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Single-cell analysis of multiple myelomas refines the molecular
features of bortezomib treatment responsiveness
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Both the tumor and tumor microenvironment (TME) are crucial for pathogenesis and chemotherapy resistance in multiple myeloma
(MM). Bortezomib, commonly used for MM treatment, works on both MM and TME cells, but innate and acquired resistance easily
develop. By single-cell RNA sequencing (scRNA-seq), we investigated bone marrow aspirates of 18 treatment-naïve MM patients
who later received bortezomib-based treatments. Twelve plasma and TME cell types and their subsets were identified. Suboptimal
responders (SORs) to bortezomib exhibited higher copy number alteration burdens than optimal responders (ORs). Forty-four
differentially expressed genes for SORs based on scRNA-seq data were further analyzed in an independent cohort of 90 treatment-
naïve MMs, where 24 genes were validated. A combined model of three clinical variables (older age, low absolute lymphocyte
count, and no autologous stem cell transplantation) and 24 genes was associated with bortezomib responsiveness and poor
prognosis. In T cells, cytotoxic memory, proliferating, and dysfunctional subsets were significantly enriched in SORs. Moreover, we
identified three monocyte subsets associated with bortezomib responsiveness and an MM-specific NK cell trajectory that ended
with an MM-specific subset. scRNA-seq predicted the interaction of the GAS6-MERTK, ALCAM-CD6, and BAG6-NCR gene networks. Of
note, tumor cells from ORs and SORs were the most prominent sources of ALCAM on effector T cells and BAG6 on NK cells,
respectively. Our results indicate that the complicated compositional and molecular changes of both tumor and immune cells in the
bone marrow (BM) milieu are important in the development and acquisition of resistance to bortezomib-based treatment of MM.
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INTRODUCTION
Multiple myeloma (MM) is a hematologic malignancy character-
ized by clonal plasma cell proliferation1. Advances in novel
strategies have provided breakthroughs in treatments for MM
patients over the last decades2,3. These advances involve not only
the use of various classes, including proteasome inhibitors,
immune modulators, monoclonal antibodies, or B-cell-mutated
antigens but also the introduction of various generations of each
class2–4. Nevertheless, MM remains incurable because innate and
acquired resistance may inevitably develop during treatment.
Therefore, there is a continuing need to develop personalized
treatments with optimal therapeutic options for MM.
Due to the limitation of direct comparative trials between novel

agent therapies for the selection of optimal therapy, a biomarker-
driven personalized selection of therapies for MM has been
regarded as a realistic alternative5. Bortezomib is an anticancer
medication used to treat MM and mantle cell lymphoma. Blocking
targeted proteolysis, normally performed by the 26S proteasome,
prevents the degradation of proapoptotic factors, thereby
triggering programmed cell death in tumor cells6. This molecule

is widely used as a key drug for induction, consolidation,
maintenance, or salvage therapy for MM in combination with
other agents7. The overall response rate of newly diagnosed MM
to bortezomib and dexamethasone is ~67%, but that of relapsed
refractory MM is reduced to 40–60%8. Thus, the identification of
molecular markers predicting the response to bortezomib-based
therapy is valuable. However, to date, there is no definite way to
determine patient response to bortezomib-based treatment9.
Mounting evidence has demonstrated that the tumor microenvir-

onment (TME) plays a crucial role in cancer pathogenesis10,11 and
patient response to treatment12,13. For example, distinct TMEs
existing within a cancer tissue may dictate the heterogeneous fates
of tumor lesions following cancer therapies10. TME signatures
effectively predict responses to chemotherapy in gastric cancer
patients13. Malignant plasma cell dependence on the bone marrow
(BM) TME is the main feature of MM14. Interestingly, bortezomib
induces an anti-MM immune response, and an immune cell death-
related signature predicts clinical outcomes in MM patients after
bortezomib treatment15. Thus, a comprehensive understanding of
both MM and the TME will enable the discovery of predictive
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biomarkers and improve personalized treatments. The BM TME of
MM patients comprises many cell types; thus, individual cell
identification is important for the analysis. Conventional “bulk”
RNA-sequencing methods process a mixture of all cells, averaging
out underlying differences in cell-type-specific transcriptomes16. In
contrast, single-cell RNA-sequencing (scRNA-seq) profiles the gene
expression of individual cells and decodes the intercellular signaling
networks, allowing the identification of individual cellular states in
many tumors16. scRNA-seq also provides more precise insights into
the TME, such as a mechanism representing intratumor and
interpatient heterogeneities, as well as cell–cell interactions through
ligand–receptor signaling17,18. To date, several studies using scRNA-
seq have analyzed the BM tissues of MM patients to identify the
expression of individual cells in either tumor or TME cells19–23.
However, scRNA-seq signatures for bortezomib treatment respon-
siveness have not been identified in the TME of MMs, and the
identification of the cell–cell interactions between the tumor and
TME is still unclear in MMs.
In this study, we performed scRNA-seq analyses of BM tissues

from MM patients receiving bortezomib-based treatments to
identify the following: (i) single-cell-level differences in BM cells
between optimal responders (ORs) and suboptimal responders
(SORs) to bortezomib and (ii) the genes and cell–cell communica-
tion networks associated with treatment responsiveness.

