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Augmentation of the RNA m6A reader signature is associated
with poor survival by enhancing cell proliferation and EMT
across cancer types
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N6-Methyladenosine (m6A) RNA modification plays a critical role in the posttranscriptional regulation of gene expression.
Alterations in cellular m6A levels and m6A-related genes have been reported in many cancers, but whether they play oncogenic or
tumor-suppressive roles is inconsistent across cancer types. We investigated common features of alterations in m6A modification
and m6A-related genes during carcinogenesis by analyzing transcriptome data of 11 solid tumors from The Cancer Genome Atlas
database and our in-house gastric cancer cohort. We calculated m6A writer (W), eraser (E), and reader (R) signatures based on
corresponding gene expression. Alterations in the W and E signatures varied according to the cancer type, with a strong positive
correlation between the W and E signatures in all types. When the patients were divided according to m6A levels estimated by the
ratio of the W and E signatures, the prognostic effect of m6A was inconsistent according to the cancer type. The R and especially
the R2 signatures (based on the expression of IGF2BPs) were upregulated in all cancers. Patients with a high R2 signature exhibited
poor prognosis across types, which was attributed to enrichment of cell cycle- and epithelial–mesenchymal transition-related
pathways. Our study demonstrates common features of m6A alterations across cancer types and suggests that targeting m6A R
proteins is a promising strategy for cancer treatment.
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INTRODUCTION
Carcinogenesis is associated with the remodeling of gene expres-
sion at the genome, epigenome, and transcriptome levels that
results in the development of cancer hallmarks1. RNA modification
is an additional regulatory layer of gene expression, and N6-
methyladenosine (m6A) is the most abundant internal modification
in eukaryotic mRNAs2. m6A RNA modification is involved in several
steps of posttranscriptional mRNA regulation, such as splicing,
transport, translation, and degradation2. Writer and eraser genes
dynamically regulate intracellular m6A levels. The writer genes,
including METTL3, METTL14, and other appendage genes, form a
methyltransferase complex that increases global m6A levels3,4. Two
eraser genes, ALKBH5 and FTO, remove m6A from mRNAs and
downregulate total m6A levels5,6. m6A-mediated mRNA regulation
occurs via reader genes, which directly bind to m6A sites on mRNAs
and execute regulatory processes, such as alternative splicing,
translation, stabilization, and degradation7.
Because m6A modification plays a critical role in mRNA

metabolism, the aberrant regulation of m6A levels is closely
associated with carcinogenesis8. Dysregulation of m6A-related

genes, such as m6A writer, eraser, and reader genes, has been
reported in several types of cancers, including breast, lung, liver,
ovarian, gastric, and pancreatic cancers8. However, whether m6A
modification and m6A-related genes play oncogenic or tumor
suppressive roles differs depending on the tumor type. For
example, METTL14, the main writer gene that forms the
methyltransferase complex, has been suggested as an oncogene
and a tumor suppressor gene in breast cancer and liver cancer,
respectively9,10. In addition, both m6A writer and eraser genes
have been reported as oncogenes in lung cancer11, and chemical
inhibitors of m6A writer (METTL3) and eraser (FTO) genes have
shown similar anticancer effects on acute myeloid leukemia12,13.
Therefore, the common roles and underlying molecular mechan-
isms of m6A modification and m6A-related genes in carcinogen-
esis are still obscure.
To identify the common features of alterations in m6A

modification and m6A-related genes during carcinogenesis across
cancer types, we analyzed the transcriptome data of 11 solid
tumors from The Cancer Genome Atlas (TCGA) database and our
in-house RNA sequencing data of a gastric cancer cohort. Because
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the functions of m6A target genes are determined by alterations
in m6A levels and interactions with m6A readers11, we estimated
the m6A levels and effects of readers by calculating writer (W),
eraser (E), and reader (R) gene signatures. Our analyses suggest
that an increased R gene signature is a common characteristic of
carcinogenesis and is associated with poor patient outcomes
across cancer types.

MATERIALS AND METHODS
Pan-cancer RNA sequencing data collection and calculation of
m6A signatures
Analysis of the m6A gene signature and the relationship between copy
number alterations and mRNA expression was accomplished using mRNA
expression data [log2(TPM+ 0.0001)] from the TCGA TARGET GTEx cohort
(https://xenabrowser.net/datapages/). A total of 17 m6A regulators were
selected, including nine genes in the writer complex (METTL3, METTL14,
WTAP, METTL16, RBM15, RBM15B, CBLL1, KIAA1429, and ZC3H13), two
erasers (ALKBH5 and FTO), and six readers (YTHDF1, YTHDF2, YTHDF3,
IGF2BP1, IGF2BP2, and IGF2BP3). Each W, E, R1, and R2 signature was
calculated by the arithmetic means of writers, erasers, YTHDFs, and
IGF2BPs. W-E signatures were calculated by subtracting E signatures from
W signatures on a log scale, resulting in the ratio of W and E signatures. We
computed the Pearson correlation between the W and E signatures and
visualized it using the ‘ggplot2’ package (https://ggplot2.tidyverse.org/).
Gene set enrichment analysis (GSEA) and CIBERSORT analyses were
accomplished using log2(RPKM+ 1) from the GDC TCGA cohort for each
tumor type (https://xenabrowser.net/datapages/). All genes were mapped
to Ensembl IDs (60,483 genes).

