlying PD pathogenesis.
Increasing evidence indicates that alterations in intergenic

regions of the genome can induce diseases6. Indeed, many
known PD risk-associated variants, including in SNCA, occur in
noncoding regions. Soldner et al. 12 showed that variations in
SNCA intronic regions have cis-acting effects that cause allele-
specific changes in gene expression via deletion or exchange of
disease-associated regulatory elements. This is supported by
several studies highlighting the importance of noncoding
variants in neurodegenerative brain diseases, most of which
are located in regulatory regions, such as promoters, enhancers,
and noncoding RNAs12–14. SNVs in noncoding regulatory regions
are increasingly being associated with various diseases. Con-
versely, CNVs, particularly small genomic deletions or gains that
affect regulatory regions, are largely uncharacterized in PD
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because only WGS can detect the small regions of such
structural variations with high resolution.
In this study, we conducted high-resolution WGS for 310

patients with sporadic PD and 100 healthy controls to characterize
PD-associated genomic variations, including CNVs. The findings
were validated using WGS data from an independent secondary
cohort composed of 100 patients with sporadic PD and 100
healthy controls.

MATERIALS AND METHODS
Case selection
In this prospective case‒control study, we enrolled PD patients and healthy
controls at Asan Medical Center (AMC), Seoul, South Korea, between 2018
and 2020. PD diagnosis was based on the UK PD Society Brain Bank
criteria15. Batch 1 (n= 210) and 2 (n= 100) PD cohorts were recruited from
January to December in both 2018 and 2019. Healthy controls (n= 100)
were selected from AMC visitors in 2019. Healthy controls were excluded
for the following reasons: 1) a family history of PD; 2) neurological
symptoms; 3) taking anticonvulsants; 4) a history of stroke or facial
paralysis; or 5) diagnosed with major neurological diseases, including PD,
dementia, cognitive disorders, epilepsy, or sleep apnea. The PD patients
and healthy controls served as the primary cohort. For the validation
(secondary) cohort, additional PD patients (n= 100) and healthy indivi-
duals (n= 100) were recruited at AMC from January to December 2020.
This study was approved by the Institutional Review Board of AMC (IRB
number: 2018-1510). All patients provided informed consent in accordance
with the institutional review board requirements.

DNA extraction and WGS
Genomic DNA was extracted from 610 human blood samples, and after
conducting DNA quality assurance, DNA libraries were prepared using an
Illumina TruSeq Nano DNA library Kit (Illumina, San Diego, CA, USA). All
samples passed the quality threshold and were included for DNA library
preparation. WGS was performed using an Illumina NovaSeq 6000 sequen-
cer. Clusters were generated using paired-end 2 × 150 bp cycle sequencing
reads. The binary base call files were converted to FASTQ format using
Illumina bcl2fastq conversion software (version 2.20.0). The quality of the
raw sequencing reads was evaluated using FastQC (version 0.11.8).

Sequence data processing
All sequence data were processed using the Genome Analysis Toolkit (GATK)
workflow (https://github.com/gatk-workflows/gatk4-data-processing)16. Briefly,
reads were mapped to the GRCh38 reference genome via BWA-MEM (version
0.7.15) using the “-K 100,000,000 -p -v 3 -t 15 -Y” option. TheMarkDuplicates and
BaseRecalibrator tools (GATK, version 4.1.6) were used to mark duplicate reads
and recalibrate the mapping quality, respectively. After removing duplicate
reads, ameanmapped read depth of 53.6× and amean coverage of≥ 30×were
obtained for 94% of the primary cohort genome.

Germline variant calling and filtering
Small insertion/deletions (InDels) and SNVs were detected using the GATK
workflow (https://github.com/gatk-workflows/broad-prod-wgs-germline-
snps-indels)16. Briefly, gVCF files were generated using GATK Haplotype-
Caller via the “-ERC GVCF” option. To produce the final multisample VCF, all
gVCFs were pooled using the GATK GenomicsDBImport and Genoty-
peGVCFs (version 4.1.4) modules. Implementation of GenotypeGVCF
produced multiple VCF files that were then combined into a single file
containing variants from all the samples. Data in the resulting VCF file were
then filtered using GATK VQSR, thereby producing high-quality variants.
To facilitate downstream variant analysis, Ensembl Variant Effect

Predictor (version 101) was employed to annotate each variant by
integrating several clinical and functional genome annotations, including
those from dbSNP (version 153), ClinVar (version 202003), and gnomAD
(version r2.1.1). In this study, WGS was used to detect all variants (SNV/SNP
and InDel), which are collectively referred to as SNVs.