MATERIALS AND METHODS
Tumor specimens
For scRNA-seq, we used baseline BM aspirates from 18 newly diagnosed
MM patients who received bortezomib–melphalan–prednisolone treat-
ment. As a validation cohort, we used 90 treatment-naïve BM aspirates
from 50 bortezomib–melphalan–prednisolone-treated and 40
bortezomib–thalidomide–dexamethasone-treated MM patients. The Clin-
ical Outcomes in Multiple Myeloma to Personal Assessment of Genetic
Profile (CoMMpass) dataset was also used as an independent validation
cohort (https://research.themmrf.org/). Detailed information for patients
and sample preparation is available in the Supplementary Methods. The
study design and overall strategy are illustrated in Supplementary Fig. 1.
This study was approved by the Institutional Review Board of the Catholic
University of Korea, College of Medicine (approval number: KC12SISE0594).

Single-cell RNA sequencing
The single-cell library was prepared using a commercially available droplet
method, the Chromium System from 10× Genomics, Inc. (Pleasanton, CA,
USA), and a Single Cell 3′ v3 Reagent Kit according to the manufacturer’s
protocol. Sequencing reads were mapped to the GRCh38 reference
genome, and bioinformatics processing of the scRNA-seq data was
performed using R packages. The detailed methods, including scRNA-
seq, bioinformatic analyses, copy number alteration (CNA) detection, and
cell–cell communication analysis, are available in the Supplementary
Methods.

TaqMan low-density gene expression array experiments
For validation of the treatment response-related genes using the validation
cohort, 44 differentially expressed genes (DEGs) (upregulated: BCAP31,
BCL2, BST2, CCL3, CCND1, CD320, CD53, COX5A, CXCR4, DUSP2, EEF1B2,
EGR1, EIF2AK4, EIF3M, HIST1H1C, HSP90AB1, IL6ST, JUNB, LAMP5, MS4A1,
MYC, NFKBIA, NOP53, NPM1, PDIA2, PIM1, PSMA7, RACK1, RGS1, SEC11A,
SQSTM1, SRP9, SSR3, TNFRSF17, TSC22D3, and UQCRH; downregulated: ATF5,
IGF1, ITGB7, NEB, NSD2, PPP1R10, TIMP2, and RHOB) between the optimal
and suboptimal responder groups were examined using custom-made
TaqMan low-density arrays (TLDA). The expression level of each target
gene was calculated using 2−ΔΔCt, where ΔCt is the difference in threshold
cycles for the sample in question normalized against the endogenous
control gene (18S ribosomal RNA). The detailed methods for the TLDA
validation are available in the Supplementary Methods.

Statistical analysis
Fisher’s exact test was used for categorical variables. Student’s t-test was
used for continuous variables. The relationships between the proportions

of the cell types and treatment responses were evaluated using
Spearman’s rank correlation. Linear discriminant analysis was applied to
construct a prediction model for bortezomib-based treatment response.
The receiver operating characteristic (ROC) curve and area under the curve
(AUC) was used to assess the predictive values of each DEG and the
prediction model for bortezomib-based treatment. For survival analysis,
time-to-event variables were defined as the duration from the initiation
date of bortezomib-based treatment to the date of disease progression.
Patient survival was calculated by the Kaplan–Meier method, and
differences in survival rates between groups were tested with the log-
rank test. Statistical analyses were performed using SPSS (version 25,
Chicago, IL). GraphPad Prism software (version 8, La Jolla, CA) was used to
create graphs. All P values < 0.05 were considered significant in all
statistical analyses.