Differential gene expression between tumor and normal
tissues
All mRNA expression data were extracted from the TCGA TARGET GTEx
cohort in UCSC Xena (https://xena.ucsc.edu/). The fold change (FC) in the
comparative analysis of tumors and normal tissues was calculated as
follows:

FC ¼ Mean expressiontumor tissue

Mean expressionnormal tissue

We generated a heatmap for the FC data using the ‘pheatmap’ package
(https://cran.r-project.org/web/packages/pheatmap/index.html). The red
and blue colors in the heatmap represent genes that were more highly
expressed in tumor and normal tissues, respectively.

Estimation of m6A signatures in inflammatory tissues,
precancerous lesions and cancer tissues
To determine whether alterations in m6A levels and R signatures
were associated with carcinogenesis, we analyzed a dataset from the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/;
GSE55696)14 to compare the expression of m6A-related genes between
gastric inflammatory tissues, precancerous lesions and cancer tissues. For
the comparison of 4 group means (chronic gastritis, low-grade gastric
intraepithelial neoplasia (GIN), high-grade GIN and early adenocarci-
noma), one-way analysis of variance (ANOVA) was performed.

Correlation between copy number alterations (CNAs) and
mRNA expression
All mRNA expression data were extracted from the TCGA TARGET GTEx
cohort in UCSC Xena (https://xena.ucsc.edu/), and all CNA data were
extracted from the TCGA PanCancer Atlas in cBioPortal for Cancer
Genomics (https://www.cbioportal.org/). The putative CNA data were in
discrete form (−2 = homozygous deletion; −1 = hemizygous deletion;
0 = neutral/no change; 1 = gain; 2 = high-level amplification). The
correlation between CNA and mRNA expression levels was evaluated with
the eta coefficient test and marked with an asterisk if the coefficient was
greater than 0.3 by R language (version 4.1.0, http://www.R-project.org).

Evaluation of m6A signatures and CNAs in cancer cell lines
The mRNA expression and copy number alteration data of cancer cell
lines were obtained from DepMap cellular model expression data

(https://depmap.org/portal/download/). Pearson’s correlation analyses
and P values were calculated using log2(RSEM+ 1) values from the
Cancer Cell Line Encyclopedia (CCLE) for each tumor type. For the
analysis of copy number alterations, we stratified the GISTIC2 score
into 3 classes in the same way suggested in the National Cancer
Institute Genomic Data Commons (https://docs.gdc.cancer.gov/Data/
Bioinformatics_Pipelines/CNV_Pipeline/; deletion = GISTIC2 score below
−0.3, diploid = GISTIC2 score between −0.3 and 0.3, and amplification =
GISTIC2 score above 0.3). The correlation between CNA and mRNA
expression levels was evaluated with the eta coefficient test and marked
with an asterisk if the coefficient was greater than 0.3 by R language
(version 4.1.0, http://www.R-project.org).

Survival analysis according to the m6A gene signature
Survival data were extracted from TCGA and TARGET Pan-Cancer
(PANCAN). Because the average levels and distribution of the m6A
signature were diverse among the cancer types and datasets, we applied
maximally selected rank statistics with several p value approximations
using R (‘maxstat’ package) to discriminate tumor samples into two
groups for cutoff optimization in the m6A signature15 (https://cran.r-
project.org/web/packages/maxstat/index.html). The difference in survi-
val between the high and low signature groups was calculated by the
Kaplan–Meier method with a two-sided log rank test, and the CondMC
method was used to estimate P values. A Kaplan–Meier plot was
used to estimate the median overall survival of each group with the
‘survival’ (https://cran.r-project.org/web/packages/survival/index.html)
and ‘survminer’ packages (https://cran.r-project.org/web/packages/
survminer/index.html).
For validation datasets, we screened datasets from GEO under the

following conditions. First, being exclusive from TCGA data, the dataset
should provide RNA expression in the form of microarray analysis. Second,
since 17 m6A-related genes were used for further evaluation, the
microarray chip set should cover all 17 m6A-related genes. Third, clinical
data should include patient survival data. Finally, to perform meaningful
statistical analysis, at least 20 samples were required in each group. After
screening, we used GSE65194 (breast cancer)16, GSE38832 (colon
adenocarcinoma)17, GSE7696 (glioblastoma multiforme)18, GSE31210 (lung
adenocarcinoma)19, GSE157010 (lung squamous cell carcinoma)20,
GSE26193 (ovarian epithelial cancer)21, and GSE15459 (stomach adeno-
carcinoma)22. Each Affymetrix dataset was background-adjusted and
normalized by the Robust Multichip Average (RMA) algorithm in the ‘Affy’
package using R language (version 4.1.0, http://www.R-project.org)23. The
difference in survival between the high and low signature groups based on
the median value was calculated by the Kaplan–Meier method with a two-
sided log rank test.