SNVs associated with PD
SNVs with an allele frequency of ≥1 % were selected for conduct the
GWAS. Individuals with examined clinical traits and no kinship within the
selected sample set served as sample quality controls (QCs). Variant QCs
were selected based on the following criteria: 1) SNVs with a minor allele

frequency (MAF) of ≥0.01; 2) SNVs with a Hardy–Weinberg equilibrium
(HWE) P > 1.0 × 10-5; 3) SNVs with a missing genotype rate of < 0.01; and 4)
InDels not detected in segmented duplicated regions. With the assumption
of the additive genetic model, GWAS was performed on QC-passed genetic
markers using Scalable and Accurate Implementation of Generalized mixed
model (SAIGE)17 software (version 0.44.6) to control for case‒control
imbalances. Briefly, SAIGE comprises two steps: 1) using genotype data, the
null logistic mixed model is fitted with no nongenetic covariates; and 2)
single-variant association tests are performed between each genetic
marker.
Variants were grouped into loci using the “-clump-p1 0.01 -clump-kb 500

-clump-r2 0.50” option of PLINK (version 1.90b)18. Healthy individuals
recruited from AMC served as the primary control group. As an additional
control, we used an external cohort composed of individuals from the
Korean general population. The external cohort allele frequency data are
available in Korean Genome Project (KGP), one of the largest published
Korean WGS datasets19. We did not combine the variant calling results of
the AMC healthy controls with those of the KGP dataset because the
sequencing read depths and variant calling methods were different and
the disease-status information of individuals in the KGP dataset was
unavailable. However, combined analyses were performed via compar-
isons between AMC PD vs. KGP cohorts, as opposed to AMC PD vs. AMC
healthy controls.

Combining and comparing AMC PD and KGP control datasets
Data derived from PD patients (n= 410) were merged with the KGP dataset
(n= 916), which consisted of unrelated individuals. VCF files containing KGP
genotypes were downloaded, and multiallelic and duplicated variants were
excluded. Thereafter, QCs were performed, and genetic markers were selected
for each dataset using PLINK based on the following SNV filtering criteria: 1)
MAF≥ 0.01; 2) HWE P> 1.0 × 10-5; 3) missing genotype rate < 0.01; and 4)
SNVs on autosomal (1–22) chromosomes. InDels were excluded from this
analysis. Of the QC-passed variants, 6,612,214 intersected variants present in
both datasets were used for downstream analyses. These variants were
linkage disequilibrium-pruned using “-indep-pairwise 50 5 0.2” in PLINK prior
to constructing principal component analysis (PCA) plots. PCA was performed
using “-pca 20” in PLINK, and the first two principal components of each
group or batch were visualized. GWAS was performed using SAIGE on the
6,612,214 QC-passed genetic markers with the additive genetic model
assumption. During the first step, genotype data were applied to fit the null
logistic mixed model with the first 10 principal components as nongenetic
covariates. During the second step, each genetic marker was subjected to
single-variant association tests. Finally, the variants were grouped into loci
using the “-clump-kb 500 -clump-p1 1e-03 -clump-r2 0.50” option in PLINK.

Analysis of rare genetic SNVs associated with PD
A genome-wide, gene-level sequence kernel association-optimized (SKAT-
O) analysis20 was conducted to identify differences in the aggregate
burden of rare variants between PD patients and healthy controls. We used
an MAF threshold of < 0.01 and a minor allele count of ≥ 3 as filters. The
analysis was performed using the R package SKAT (version 2.0.1).

CNV analysis using different methods
Approaches that combine multiple tools have been recommended to
improve germline CNV calling predictions21,22. Thus, we identified germline
CNVs using five previously recommended21 tools: CNVnator23, GATK4-
gCNV16, Delly224, cn. MOPS25, and Lumpy26. For CNVnator, CNV calls were
filtered based on the following criteria: 1) e-values (e-val1, eval2) <1.0 × 10-
3; 2) q0 < 0.5 and q0 ≠ -1 (q0 is the fraction of reads mapped with zero
quality); and 3) for deletion calls, only copy calls <0.75 of normalized read
depth × (1+ q0) were used. For the other four tools, CNV calls were
estimated using default parameters.
All CNV calls were combined and filtered. The five tools were used to call