RESULTS
Single-cell sequencing identified 12 types of plasma cells and
microenvironment cells in MMs
We performed scRNA-seq of BM-mononuclear cells (MNCs)
isolated from 18 treatment-naïve MM patients (Supplementary
Tables 1 and 2) who later received bortezomib-based treatments
and were divided into two groups according to treatment
responsiveness: optimal and suboptimal (Supplementary Meth-
ods). Publicly available scRNA-seq data of BM-MNCs from 20
healthy donors24 were used as normal control. After quality
control, we obtained 164,521 BM-MNCs from MM patients (ORs
[n= 10]: 58,282 cells; SORs [n= 8]: 50,373 cells) and healthy
donors (55,866 cells). Unsupervised clustering identified 12 cell
populations: plasma cells, T cells, NK cells, CD14+ monocytes,
CD16+ monocytes, hematopoietic stem and progenitor cells, pre-B
cells, B cells, macrophages (Mφs), myeloid dendritic cells,
plasmacytoid dendritic cells, and megakaryocytes (Fig. 1a;
Supplementary Fig. 2 and Supplementary Table 3). The proportion
of plasma cells was significantly higher in the MM group than in
the control group (43.9% versus 1.2% of total BM-MNCs,
P= 5.8 × 10−9, Fig. 1b and c). Notably, a significant relationship
was found between plasma cell proportions and treatment
responses (Spearman’s rho= 0.781, P= 1.3 × 10−4, Fig. 1d). Mφ,
NK cell, megakaryocyte, and CD14+ monocyte populations were
significantly enriched in the MM group compared to the control
group, whereas plasmacytoid dendritic cells, pre-B cell, B cell,
hematopoietic stem and progenitor cell, T cell, and myeloid
dendritic cell populations were diminished (Fig. 1b and c)21.

Heterogeneity of multiple myeloma cells
To distinguish MM cells from normal plasma cells, we examined
CNAs using scRNA-seq data. ~10.2% of the plasma cells were
considered normal cells without CNAs. Consistent with previous
reports, the inferred CNA profiles of the 18 MM samples showed
interpatient and intratumor heterogeneities (Fig. 2a)19,22. In
addition, chromosomal abnormalities detected by karyotyping or
fluorescence in situ hybridization were largely compatible with
CNAs inferred by scRNA-seq (71%, 52 of 73 abnormality events).
The top recurrent CNA was the copy loss on 16p13.3 (17/18),
followed by the copy gains on 3q21.3-q27.1 (16/18) and 6q12-
q23.3 (15/18; Supplementary Table 4). Of note, SORs harbored
higher CNA numbers (median of 37 vs. 22 CNAs, P= 8.4 × 10−4)
and longer CNA lengths (average of 1049.1 vs. 683.0 Mb,
P= 0.013) than ORs.
scRNA-seq revealed 32 plasma cell subsets (PC1–PC32;

Fig. 2b–e; Supplementary Table 5). The plasma cells from healthy
donors were grouped into one subset (PC18; Fig. 2b and c). The
malignant cell subsets, however, were clustered primarily by
patients, and there were multiple subsets (2–5 subsets) in each
MM (Fig. 2d–f). The PC13 and PC15 subsets contained T/NK gene
signatures that were shared by multiple MM patients, suggesting
that they might represent MM-related T/NK-like plasma cell
subsets (Fig. 2e; Supplementary Table 5). The representative cases
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of intratumor heterogeneity are presented in Supplementary Fig.
3. MS4A1 (CD20), a B-cell marker normally lost in terminally
differentiated plasmablasts and plasma cells25, was highly
expressed in MM203 but not in the other MMs (Fig. 2g;
Supplementary Fig. 3), suggesting plasma cell dedifferentiation

in this case. Dedifferentiation was morphologically confirmed in
the BM aspirate (Supplementary Fig. 4). Well-known driver genes
were commonly overexpressed (e.g., CCND1, RACK1, TXNIP, and
LAMP5) or underexpressed (e.g., CD27) in malignant cells (Fig. 2g;
Supplementary Table 6).
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Gene sets associated with bortezomib treatment responses in
multiple myeloma
We performed a pseudobulk DEG analysis between the OR
(n= 10) and SOR (n= 8) groups, identifying 1443 genes as SOR-
related DEGs (1346 upregulated and 97 downregulated; Supple-
mentary Fig. 5a and Supplementary Table 7). In addition to the
MM driver genes (e.g., CCND1, LAMP5, and TNFRSF17)19 and
quadruple therapy resistance genes (e.g., NPM1 and MYC)22, we
discovered upregulated DEGs in SORs (e.g., MS4A1, RACK1, UQCRH,
and SQSTM1). Downregulated DEGs included previously known
NSD2 and ITGB7 and newly identified DEGs (e.g., PPP1R10 and
NEB). The signatures of “ribosome,” “protein folding,” and
“proteasome” were enriched in SORs, whereas those of “B-cell-
mediated immunity” and “MHC protein complex” were enriched in
ORs (Supplementary Fig. 5b).
Based on the significance levels and the previously reported