Multivariate Cox regression
Phenotypic data were extracted from TCGA PANCAN in UCSC Xena
(https://xena.ucsc.edu/). Major covariates (sex, age, stage, and numbers of
immune cells) were considered for multivariate analysis. The numbers of
immune cells were estimated by the CIBERSORT package (https://
cibersortx.stanford.edu/). Glioblastoma stage and uterine and ovarian
cancer sex were not considered. The ‘Coxph’ function was used to
estimate beta coefficients. The Cox hazard ratio was plotted with the
‘ggforest’ function.

Gene set enrichment analysis
GSEA was performed to elucidate the biological pathways that were
associated with the altered gene signature. The software and data were
downloaded from the GSEA website (https://www.gsea-msigdb.org/gsea/
index.jsp). Hallmark gene sets and normalized P values were used to
investigate the enriched gene set in the high or low signature groups. Each
cell of heatmaps stands for -log10(P value), and Euclidean distance was
used for clustering.

Profiling immune cell proportions in tumor tissues
The CIBERSORT package was used to explore the degree of immune cell
infiltration by assessing the proportions of 22 immune cell subtypes with the
LM22 matrix and TCGA samples. The analysis was performed in absolute
mode on the CIBERSORTx website (https://cibersortx.stanford.edu/). Student’s
t test was used to compare the differences between the high and low
signature groups.
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Gastric cancer patient sample collection and RNA sequencing
This study was approved by the Institutional Review Board of the Seoul
National University Hospital (No. C-1402-054-555) in accordance with the
Declaration of Helsinki. All samples were obtained with informed consent
at the Seoul National University Hospital. Samples of gastric cancer tissues
and normal gastric tissues were obtained from individuals who underwent
gastrectomy at Seoul National University Hospital between 2014 and
2017. RNA extraction from tissues was performed using TRIzol™
(Invitrogen). Samples with an RNA integrity number greater than five
were further processed. The 101-bp paired-end libraries were constructed
with the TruSeq RNA Sample Prep Kit v2 (Illumina) using 1 µg of RNA.
Whole-transcriptome sequencing was performed on an Illumina HiSeq
2000 instrument. Raw FASTQ files were aligned with the human reference
genome (GRCh37), and sequenced reads were aligned using a STAR
aligner24. The sorting and marking of duplicates were performed by Picard
tools. After processing the binary aligned and mapping (BAM) files, gene
expression levels were quantified by fragments per kilobase of exon per
million mapped reads (FPKM). The sequencing data have been deposited
in the European Nucleotide Archive (ENA) repository under accession
code PRJEB40936.

Cancer single-cell RNA sequencing data collection and
calculation of m6A signatures
To assess the cell-type specificity underlying m6A signatures, we analyzed
single-cell RNA sequencing (scRNA-seq) datasets publicly available in the
GEO database: breast cancer (GSE180286)25, non-small-cell lung cancer
(GSE148071)26, gastric cancer (GSE183904)27, and renal cancer
(GSE159115)28. From these, we obtained the feature-barcode matrices of
tumor or normal samples for each cancer type. To exclude low-quality cells
and genes, we followed the same filtering criteria from the original studies
as to the number of genes per cell, the percentage of mitochondrial gene
expression and unique molecular identifier (UMI) counts. For each cell, the
raw gene expression counts were normalized by the total UMI count and
log-transformed using the NormalizeData function of the ‘Seurat’ package.
To identify the cell-type clusters, we integrated the scRNA-seq dataset of
individual patients into the single dataset for each cancer type using
Harmony29 and performed dimension reduction and clustering using the
‘Seurat’ package30. The identified clusters were annotated using the cell
type markers listed in the original papers. After removing cells with zero
expression, we calculated arithmetic means of the m6A signature genes
and evaluated statistical significance for the group difference in gene
expression using the ‘ggpubr’ (https://rpkgs.datanovia.com/ggpubr/) and
‘rstatix’ packages (https://rpkgs.datanovia.com/rstatix/).