CNVs in each individual, and calls with > 50 % identical overlapping
regions were combined using mergeSVcallers (https://github.com/zeeev/
mergeSVcallers). CNVs supported by two or more tools were included in
downstream analyses. These CNV regions were split at the identified CNV
boundaries, and the number of copies was counted. Thereafter, CNVs
overlapping ≥ 50% in centromere, telomere, or segmental duplication
regions were removed27. Finally, associations between PD and the defined
CNV regions (n= 120,374) for the primary cohort were evaluated using
Fisher’s exact test. Only CNVnator was applied for each sample in the
secondary cohort, and significantly different CNVs were identified using
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Fisher’s exact test. CNVs were manually curated using Integrative
Genomics Viewer (IGV)28.

Analysis of data downloaded from public databases
Data from 1,011 cancer cell lines of 25 tissues were downloaded from
Cancer Cell Line Encyclopedia (CCLE)1,29. Molecular features of gene
expression in cell lines with specific copy number alterations were
identified. Copy number, RNA expression profiling data, and sample
annotation information were downloaded from the DepMap portal
(https://depmap.org/portal/download). Codependent TCF7L2 genes were
identified from CRISPR gene dependency data (DepMap 22Q2 Public +
Score, Chronos) in the DepMap portal. In addition, 17,382 normalized
RNA-seq gene expression (Gene TPM normalization) data from 54
normal tissue sites, including 14 brain regions, and sample annotation
information were downloaded from the Genotype-Tissue Expression
(GTEx, Analysis release V8) project database (https://gtexportal.org/
home/datasets). The GTEx data used in this study were downloaded
from the database on 09/08/2021.
To identify enhancer signals, we downloaded H3K27ac (GSM1831752) and

H3K4me1 (GSM1831756) ChIP-seq data for wild-type hESC-derived neurons
and H3K27ac ChIP-seq data (GSM1119249) from the substantia nigra12,30.
These data were visualized using IGV28, and enhancer regions were identified
based on the H3K27ac ChIP-seq results (GSM1119249)28. The hg19 genomic
location coordinates were updated to hg38 using the UCSC LiftOver function
(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Hi-C-generated chromatin inter-
actions were obtained from 3DIV, the 3D-genome interaction viewer and
database31. HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php)32 was employed to annotate noncoding variants
located in regulatory motifs, such as enhancers, across multiple tissue types.
TCF7L2 ChIP-seq data and motif analysis results for these ChIP-seq data

were obtained from ENCODE (https://www.encodeproject.org). The TCF7L2
binding site target genes were predicted from the ChIP-seq data using the
T-Gene algorithm33. Next, pathway enrichment analysis was performed for
the predicted gene set using ClusterProfiler of the R package (version
3.16.1)34.

Identification of molecular signatures
Enriched molecular pathways were identified via gene set enrichment
analysis (GSEA)35,36 in subsets containing specific copy number alterations
based on the C2 REACTOME gene set collection of Molecular Signatures
Database (MSigDB, version 7.4)37. Distinctly expressed genes were selected
by comparing subclasses based on copy number alterations. Gene
Ontology enrichment analysis was performed using R package ClusterPro-
filer (version 3.16.1)34.

Human leukocyte antigen typing
Human leukocyte antigen (HLA) class I and II alleles were predicted using
the HLAscan algorithm38. HLAscan was developed to identify HLA types
using the following next-generation sequencing data: whole-genome,
exome, and targeted sequence data. In this study, each preprocessed BAM
file was used as input, and HLAscan was executed using default
parameters.

Statistical analyses
Continuous variables were analyzed using Spearman or Pearson correla-
tion analyses. The Wilcoxon rank-sum test was applied to evaluate
significant differences between groups for continuous variables. Fisher’s
exact test was utilized to evaluate significant differences between
categorical variables. All two-tailed statistical analyses were performed in
R version 4.0.3.