genes strongly related to MM pathogenesis, we selected 44 genes
(Supplementary Methods) and analyzed their expression in an
independent replication set of 90 treatment-naïve MMs (ORs,
n= 54; SORs, n= 36) using the TLDA assay (Supplementary Table
2). CD138-positive plasma cells isolated by magnetic-activated cell
sorting were used for TLDA assays. Twenty-four genes were
consistently upregulated in the SORs (Fig. 3a). Of these, 20 were
positively correlated with the treatment responses from a
complete response to progressive disease (Supplementary Table
8), but none of them were validated in the CoMMpass dataset. We
also found another set of 12 genes significantly associated with
poor progression-free survival (PFS) (Supplementary Table 8);
among these, SQSTM1, CD320, BCAP31, CCL3, and NPM1 were
significantly associated with poor PFS and overall survival in the
CoMMpass dataset (Fig. 3b; Supplementary Table 9). Among the
clinical variables, three (older age, low absolute lymphocyte count,
and no autologous stem cell transplantation) were significantly
associated with SORs (Supplementary Table 10). Next, we
developed a combined prediction model for bortezomib-based
treatment response using the three clinical variables and 24
validated DEGs (Supplementary Methods). This prediction model
showed a stronger stratification power (AUC= 0.894) than the
clinical variables (AUC= 0.772) or DEGs alone (AUC= 0.794;
Fig. 4a). The sensitivity, specificity, and accuracy of the combined
prediction model were 83.3%, 85.2%, and 84.1%, respectively,
based on the discriminant score threshold set at 0.052 (Supple-
mentary Fig. 5c). PFS rates also worsened significantly with
increasing discriminant scores, demonstrating superiority to
conventional clinical risk stratifications such as the International
Staging System (ISS) or cytogenetics (Fig. 4b).

Molecular features of T-cell subsets in MM bone marrow
T cells, the largest TME population (Fig. 1b), comprised 12 subsets of
two naïve, two helpers, one regulatory (Treg), one interferon (IFN)
signature, one proliferating, and five cytotoxic T cells (Fig. 5a;
Supplementary Fig. 6 and Supplementary Table 11). The cytotoxic
subsets were CD4−CD8−GZMK+ mucosal-associated invariant T
(cytotoxic-1), CD8B+GZMK+ cytotoxic memory (cytotoxic-2),
CD4−CD8−GZMB+GZMH+ γδ (cytotoxic-3), and CD4+/
CD8B+GZMB+GZMH+ terminal effector (cytotoxic-4, 5;

Supplementary Fig. 6a and d). Consistent with previous findings21,26,
the trajectory showed a sequential differentiation process of naïve
T cells→ helper T cells→GZMK+ cytotoxic memory T cells→GZMB/
GZMH+ terminal effector T cells (Fig. 5b). IFN, cytotoxic memory, γδ,
and terminal effector T subsets were significantly enriched in the MM
group compared to the control group (Fig. 5c). Of note, cytotoxic
memory and proliferating T cells were significantly enriched in the
SORs compared to the ORs (P= 0.010 and P= 0.034, respectively;
Fig. 5c). The dysfunctional module score, a distinct gene module for
T-cell dysfunction that can be uncoupled from T-cell activation
(PDCD1, LAG3, HAVCR2, TIGIT, CD244, TOX, and CTLA4)26, was higher in
cytotoxic (memory, γδ, and terminal effector) and Treg cells than in
other subsets (Supplementary Fig. 6c). Dysfunctional T cells (dysfunc-
tional module score > 0.5) were enriched in the MM group compared
to the control group (P= 2.0 × 10−6) as well as in the SORs compared
to the ORs (P= 0.008; Fig. 5d).

Molecular features of NK, B, and myeloid cell subsets in MM
bone marrow
We identified five NK subsets (Fig. 6a): CD56bright (NK-4 enriched
with GZMK and XCL2), adaptive (NK-5 enriched with CD3D and
CD3G), and three transitional states ranging from “active” to
“terminally matured” (NK-1 enriched with ZFP36 and FOS, NK-2
enriched with JUND and ZEB2, and NK-3 enriched with S100A4 and
CST7) (Supplementary Table 11)27. These subsets, except NK-4,
were higher in the MM group than in the control group (P < 0.05);
however, their numbers were not significantly different between
the ORs and SORs (Fig. 6d). Trajectory analysis revealed a well-
established NK cell developmental process (NK4→NK1→NK3)27,
followed by further differentiation into NK-2. This NK2-destined
trajectory was evident in MMs but was not detected in healthy
donors (Supplementary Fig. 7).
We identified 10 monocyte subsets comprising three groups:

CD14+ (mono-1, 2, 3, 5, and IFN-mono), FCGR3A+ (CD16)
nonclassical (mono-4), and the others (mono-6, 7, 8, and 9)
(Fig. 6b; Supplementary Table 11). Trajectory analysis revealed a
sequential differentiation process: classical monocyte (mono-
5)→ transitional monocyte (mono-1)→ activated monocyte
(mono-2; Supplementary Fig. 8). The mono-3 subset resembled
myeloid-derived suppressor cells (Supplementary Fig. 8f). Mono-2,
mono-3, mono-7, and IFN-mono were significantly enriched in the
MM group (Fig. 6e). Mono-2 (P= 0.034) and mono-6 (P= 0.017)
subsets were decreased, whereas mono-7 (P= 0.017) was
increased in the SORs compared with the ORs (Fig. 6e).
We identified seven B-cell subsets (BC1–BC7); of these, BC-3 was

enriched in the MM group compared to the control group (Fig. 6c
and f). This subset highly expressed prototypical B-cell markers as
well as MM-related genes (e.g., RACK1, NOP53, and ATP5MG;
Supplementary Fig. 9). The signatures of “oxidative phosphoryla-
tion” and “response to oxidative stress” were enriched in BC-3
(Supplementary Fig. 9).

Prediction of cell–cell communication between multiple
myeloma and TME cells
To explore the potential interactions between tumor cells and
the TME in MM, we examined ligand‒receptor pairs among the

Fig. 1 Tumor and immune landscapes of BMs in healthy donors and MM patients. a The scRNA-seq data of BM aspirates from 20 healthy
donors and 18 MM patients were integrated. Left: two-dimensional uniform manifold approximation and projection (UMAP) visualization of
164,521 BM MNCs identified 12-cell types after unsupervised clustering. Each point represents a single cell and is colored based on cell types.
mDCs myeloid dendritic cells, Mφ macrophages, HSPCs hematopoietic stem, and progenitor cells, pDC plasmacytoid dendritic cells. Right:
UMAP plot colored by clinical groups. b Cell type composition distribution for each sample. Samples are ordered according to the groups and
treatment responses. TME tumor microenvironment, CR complete response, VGPR very good partial response, PR partial response, SD stable
disease, PD progressive disease. c Immune composition changes between the normal and MM samples. For each cell type, the log fold change
in the mean cell fraction between the MM and normal samples, with log-transformed P values on the y-axis, is shown. d The proportion of
plasma cells correlated with treatment responses from CR to PD. A correlation was assessed by the Spearman coefficient with 18 MM patients.
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cell subsets28. The number of inferred interactions was higher
in the MM group than in the control group (Supplementary Fig.
10a and Supplementary Table 12). Based on topological
similarity, the interactions were divided into four signaling
groups (Supplementary Fig. 10b). Of the 44 putative

interactions detected, 32 were enriched in the MM group
(Fig. 7a, in pink letters), whereas 4 were enriched in the control
group (Fig. 7a, in green letters). Of note, 19 interactions were
exclusively identified in the MM group (Fig. 7a, single pink
bars).