RESULTS
Alterations in m6A writer, eraser, and reader signatures across
cancer types
To investigate the alterations in RNA m6A modification during
carcinogenesis across cancer types, we compared the expression
of m6A-related genes between normal and cancer tissues in
11 solid cancer types by analyzing the TCGA database using the
USCS Xena platform (https://xenabrowser.net/datapages/)31. In
the case of m6A writer genes, the expression of METTL3, which is
a catalytic subunit in the m6A methyltransferase complex32, is
decreased in most cancer types compared with normal tissues.
This decrease was especially notable in breast invasive carcinoma
(BRCA), lung adenocarcinoma (LUAD), bladder urothelial carci-
noma (BLCA), lung squamous cell carcinoma (LUSC), ovarian
serous cystadenocarcinoma (OV), and uterine corpus endometrial
carcinoma (UCEC; Fig. 1a). In contrast, the expression of METTL14
was upregulated in most cancer types, except BLCA, OV, and
UCEC (Fig. 1a). The expression of other subunits in the m6A
methyltransferase complex and m6A eraser genes varied accord-
ing to the cancer type (Fig. 1a). However, the expression levels of
m6A reader genes in cancer tissues were higher than those in
normal tissues regardless of the cancer type (Fig. 1a). Interest-
ingly, the expression of IGF2BP1 and IGF2BP3 increased more
than twofold in most cancer types (Fig. 1a). Overall, kidney renal
papillary cell carcinoma (KIRC), glioblastoma multiforme (GBM),
stomach adenocarcinoma (STAD), and BRCA showed increases in
writer, eraser, and reader gene expression. In contrast, LUSC, OV,

and UCEC showed downregulation of writer and eraser gene
expression.
Total cellular RNA m6A levels are dynamically regulated

through the interactions of m6A writer, eraser, and reader
proteins. To understand the alteration in overall m6A levels
during cancer development, we estimated the m6A W, E, R1 and
R2 signatures based on the expression of writer-associated genes
(METTL3, METTL14, METTL16, WTAP, KIAA1429, RBM15, RBM15B,
CBLL1, and ZC3H13), eraser-associated genes (FTO and ALKBH5),
and reader-associated genes (R1: YTHDF1, 2, and 3; R2: IGF2BP1,
2, and 3). Interestingly, the W signature levels were generally
associated with the E signature levels (Fig. 1b). For example,
compared with normal tissues, KIRC, BRCA, GBM, and STAD
displayed higher values in both the W and E signatures
simultaneously. In contrast, compared with normal tissues, OV,
LUSC, BLCA, and UCEC tissues exhibited a concurrent decrease in
the W and E signatures (Fig. 1b). The scatter plot results show
that each sample had a strong positive correlation between the
W and E signatures across cancer types (Fig. 1c and Supplemen-
tary Fig. 1). The only exception, colon adenocarcinoma (COAD),
which had a higher W signature and a lower E signature than
normal tissues (Fig. 1b), had a similar inclination when unpaired
samples were excluded and paired normal and cancer samples
from the same patient were examined (Fig. 1c). The positive
correlation between the W and E signatures was reproduced in
the cancer cell line data of 10 cancer types from Cancer Cell Line
Encyclopedia (CCLE; https://sites.broadinstitute.org/ccle/) except
liver hepatocellular carcinoma (LIHC) (R= 0.38, P= 0.078; Sup-
plementary Fig. 2). These data suggest that changes in writer and
eraser expression can cancel each other out and sustain
homeostasis at the cellular m6A level.
As expected for the R signatures, the R1 (YTHDFs) signature

showed higher expression in most cancers than in normal
tissues (Fig. 1b), with the exceptions of BLCA and UCEC
(Fig. 1b). Intriguingly, the R2 (IGF2BPs) signature was signifi-
cantly increased in all 11 cancer types compared with normal
tissues (P < 0.05; Fig. 1b). In addition, compared to chronic
gastritis, which is normal gastric tissue with high infiltration of
inflammatory cells, the R1 signature was significantly increased
in high-grade intraepithelial neoplasia (HGIN), and the
R2 signature was significantly increased in HGIN and early-
stage gastric carcinoma (Supplementary Fig. 3). Therefore,
augmentation of the R signature is a common characteristic
across cancer types.

Copy number amplification is associated with increased
expression of R signature genes across cancer types
Next, we investigated whether the increased m6A R signature in
cancers can be attributed to the alteration in copy numbers in
m6A R signature genes. According to the TCGA data analyzed by
Genomic Identification of Significant Targets in Cancer (GISTIC)33,
more than half of the tumor samples showed copy number
alterations in R signature genes (Fig. 2a). There were more
frequent amplifications than deletions in all 11 types of tumors. Of
note are the increases in copy numbers detected in YTHDF1 and 3
and IGF2BP2 and 3 (Fig. 2a). These data are consistent with a those
of a previous study that analyzed TCGA data with GISTIC copy
number alterations in 33 cancer types34. LUSC, OV, LUAD, and
BRCA showed a higher proportion of copy number amplifications
in R signature genes than other cancer types (Fig. 2a). Copy
number amplifications of R signature genes were also observed in
cancer cell line data from CCLE (Supplementary Fig. 4a). Observing
the relationship between copy number alterations and gene
expression, the expression of R1 and R2 signature genes showed
positive linear associations with copy number alterations (Fig. 2b
and Supplementary Fig. 4b), suggesting that the increase in the R
signature is partly due to copy number amplifications of the
reader genes.
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For writer and eraser genes, analysis of copy number
alterations exhibited a larger number of deletions than
amplifications, except for KIAA1429 and CBLL1, which showed
more amplifications than deletions (Supplementary Fig. 5). The
mRNA expression levels of W and E signature genes were