RESULTS
Study design and characteristics of participants
The final primary study population included 310 PD patients
(n= 210, batch 1; n= 100, batch 2) and 100 healthy controls. We
collected peripheral blood samples and conducted WGS, generat-
ing sequences with an average read depth of 54× (Fig. 1a). From
these WGS data, we profiled germline SNVs (SNVs/InDels), CNVs
and HLA molecular types. The mean depths of sequence coverage
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were similar between the PD (52.8×) and healthy (56.3×)
individuals (Fig. 1b). However, relatively lower read depths were
obtained in batch 1 than in batch 2 (Fig. 1c). This difference was
taken into consideration during the identification of significant
CNV differences between PD and healthy controls, as germline
CNV detection sensitivity is dependent on sequencing depth22. In
addition, the CNV results were validated using an independent
cohort comprising 100 PD patients and 100 healthy individuals
(Fig. 1d). Combined analysis of this secondary cohort and the
primary cohort was conducted to validate suggestive SNVs.
No significant sex differences were observed between the PD

patients (batch 1 and 2) and healthy controls (P= 0.91; Fig. 1a) or
between batch 1 and 2 PD patients (P= 0.54; Supplementary
Table 1). The mean age of onset of PD was 59.9 years (range,
29–82 years) and was similar between the patients in batches 1
and 2 (P= 0.57; Fig. 1e and Supplementary Table 1). The mean
interval between blood sampling for WGS and PD onset was 5.5
years (Fig. 1f). The healthy individuals showed no evidence of
disease following routine health examinations and brain magnetic
resonance imaging (MRI). The mean blood sampling age of these
individuals was 63.3 years ± 5.2 years, and their follow-up period
was longer than the average age of PD onset (P= 0.0017; Fig. 1g).

SNVs associated with the risk of PD
A GWAS was conducted using the primary cohort of healthy
controls recruited at AMC. On average, 3.272 × 106 SNVs were
detected per individual. The features of the detected germline
variants are summarized in Supplementary Fig. 1a–c. No
distinctive SNV batch effects were detected between batches 1
and 2 patients (Supplementary Fig. 1d). Using additive logistic
mixed models, we identified 23 suggestive loci associated with PD
(P < 1.0 × 10-5 based on a previous study;39 Fig. 2a and

Supplementary Fig. 2). SNVs in the NRG3 gene showed the
strongest significant association with PD (OR= 0.23; 95 %
CI= 0.13–0.41; P= 5.62 × 10-7). Additionally, CAMK1D and LRRK2
SNVs were associated with PD (Fig. 2a). Although the SNCA loci,
which are known to be associated with PD, were not among the
top 23 loci identified in this study, their association with PD was
significant (P < 0.001). When Fisher’s exact test was applied, the
peak patterns were similar, and significant regions, such as LRRK2,
CAMK1D, and NRG3, were also detected (Supplementary Fig. 3).
Further analysis of GTEx-derived data showed NRG3 and CAMK1D
to be exclusively expressed in brain tissues (Supplementary Fig.
4a). Moreover, expression of these genes correlated significantly
with SNCA expression in brain tissues, including the substantia
nigra (Supplementary Fig. 4b). Recent studies have associated PD
with CAMK1D and NRG340,41, implicating these two genes as PD-
associated gene candidates.
Conversely, the LRRK2 gene was the most significant locus (Fig.

2b), as based on combined primary and secondary cohort analysis
(410 PD patients and 200 healthy controls; Supplementary Fig. 5).
Moreover, following combined analysis of PD (n= 410) and KGP
healthy control (n= 916) datasets, known PD-associated genes,
such as SNCA and PRKN, were detected as significant (P < 1.0 × 10-
5; Supplementary Fig. 6). The small sample size and different
testing results of these three datasets necessitate careful
interpretation of the suggestive SNVs. Nevertheless, well-
documented PD risk genes, including SNCA7 and LRRK242, were
also detected by WGS in Korean patients.

Gene-level rare SNVs associated with PD
To determine whether rare genetic SNVs contribute to the existing
risk of PD, we performed a genome-wide, gene-based SKAT-O
analysis for rare missense and pathogenic mutations. Among
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80,784 rare missense mutations, PCDH8 exhibited the most
significant association with PD (P= 0.00015, Supplementary Fig.
7a). Among 26,577 rare pathogenic SNVs (Supplementary Fig. 1e),
the most significant association with PD was found for SNPH
(P= 0.00019, Supplementary Fig. 7b). Interestingly, these two
genes also displayed pronounced brain tissue-specific expression
patterns (Supplementary Fig. 8a). Furthermore, analysis of GTEx
data showed significant correlations between the expression
levels of these genes and SNCA (Supplementary Fig. 8b).