Fig. 2 Plasma cell subsets of MM in scRNA-seq. a Genome-wide heatmap displaying CNA profiles of plasma cells from 18 MM patients (left:
ORs; right: SORs). CNAs were inferred from the scRNA-seq data using the inferCNV R package. Red and blue indicate copy number gains and
losses, respectively. The X-axis shows chromosomes in numerical order. Plasma cells from different MM patients are indicated as different color
bars on the bottom of the heatmap. b–d UMAP plot colored based on plasma cell subsets (b), clinical groups (c), and patients (d). e Bar plot
representing the number of cells per plasma cell subset. Each bar is color-coded according to clinical groups as shown in (c). The names above
the bars correspond to the individual cases, with the majority of cells in each cluster. f Bar plot representing plasma cell composition in
individual ORs and SORs. g Violin plots present the expression of common MM driver genes in 20 healthy donors (alphabets “A” to “W”) and
18 MM patients (numbers “MM042” to “MM233”). Each violin plot is color-coded according to the clinical groups as shown in (c). The gray
dotted line represents the average expression in healthy donors.
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Fig. 3 Validation of DEGs associated with bortezomib-based treatment responses. a Dot plots represent the expression levels of 24 genes
measured by TLDA. The relative gene expression level was normalized against the endogenous control gene (18S rRNA). Statistical
significance was calculated between the OR (n= 54) and SOR (n= 36) groups. The X-axis represents the relative gene expression level (log2
fold changes) based on the mean of the ORs as the calibrator. The detailed results of the 44 selected genes are presented in Supplementary
Table 8. *P value < 0.05; **P value < 0.01. b Kaplan–Meier curves for PFS according to the gene expression level. The five genes significantly
associated with poor PFS and overall survival in the CoMMpass dataset (SQSTM1, CD320, BCAP31, CCL3, and NPM1) are illustrated. Patients with
higher expression (red, >quartile 3) of each gene showed significantly poorer PFS than those with intermediate (green, quartiles 2 and 3) or
lower expression (blue, <quartile 1). The detailed data of the 44 selected genes are listed in Supplementary Tables 8 and 9.
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Communication pattern analysis identified five outgoing and
four incoming paths (Fig. 7b). The outgoing pattern shows how
cells as signal sources modulate certain signaling pathways to
drive communication, while the incoming pattern shows how
cells as signal receivers modulate certain signaling pathways to
respond to incoming signals28. The largest pattern of outgoing
MM signaling was pattern #2, which included NCAM, CADM,
BAG, MPZ, ALCAM, and GAS (Fig. 7b). Of these, CADM, MPZ, and
NCAM simultaneously appeared in the incoming signaling
(incoming pattern #3), suggesting autocrine or homophilic
interactions in MM (Fig. 7b; Supplementary Fig. 10c). GAS6 from
MM was predicted to interact with Mφ along the GAS6-MERTK
axis (Fig. 7c). Of note, the MMs from ORs (MM-OR) were the
most prominent sources of CD6 ligand (ALCAM) acting on
effector T cells, whereas those from the SORs (MM-SOR) were
the most prominent sources of the NCR ligand (BAG6) acting on
activated NK cells (Fig. 7d and e). Another interesting pathway
was the CCL interaction, where the SOR’s cytotoxic T cells, NK
cells, and MMs were the predominant sources of CCR1 ligand
potentially acting on monocyte populations (activated mono-
cyte and MDSC-like; Supplementary Fig. 10d). Of note, the CCL5-
CCR1 pair was highly enriched between T/NK cells and
monocytes, whereas the CCL3-CCR1 pair was highly enriched
between MMs and monocytes, suggesting context-dependent
interactions of CCR1 in MM (Supplementary Fig. 10d).

DISCUSSION
The main aim of our study was twofold: the first was to find
scRNA-seq-based altered expression in MM tissues for the SORs to
bortezomib treatments, and the second was to find the cellular
subsets and cell–cell communication networks associated with
bortezomib responsiveness. Our data suggest three major
conclusions: SORs and poor survival in MM can be predicted
based on the gene sets of MM cells; second, in the TME, cytotoxic
memory T, dysfunctional T, proliferating T, and mono-7 subsets
are significantly enriched in the SORs compared to the ORs; and
third, MMs potentially communicate with the immune cells
through several ligand‒receptor pairs, some of which are
associated with either the ORs or SORs. Altogether, these scRNA-
seq-based findings regarding bortezomib responsiveness provide
a rich resource for exploring the molecular targets and underlying
resistance mechanisms in MM.
Notably, the SORs harbored higher CNA numbers and longer

CNA lengths than the ORs, suggesting that chromosomal
instability causes bortezomib unresponsiveness. One case
(MM203) showed a plasma cell dedifferentiation pattern in
scRNA-seq, which was confirmed in the BM aspirate. Immunoglo-
bulin synthesis and secretion activity are gradually enhanced
during plasma cell maturation, thus suggesting that the differ-
entiation degree of MMs may impact bortezomib sensitivity29.
Plasma cell dedifferentiation is a therapeutic escape mechanism

Fig. 4 Prediction model for bortezomib-based treatment response. a Receiver operating characteristic curves for the combined prediction
model, clinical variable alone model, and DEG alone model. AUC: area under the curve. b Kaplan‒Meier curves for progression-free survival
according to the discriminant score, International Stating System, and cytogenetics. Patients with higher discriminant scores (red, >quartile 3)
of the combined prediction model showed significantly poorer progression-free survival than those with intermediate (green, quartiles 2 and
3) or lower discriminant scores (blue, <quartile 1). Regarding cytogenetics, t(4;14), del(17p), and t(14;16) were grouped as high risk.
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that allows tumor cells to develop resistance to proteasome
inhibitors30, but the resistance can be reversed by inducing the
expression of plasma cell maturation markers29,31. Consistent with
these findings, MM203 is an SOR with MM that is refractory to
bortezomib therapy.
The scRNA-seq DEGs combined with TLDA validation identified