positively correlated with copy number alterations in most
cancer types (Supplementary Fig. 6). These data suggest that the
copy number alterations and expression of W and E signature
genes were heterogeneous according to the gene and
cancer type.
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Prognostic effect of RNA m6A levels across cancer types
Total cellular RNA m6A levels are regulated by the counteracting
actions of writer and eraser proteins. To investigate the effect of
m6A levels on cancer patient prognosis, we assumed that RNA
m6A levels can be estimated by the ratio of the W and E
signatures. The W-E signature represents the ratio of writer and
eraser gene expression on a log scale. A high W-E signature means
a high W signature and a low E signature, which also represents
samples with high m6A levels. A low W-E signature means the
opposite. The effect of the W-E signature on overall survival was
diverse depending on the tumor type (Fig. 3a, b). KIRC, LIHC, and
UCEC patients with a high W-E signature had significantly worse
overall survival than patients with a low W-E signature (Fig. 3a).
Patients with LUAD and OV showed the same tendency but
without statistical significance (Fig. 3a). Consistent with these data,
UCEC patients with a high W-E signature were highly associated
with an advanced stage of disease, and KIRC and LIHC patients
showed a similar but nonsignificant tendency (Supplementary Fig.
7). Multivariate analysis considering age, sex, disease stage, and
numbers of immune cells showed that OV patients with a high
W-E signature had a worse prognosis (Supplementary Fig. 8a). In
the validation cohorts, LUAD and OV patients with a high W-E
signature showed a tendency toward poor prognosis (Supple-
mentary Fig. 9a).
In contrast, BLCA, BRCA, STAD, and LUSC patients with a high

W-E signature had significantly longer survival times than those
with a lower W-E signature (Fig. 3b). Patients with COAD and GBM
showed a similar tendency, but the P values were greater than
0.05. Among these cancer types, BLCA, BRCA, and STAD patients
with a low W-E signature tended to more frequently have
metastasis or locally advanced disease stages (stage III or IV) than
patients with a high W-E signature (Supplementary Fig. 7). In
multivariate analysis, a low W-E signature was an independent
prognostic factor associated with poor prognosis in BLCA and
STAD patients (Supplementary Fig. 8b). In the validation cohorts,
BLCA, BRCA, STAD, LUSC, and GBM patients with a high W-E
signature showed a tendency toward better prognosis (Supple-
mentary Fig. 9b). These data suggest that total RNA m6A levels
have different associations with prognosis depending on the
cancer type.

Differential prognostic effect of m6A levels is associated with
epithelial–mesenchymal transition and immune cell
infiltration
To understand the biological roles of RNA m6A levels across
cancer types, we performed GSEA by comparing patients with
high and low W-E signatures. When hallmark gene sets from the
Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) were sorted according to P values, 11
tumor types were divided into two clusters (Fig. 4). The cell cycle-
related gene sets (e.g., G2/M checkpoint, mitotic spindle, E2F
targets, and MYC targets) were commonly enriched in both
clusters with few exceptions (Fig. 4 and Supplementary Fig. 10).
Cluster 1 (GBM, UCEC, KIRC, and LIHC), with the exception of GBM,
showed poorer survival in patients with high W-E signatures

(Fig. 3a). Most of Cluster 2 (COAD, STAD, LUAD, LUSC, BRCA, BLCA,
and OV) showed the opposite phenotype (Fig. 3b). The difference
between these two clusters was whether the gene sets with
epithelial–mesenchymal transition (EMT) and multiple pathways in
immune reactions (including inflammatory response, IL2-STAT5
signaling, IL6-JAK-STAT3 signaling, and TGF-β signaling) were
significantly enriched (Fig. 4). The association of a more advanced
stage and poorer overall survival with a low W-E signature in most
Cluster 2 cancer types (Fig. 3b) is probably attributed to the
enrichment of EMT and TGF-β signaling in patients with a low W-E
signature (Fig. 4 and Supplementary Fig. 11a, b) because these
pathways have been associated with poor prognosis in several
cancer types35–37. In addition, the expression of characteristic
markers of EMT (VIM, CHD2, and FN1)38 was negatively correlated
with the W-E signature in all cancer types of Cluster 2
(Supplementary Fig. 11c, d).
Multiple signaling pathways in immune reactions, such as the