TCF7L2 risk SNVs located in enhancer regions
SNVs in SNCA and TCF7L2 enhancer regions were identified among
the top genes associated with PD, with enhancer signal
frequencies in multiple tissues (Fig. 3a and Supplementary Table

2). We identified enriched enhancer signals and three SNVs in
TCF7L2 using H3K27ac and H3K4m2 ChIP-seq data from hESC-
derived neurons12 and substantia nigra tissue30 (Fig. 3b, lower).
Analysis of brain samples from the 3D-genome interaction viewer
and database31 showed the strongest interaction with the
promoter region for the intronic loci of TCF7L2 (Fig. 3b, red
arrow). This cis-regulatory effect of TCF7L2 is very similar to the
expression regulation of SNCA, which leads to PD12. However, in
contrast to brain tissue-specific expression of SNCA, TCF7L2 was
found to be expressed in multiple organs (Supplementary Fig. 9a).
Moreover, we identified significant correlations between SNCA
and TCF7L2 mRNA expression in multiple brain regions, including
the substantia nigra (Supplementary Fig. 9b). This finding agrees
with those of previous reports showing that the transcription
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factor Tcf7l2 is upregulated in Thy-aSyn mice and is significantly
deregulated in PD models using neuroepithelioma cells chroni-
cally exposed to rotenone43.
We analyzed TCF7L2 ChIP-seq data for several cell lines from the

ENCODE database (https://www.encodeproject.org). One of the
best matched motifs was in TCF7L2 (Fig. 3c), which suggests the
high quality of the TCF7L2 ChIP-seq data. The predicted target
genes for the TCF7L2 binding site are significantly enriched in the
Wnt signaling pathways (Fig. 3d). In addition, we used DepMap
data to identify CTNNB1 as the top codependent gene of TCF7L2
(Fig. 3e), and the beta-catenin pathway was found to be
significantly associated with TCF7L2 activity (Fig. 3f–g). The Wnt/
beta-catenin pathway is involved in dopaminergic neuron survival
and PD pathogenesis44. Therefore, changes in the beta-catenin
pathway owing to the regulatory effect of TCF7L2 may contribute
to the development of PD.

Small genomic deletions and increased risk of PD
Germline copy number (CN) gains and losses across the whole
genome were profiled for each individual using five different
algorithms (Supplementary Fig. 10). In the primary cohort,
significantly different (Fisher’s exact test P < 1.0 × 10-5) global
CN gains were associated with a decreased risk of PD develop-
ment (OR < 1), whereas CN losses were associated with an
increased risk (OR > 1; Fig. 4a, upper). These findings were
confirmed by the significantly different CNs (P < 0.05) in the
secondary cohort; however, the sample size of the secondary
cohort was smaller than that of the primary cohort (Fig. 4a, lower).
We identified the most significantly different CN loci supported

by two or more programs in the primary PD cohorts. This was
achieved through intersection of different CNVs among indivi-
duals in the healthy and PD batches 1 and 2, with additional
filtering via the validation cohort using CNVnator (Fig. 4b). By this
approach, 30 loci with small genomic deletions were detected. All
these deleted loci, except one, were associated with an increased
risk of PD development (OR > 1) in both the primary and
secondary cohorts (Fig. 4c). Among the loci, the small genomic
deletions (Fig. 4d and Supplementary Fig. 11) clustered at
chr3:71753652–71,754,983 with the highest significance

(P < 1.0 × 10-20) in terms of their association with the risk of PD
development (OR > 1). Using the CNVnator program results, a
significant difference in the small genomic deletion was observed
with one copy loss in the GPR27 region (Fig. 4e). This finding was
validated using our independent secondary cohort (Fig. 4f). These
small genomic deletion regions are mainly located in GPR27 (Fig.
5a), a highly conserved region among 100 vertebrates (Fig. 5b).
High enhancer signals in hESC-derived neurons and substantia
nigra tissue were found for this region (Fig. 5c). Using the 3D
genome looping structure, the region was shown to be located in
close proximity to the topologically associating domain (TAD),
demonstrating multiple interactions with other genomic regions
in brain tissue (Fig. 5d and Supplementary Fig. 12). Disruptions in
the TAD have been implicated in the pathogenesis of rare
diseases45. Interestingly, clustered small genomic deletions at
chr20:58888852–58890100 are located in exon 1 of the GNAS
isoform (Fig. 5e), which suggests that a specific isoform of GNAS
contributes greatly to brain diseases.