24 genes significantly upregulated in the SORs, including CCND1,
JUNB, BCL2, CD53, CD320, and RACK1. CCND1 is overexpressed in
t(11;14) MM by rearrangement and in the majority of hyperdiploid
MM by other mechanisms; however, prognostic or treatment
predictive values of t(11;14) remain uncertain32. Our data are also
consistent with previous reports of the poor survival of MM
patients with CCND1 amplification33. CD53 is important in
plasmablastic differentiation in MM, and its abnormal expression
is reported in B-cell chronic lymphocytic leukemia34. JUNB
expression is essential for dexamethasone and bortezomib
resistance in a mouse MM model35. CCL3 expression is involved
in osteolytic lesion formation in MM36. RACK1, which plays
important roles in cell migration, invasion, and chemotherapy
resistance, is associated with bortezomib resistance in MM cells37.
BCL2 is an antiapoptotic protein that is associated with clinically
aggressive behavior and suboptimal response to therapies in MM
cells and other B-cell malignancies38, which is in agreement with
our data. However, data on the association between BCL2
expression and bortezomib responses are conflicting and suggest

that BCL2 is not a monolithic factor for determining drug
responses. Many other genes, such as TSC22D3, EIF2AK4, PSMA7,
and SRP9, are not known for their association with MM or
bortezomib resistance. The 24 overexpressed genes associated
with poor bortezomib responses perform different biological
functions, indicating that there may be many alterations in
expression underlying bortezomib unresponsiveness and suggest-
ing that a gene set rather than one or two gene applications
would be required to precisely predict the responses.
Several gene signatures have predicted the overall prognosis

and response to individual therapies in MM9,39, including the
seven-gene signature for bortezomib responsiveness in the
PADIMAC study40. Moreover, clinical features, such as the ISS,
hyperdiploidy, high-risk cytogenetics, and peripheral blood cell
counts, are being used widely to predict treatment responsive-
ness. However, the predictive power of the gene signatures or the
clinical features is not sufficient for clinical application due to
inconsistency39. Likewise, no single gene (AUC= 0.530–0.699) or
clinical factor (AUC= 0.514–0.699) was adequate for clinical
application in our cohort. Rather, the combined prediction model
with three clinical variables (older age, low absolute lymphocyte
count, and no autologous stem cell transplantation) and the 24
genes showed highly improved prediction for both bortezomib
responsiveness and PFS, suggesting its clinical usefulness.
Provided that the CoMMpass dataset differs in treatment regimen

Fig. 5 T-cell subsets of MM in scRNA-seq. a UMAP plot colored by T-cell subsets (left) and clinical groups (right). b Pseudotime trajectory as
per the pseudotime algorithm. The trajectory analysis shows a sequential differentiation process of naïve T (naïve-1 and 2)→ helper T (helper-
1 and 2)→ GZMK+ cytotoxic memory T (cytotoxic-2)→ GZMB/GZMH+ terminal effector T (cytotoxic-5). c Dot plots represent the proportion of
each T-cell subset between healthy donors (n= 20), MM ORs (n= 10), and MM SORs (n= 8). The cytotoxic-2 subset (CD8B+GZMK+ memory T
population) was significantly enriched in the SORs compared with the ORs (P= 0.01). The mean and 95% confidence interval are represented
with black lines. *P value < 0.05; **P value < 0.01; ***P value < 0.001; HD healthy donors; ORs optimal responders; SORs suboptimal responders.
d Dot plots represent the proportion of dysfunctional T cells (dysfunctional module score > 0.5) between healthy donors, MM optimal
responders, and MM suboptimal responders.
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and ethnicity, our prediction model should be further investigated
in a larger cohort with the same clinical setting.
Bortezomib and other immunomodulatory drugs have anti-MM

effects on tumor and TME cells15, indicating the importance of
TME in MM treatment. MM progression precludes the formation of
classical memory T cells, resulting in a dysfunctional T state and
immunosuppressive BM26,41. In MM, however, the frequency of
CD8+ terminally exhausted T cells is very low42, warranting further
dissection of T-cell status in MM. In our data, GZMK+ cytotoxic
memory, proliferating, and dysfunctional T subsets were signifi-
cantly enriched in the SORs. In agreement with our results, the
pan-cancer T-cell atlas showed that MM had strong GZMK+

exhausted CD8+ T-cells in the major exhaustion paths42.
Conversely, an earlier study reported low GZMK+ cytotoxic
memory T cells with no difference in T-cell exhaustion genes in
MM21. This finding might be explained by recent data showing

that there are two fates of CD8+ memory T cells, one of which
expresses GZMK along with PDCD1 and TIGIT (termed TPEX)