IL6, TNFα, and IL2 pathways, were commonly downregulated in
Cluster 2 patients with a high W-E signature (Fig. 4). Because these
pathways critically regulate the overall immune reaction of the
tumor microenvironment (TME), we can speculate that tumors in
Cluster 2 have a negative correlation between the W-E signature
and immune cell infiltration. To estimate immune cell infiltration in
the TME, we performed CIBERSORTx analysis with the LM22 matrix
in absolute mode. The first difference between clusters was that
Cluster 2, but not Cluster 1, had a higher immune cell count in low
W-E signatures (Supplementary Fig. 12). Specifically, Cluster
2 showed enrichment of M2 macrophages, mast cells, and
dendritic cells in patients with low W-E signatures. High expression
levels of IL-10 and TGF-β, like M2 macrophages, are known to
downregulate the immune response and promote metastasis and
angiogenesis39. Because M2 macrophages are induced by IL-6/
STAT3 signals40, patients with a low W-E signature in Cluster 2
tumors (BLCA, BRCA, COAD, LUSC, and STAD) had more M2
macrophages in tumor tissues, which is associated with poor
prognosis. In contrast, Cluster 1 showed enrichment of eosinophils
and M0 macrophages in patients with a high W-E signature.
Because eosinophils are known to modulate tumor progression in
some tumor types41, the enrichment of eosinophils in Cluster 1
tumors may explain the faster cancer progression and poorer
survival of patients with a high W-E signature. Therefore, the
diverse effects of m6A levels on patient prognosis are highly
associated with the immune cell profile in the TME.

An increased R signature is associated with poor prognosis
across cancer types
We next explored the effect of the increased m6A reader
signature on patient prognosis by dividing the patients with
each cancer type into two groups according to the level of the R1
or R2 signature. We found that a high R1 signature was
correlated with a worse prognosis for patients with BRCA, LUSC,
LIHC, and UCEC and a better prognosis for patients with BLCA,
COAD, KIRC, and STAD. The R1 signature did not significantly
alter the overall survival of patients with GBM, LUAD, or OV
(Supplementary Fig. 13). When the patients were divided into

Fig. 1 Alterations in m6A writer, eraser, and reader gene signatures across cancer types. a Heatmap of alterations in m6A-related gene
expression in 11 cancer types. Each column represents an individual m6A-related gene, and each row denotes a cancer type. Colors show the
fold change in gene expression in cancer tissues compared to normal tissues from the TCGA database. Key: KIRC, kidney renal clear cell
carcinoma; GBM, glioblastoma multiforme; STAD, stomach adenocarcinoma; BRCA, breast invasive carcinoma; LUAD, lung adenocarcinoma;
BLCA, bladder urothelial carcinoma; COAD, colon adenocarcinoma; LIHC, liver hepatocellular carcinoma; LUSC, lung squamous cell carcinoma;
OV, ovarian serous cystadenocarcinoma; UCEC, uterine corpus endometrial carcinoma. b Heatmap of alterations in m6A writer (W), eraser (E),
and reader (R) gene signatures in 11 cancer types. Each column represents an individual m6A gene signature, and each row denotes a cancer
type. Colors show the fold change in the gene signature in cancer tissues compared to normal tissues from the TCGA database. c Scatter plots
of the m6AW and E signatures in log scales. Blue dots are normal tissue samples adjacent to the tumor samples, which are marked as red dots.
Sky blue and pink dots are normal tissue and tumor samples, respectively, that are not matched. Pearson correlation coefficients (Corr) and
P values are written on the plot.
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two groups based on the R2 signature, those with a high
R2 signature exhibited a significantly worse prognosis in most
cancer types, except LUSC, OV and GBM (Fig. 5). Associations
between a high R2 signature and poor prognosis were also
observed in the validation cohorts of BLCA, BRCA, COAD, LUAD,

STAD, and OV (Supplementary Fig. 14). These results are in
accordance with those of previous studies indicating that
IGF2BPs play roles in oncogenesis and regulate metastasis42.
Multivariate analyses with covariates, including sex, age, stage,

and numbers of immune cells predicted by CIBERSORT, indicated

Fig. 2 Copy number alterations in m6A reader genes across cancer types. a The proportion of patients with copy number alterations in
m6A reader genes. From blue to red, each color represents ‘deep deletion’, ‘deletion’, ‘diploid’, ‘gain’, and ‘amplification’. The data were extracted
from the putative GISTIC copy number variation (CNV) in cBioPortal (https://www.cbioportal.org/). b Correlation between copy number
alterations and mRNA expression of m6A reader genes. mRNA expression is demonstrated on a log scale. The asterisk marks data for which
the eta coefficient between mRNA expression and CNV is >0.3.
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that patients with a high R2 signature had a worse prognosis than
patients with a low R2 signature in BLCA, BRCA, KIRC, LIHC, LUAD,
and STAD (Supplementary Fig. 15). LUSC was the only cancer type
in which patients with a high R2 signature showed a better
prognosis. In addition, in BLCA, KIRC, and UCEC patients, a high

R2 signature was significantly associated with advanced stages of
disease (Supplementary Fig. 16). In summary, after excluding the
covariate effects, these results indicate that an increased
R2 signature is a significant unfavorable factor for patient survival
in most cancer types.