Pathogenesis of GPR27 CN loss increasing the risk of PD
development
The overall frequency of the small deletion estimated using
CNVnator was 50% in PD patients and 11–30% in healthy
individuals (Fig. 6a). We further confirmed the frequencies of CN
deletions, including those in GPR27, using Database of Genomic
Variants (Supplementary Fig. 13). Although the deletion was not
associated with sex, it was associated with age, as individuals with
this small genomic deletion developed PD at an older age
(P= 0.029, Fig. 6b). Analysis of GTEx data showed brain tissue-
specific expression patterns of GPR27 (Fig. 6c), suggesting that
germline CNVs in this gene mainly affect the brain.
To determine the functional relationship between GPR27 CN

loss and PD, we analyzed gene expression and CN data obtained
from CCLE (cancer cell lines) as well as gene expression data
obtained from the GTEx database (normal tissues). Furthermore,
we investigated the effect of CNVs on expression levels of these
genes. Analysis of CCLE data showed that CN alterations in GPR27
had no effect on gene expression levels (Fig. 6d). However,
analysis of CCLE data showed a significant negative correlation
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between CNVs and gene expression in the central nervous system
(CNS) (Fig. 6e). According to GTEx data, GPR27 expression
correlated significantly with SNCA expression in various normal
brain tissues, including the substantia nigra (Fig. 6f), and this
correlation was also demonstrated using CCLE data (Fig. 6g).
Consequently, higher SNCA expression was noted in the cell line
group with GPR27 CN loss (Fig. 6h), suggesting that SNCAmediates
the signaling pathway through which GPR27 CN loss contributes
to PD pathogenesis. To obtain additional evidence supporting the
pathological role of GPR27 CN loss, we conducted pathway
analyses using data obtained from the CCLE database. GSEA using
CCLE data from CNS samples revealed a downregulated dopamine
neurotransmitter release cycle in the GPR27 CN loss group
compared to that in the GPR27 CN neutral group (Fig. 6i).
Collectively, these findings suggest that germline GPR27 CN loss
contributes to PD development.

HLA type and PD
High-resolution HLA molecular typing was performed using WGS
data for PD patients and healthy individuals. The overall frequency

of the HLA molecular types identified in this study concurred with
previously reported results from an analysis of 5,802 Koreans
(Supplementary Fig. 14a)46. Various HLA molecular types were
present in patients with PD; however, we found no statistically
significant differences in their frequencies between PD patients
and healthy individuals (FDR q > 0.05) (Supplementary Fig. 14b).

DISCUSSION
Many studies have explored the causal factors of PD and identified
multiple PD susceptibility loci, providing evidence the genetic
origin of this disease2–8. Many of these studies were GWAS based
and focused on SNVs. Although SNVs are most frequently
associated with disease pathogenesis, other genetic variations,
such as CNVs, are also contributing factors, yet studies on these
structural variations in PD are limited. WGS allows for high-
resolution detection of CNVs and small CNV regions. Using high-
read-depth WGS data, we for the first time identified that global
small genomic deletions are associated with an increased risk of
PD development. In contrast, global small genomic gains were
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found to be associated with a decreased risk of PD development.
We hypothesized that these different contributions to PD risk are
related to advantages and disadvantages in the evolutionary
development of the human brain. Among the deletions, we
detected clustered small genomic deletions located in the GPR27
region of PD patients. GPR27 is a G protein-coupled receptor
involved in neuronal plasticity and energy metabolism and is
expressed in the brain47. In particular, the small deleted regions
are enhancers located in the TAD, suggesting that their alterations
may affect protein production, unlike other SNVs in noncoding
regions.
We also confirmed GPR27 CN loss to be associated with

upregulated SNCA expression and a downregulated dopamine

neurotransmitter release cycle. Transcriptional or posttranscriptional
upregulation of SNCA has been suggested to cause PD48. Although
the causal relationship between GPR27 CN loss and upregulated
SNCA expression is unclear, we speculate that the GPR27 loss
precedes alteration of SNCA expression, considering their role in
signal transduction. Reduced dopamine neurotransmitter levels in
PD contribute to the manifestation of motor and nonmotor
symptoms of PD, though it had been suggested as the consequence
of alpha-synuclein deposition and dopaminergic neuronal loss.
Whether GPR27 CN loss contributes to symptom development in
addition to neuronal death needs further investigation.
Furthermore, several PD-associated candidate SNVs were