41.
These studies did not analyze the dysfunctional T state with
treatment responses. Taken together, our data suggest that T-cell
activation followed by a gradual waning to an exhausted
phenotype is involved in both MM development and responsive-
ness to the treatments. We found four NK cell subsets; these
subsets, particularly the MM-specific NK-2 subset that is highly
enriched in MM, suggested that there might be transcriptionally
unique states in MM. We identified one MM-enriched B-cell subset
(BC-3) that highly expressed MM-related genes and OXPHOS
pathway genes43, suggesting the existence of unique B cells in the
MM TME sharing both B-cell and plasma cell transcription features.
Of the 10 monocyte subsets, 4 (mono-2, mono-3, mono-7, and
IFN-mono) were significantly enriched in MMs. With regard to
treatment responses, low mono-2 and mono-6 and high mono-7

Fig. 6 NK, monocyte/DC/Mφ, and B-cell subsets of MM in scRNA-seq. a UMAP plot colored by NK cell subsets. b UMAP plot colored by
monocyte/DC/Mφ cell subsets. c UMAP plot colored by B-cell subsets. d Dot plots represent the proportion of each NK cell subset between the
healthy donors (n= 20), MM ORs (n= 10), and MM SORs (n= 8). e Dot plots represent the proportion of each monocyte/DC/Mφ cell subset
between the healthy donors (n= 20), MM ORs (n= 10), and MM SORs (n= 8). f Dot plots represent the proportion of each B-cell subset
between the healthy donors (n= 20), MM ORs (n= 10), and MM SORs (n= 8). *P value < 0.05; **P value < 0.01; ***P value < 0.001; HD healthy
donors, OR optimal responders, SOR suboptimal responders.
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were evident in the SORs. Collectively, the complicated composi-
tional changes of immune cells in the BM milieu may be
associated with the development of MM and the acquisition of
resistance to bortezomib-based treatment.
Given that the treatment regimen in this study was based on

bortezomib, which does not rely on immune cells as the most
important mode of action, the changes mentioned above might be
caused by bortezomib-based treatment effects on other cells that
interact with TME cells. Our unsorted scRNA-seq strategy enabled
cell–cell communication analysis between the tumor and TME in the
BM of MM patients, revealing that the tumor cell populations might
be the major source of cancer-related signals involving NCAM, MPZ,
GAS6, ALCAM, BAG, and CCL. GAS6, which encodes the GAS ligand, is
overexpressed in many cancers and promotes cancer cell

proliferation and survival44. Previously, GAS6 was reported to be
produced by BM stromal cells in a mouse model45, but our study
identified MM cells as the source. The inhibition of GAS6 or its
receptor, MERTK, reduced tumor burden in an MM model45,
suggesting clinical availability. ALCAM–CD6 is known for T-cell
effector functions through T-cell activation and proliferation46, which
is consistent with our findings of enriched ALCAM–CD6 interactions
in ORs. BAG6 can be either activating or inhibitory toward NK cells
depending on the secreted or exosomal version47. Specifically, the
BAG6–NCR3 (NKp30) axis is critical for inhibiting the NKp30 receptor-
dependent cytotoxicity of NK cells and promotes immune evasion48,
which supports our observation that BAG6–NCR3 is enriched in the
SORs. This result suggests that MM cells can activate or suppress
antitumor immunity by communicating with immune cells, which
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may be linked to bortezomib treatment responsiveness. We also
identified CCR1 interactions in SORs. The CCL5–CCR1 interaction
contributes to the recruitment of monocytes into inflamed tissue49,
whereas the CCL3–CCR1 interaction causes increased osteolysis and
promotes MM dissemination50, supporting our prediction of the role
of CCR1 in MM. Nevertheless, a limitation of our study is that scRNA-
seq primarily measured transcript levels without analyzing actual
cellular phenotypes. Additionally, the standard treatment for MM has
been changed to daratumumab-based treatments. However, the
new options still include bortezomib in combinations such as
daratumumab–bortezomib–melphalan–prednisolone, where our
data could be useful for molecular signatures of bortezomib-based
treatments.
In conclusion, we present a comprehensive single-cell land-

scape of BM-MNCs in treatment-naïve MM patients receiving
bortezomib-based treatments. We unveil the compositional
dynamics and interactions between the tumor and TME and the
potential biomarkers in predicting bortezomib-based treatment
response. Our data may contribute to the current understanding
of bortezomib resistance mechanisms in MM. Further functional
investigations and discovery of the communication between the
tumor and TME will help in establishing novel therapeutic
strategies for diagnosing and treating MM refractory to treatment.
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