Fig. 3 Survival analysis according to the m6A W-E signature across cancer types. a, b Kaplan–Meier plots for the overall survival of patients
with high and low W-E signatures. Red and blue lines represent samples with high and low W-E signatures, respectively. Each median survival
and P value, determined by the log rank test, is shown. Tumors that have worse survival in high W-E signatures are shown in a, and tumors
that have favorable survival in high W-E signatures are shown in b.
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An increased R signature is associated with enrichment of cell
cycle- and epithelial–mesenchymal transition (EMT)-related
gene sets across cancer types
IGF2BPs have been suggested to have oncogenic roles, and they
are highly expressed from embryonic to solid and hematological
malignancies43. In light of our results showing the detrimental
effect of the R2 signature on patient survival, we explored the
underlying molecular mechanisms of IGF2BPs on patient prog-
nosis. Patients with high and low R2 signatures in each cancer
type were divided so that the maximum survival differences
between the two groups in each cancer type could be revealed
by performing GSEA with hallmark gene sets. Several gene sets

were commonly enriched in the high R2 signature groups,
including G2/M checkpoint, E2F targets, and MYC targets (Fig. 6
and Supplementary Fig. 17). The enrichment of gene sets of the
G2/M checkpoint, E2F targets, and MYC targets in samples with a
high R2 signature was also observed in the gene expression data
of cancer cell lines from CCLE (Supplementary Fig. 18). These
gene sets are highly associated with the cell cycle and
oncogenesis. MYC itself and several components in the pro-
liferative signaling pathway have been suggested as regulatory
targets of IGF2BPs44,45.
EMT is strongly related to higher stages and poorer prognosis in

many tumors46. The EMT gene set was enriched in the high

Fig. 4 Heatmap of gene set enrichment analysis (GSEA) between patients with high and low W-E signatures. Each column represents an
individual cancer type, and each row denotes an enriched hallmark gene set from the Molecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). Gene sets that were enriched in the high W-E signature group are colored red, and gene sets that were
enriched in the low W-E signature group are colored blue. The lower the P value is, the deeper the color that is shown.
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R2 signature group (Fig. 6 and Supplementary Fig. 19). In addition,
several EMT-related gene sets, including ‘hypoxia’, ‘apical junc-
tion’, and ‘Wnt beta catenin signaling’, were enriched in the high
R2 signature group across the cancer types (Fig. 6). The data
showing the tendency of patients with a high R2 signature to have
more advanced cancer stages and worse overall survival than
patients with a lower R2 signature (Supplementary Fig. 16)

suggest that the enrichment of EMT-related gene sets is one of the
molecular mechanisms associated with poor prognosis in the high
R2 signature group.
Among several gene sets associated with the R2 signature, the

‘estrogen response late’ and ‘estrogen response early’ gene sets
were negatively correlated with the R2 signature in BRCA, UCEC,
and OV (Fig. 6 and Supplementary Fig. 20a, b). These tumor types

Fig. 5 Survival analysis according to the m6A R2 signature across cancer types. a, b Kaplan–Meier plots for the overall survival of patients
with high and low R2 signatures. Red and blue lines represent samples with high and low R2 signatures, respectively. Each median survival
and P value, determined by the log rank test, is shown. Tumors that have worse survival in the high R2 signature group are shown in a, and
tumors that do not show a significant difference between the high and low R2 signature groups are shown in b.

J. Oh et al.

914

Experimental & Molecular Medicine (2022) 54:906 – 921



are related to hormone receptors. The phenomenon that higher
R2 signature groups expressed fewer estrogen and progesterone
receptors suggests that the R2 signature is highly associated with
triple-negative breast cancer. These data are compatible with
those of previous studies showing that high R2 signature genes,
especially IGF2BP1, induce negative expression of hormone
receptors and result in the development of triple-negative breast
cancer47,48. In cases of ovarian cancer, higher expression of
IGF2BPs is associated with a tendency to lose estrogen receptor
expression and is associated with higher grade, stage and poorer
survival49,50. Therefore, our data suggest that IGF2BPs regulate
hormone responses in breast and gynecologic cancers, which
gives an additional stage-independent risk to patients.
The enrichment of immunologic gene sets, such as IL2-STAT5