identified, specifically intronic SNVs located within TCF7L2
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enhancer regions. A cis-regulatory expression mode similar to the
SNCA regulatory mechanism in PD has been suggested for these
SNVs12. We observed a significant correlation between TCF7L2 and
SNCA in brain tissues. In addition, TCF7L2 has distinct functions in
the development and maintenance of thalamic and midbrain
neurons49. The TCF7L2 ChIP-seq and gene dependency data
suggest the potential role of the beta-catenin pathway in PD
pathogenesis. The Wnt/beta-catenin pathway regulates cell
proliferation and differentiation, apoptosis, and inflammation
and has been investigated in cancer50. Recent studies have
suggested the association between the Wnt pathway and
mitochondrial dynamics, the cell cycle, and inflammatory and
oxidative pathways, and the connection between the Wnt
pathway and the pathogenesis of PD has been highlighted51.
Our results suggest that TCF7L2 SNVs contribute to the develop-
ment of PD through Wnt/β-catenin signaling. In addition to
TCF7L2, SNVs in other genes, including NRG3, CAMK1D, PCDH8,
and SNPH, were observed to be associated with PD development.
These genes exhibited a specific expression pattern in the brain
and were associated with SNCA expression. These findings suggest
that SNCA plays a major role in PD development.
Our study has several limitations. First, the number of included

samples was relatively limited to detect PD risk-associated SNVs.
Nevertheless, candidate regions, specifically CNV regions, can be
attributed to PD pathogenesis, though additional validation
studies are needed. Second, the sequencing depths of batches 1
and 2, healthy controls, and the validation cohort differed.
Detection of CNVs may be influenced by the sequencing quality
(e.g., sequencing depth, coverage, sample quality, etc.); therefore,
we applied strict filtering criteria (i.e., comparison case and batch
control). In addition, batch effects might arise from various
external factors, such as drug treatments, sample collection and
storage time, and detection algorithms22,52,53. Several medications
reportedly cause CNV via genotoxicity52,53. However, to the best of
our knowledge, no such reports currently exist for PD medications.
The sample collection and storage time (sample storage period)
are important factors in the batch effect and affect the quality of
sequencing data, thus impacting CNV detection. Therefore, we
aimed to minimize this confounding effect by dividing the cohort
(sample batch) according to the sample collection time. Accord-
ingly, we mainly analyzed the primary cohort, for which there was
a higher sequencing depth and larger sample size than for the
secondary cohort. Nevertheless, the secondary cohort was used
for validation, and combined analysis of both cohorts produced
more robust results for SNVs in genes, such as LRRK2. Moreover,
use of the large KGP dataset as a healthy control group facilitated
the additional identification of known PD genes, such as SNCA and
PRKN (Parkin). For SNV analysis, a P value cutoff of 1.0 × 10-8 may
have provided more significant results than the relatively low
cutoff of 1.0 × 10-5 used in this study. Careful interpretation of the
suggestive SNVs identified in this study is recommended.
For the primary cohort, WGS targeted an average mappable

depth of 40×. Although the read depth was similar for the PD and
healthy control cohorts, there was a slight difference between
them due to the relatively low mean depth of the batch 1 PD
cohort (Fig. 1b–c). The samples of the batch 1 cohort were
collected earlier than those of the batch 2 cohorts, which may
have affected the sequencing depth due to long-term sample
storage and resulting DNA degradation.
Regarding the WGS data, CNV calling was affected by the

detection programs, though the CNV detection accuracy can be
improved by combining various callers22,54. Therefore, we
combined five types of callers to detect CNVs. The accuracy of
the detected CNVs in this study was considered to be high after
evaluating batch effects, such as sequencing depth and sample
collection time. PD risk-associated CNVs were more notable in the
primary cohort (Fig. 4a). This may be ascribed to the higher
sequencing depth and statistical power owing to the larger

sample size (n= 410) compared to the secondary cohort
(n= 200). Moreover, only one CNV caller was used for the
secondary cohort, which may also have contributed to these
differences; however, reproduced results using these different
methods may increase the robustness of the CNV results.
In conclusion, we analyzed the association between PD and

germline CNVs, specifically in regulatory domains, to gain a better
understanding of PD pathogenesis. This is the first WGS study of
PD conducted in a large patient cohort. We identified the role of
CNV patterns in PD pathogenesis and associations between small
genomic deletions and PD development. The findings of this
study suggest that high-resolution WGS analyses of structural
genomic variations are promising for identifying the currently
unknown causes of PD.
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