signaling, IL6-JAK-STAT3 signaling, and inflammatory responses,

varied across the cancer types, resulting in two tumor clusters
(Fig. 6). BRCA, BLCA, KIRC, and LIHC showed high enrichment of
immunologic gene sets with a high R2 signature, and OV, UCEC,
LUSC, and LUAD exhibited the opposite feature with a high
R2 signature (Fig. 6 and Supplementary Fig. 21). To investigate the
relationship between the enrichment of immunologic gene sets
and immune cell infiltration, we performed CIBERSORTx analyses
in absolute mode and Student’s t test to find differences in
immune cell proportions in each cancer type. KIRC, BLCA, and
BRCA showed common enrichment of most immune cell types
except naïve CD4 T cells (Supplementary Fig. 22). On the other
hand, LUSC, LUAD, UCEC, and OV were commonly deficient in
immune cells (Supplementary Fig. 22). Therefore, the difference in
immune cell infiltration may partially explain the different
enrichment of immune gene sets between the two tumor clusters.

Fig. 6 Heatmap of gene set enrichment analysis (GSEA) between patients with high and low R2 signatures. Each column represents an
individual cancer type, and each row denotes an enriched hallmark gene set from the Molecular Signatures Database (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). Gene sets enriched in the high R2 signature group are colored red, and gene sets enriched in the low
R2 signature group are colored blue. The lower the P value is, the deeper the color that is shown.
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Validation of the effect of the W-E and R2 signatures in the
gastric cancer cohort
To validate the alterations in the W-E and R2 signatures and their
associations with hallmark gene sets in the TCGA database, we
analyzed in-house RNA sequencing data from a gastric cancer
cohort. The gastric cancer cohort was established in Seoul
National University Hospital and consists of 63 primary tumor
samples and 40 normal tissue samples corresponding to primary
tumor samples.
The expression of m6A-related genes in normal and tumor

tissues in this cohort is consistent with several results in the TGCA
database. First, we compared the W, E, and R signatures from
cancer and normal tissues individually. The W signature showed a
positive correlation with the E signature in both normal and
cancer tissues (R= 0.645, P < 0.0001; Fig. 7a). In addition, the W
and E signatures increased simultaneously in cancer tissues
compared with normal tissues (Fig. 7b). The R2 signature was
homogenously and significantly increased in cancer samples
(Fig. 7a, b). The downregulation of the R1 signature in normal
tissue was not as strong as that of R2, but a relative increase in the
R1 signature in cancer tissue was observed as it was with the
TCGA data (Fig. 1b, Fig. 7a, b). Investigation of the expression of
individual m6A-related genes revealed that our gastric cancer
samples had relatively increased expression of most m6A-related
genes compared with normal gastric tissues, except for METTL3,
METTL14, METTL16, and ALKBH5 (Fig. 7b), which are important
genes for determining cellular m6A levels. These data were all
compatible with the data from the TCGA stomach cohort (Fig. 1a)
and suggest that an increase in the R2 signature, rather than
alteration of m6A levels, is highly associated with gastric cancer
development.
Next, we performed GSEA with our gastric cancer cohort and

investigated whether there was a similar tendency with the GSEA
results from the TCGA data. Dividing the tumor samples in the
cohort into two groups based on high and low levels of the
R2 signature or W-E signature, we analyzed the enriched gene sets
between the groups. Analysis of the R2 signature showed the
tendency of enrichment of gene sets such as G2/M checkpoint
(normalized enrichment score (NES)= 1.58, P= 0.066) and E2F
targets (NES= 1.51, P= 0.100) in the high R2 signature group
(Fig. 7c). The R2 signature was significantly correlated with the
expression of MKI67 (R= 0.333, P < 0.0001) (Supplementary Fig.
23a). In addition, the R2 signature showed a positive association
with the EMT signature (R= 0.17, P= 0.082), which was estimated
by the arithmetic means of EMT marker genes (CDH2, FN1, and
VIM), but without statistical significance (Supplementary Fig. 23b).
Therefore, the R2 signature in gastric cancer is correlated with cell
proliferation and is probably associated with cancer development
and progression.
On the other hand, GSEA of the high and low W-E signature

groups showed that the MYC target gene set showed a tendency
of enrichment in the high W-E signature group (NES= 1.60,
P= 0.079), and the EMT gene set was significantly enriched in the
low W-E signature group (NES=−1.93, P < 0.0001; Fig. 7d). These
results are in agreement with the previous analyses of TCGA data
(Fig. 4). An enriched EMT gene set in gastric cancer patients with a
low W-E signature was associated with poor prognosis in these
patients (Figs. 3 and 4).

Cell type specificity underlying the W, E, and R signatures
across cancer types
To evaluate the cell types associated with m6A modification in
cancer tissues, we compared the cell-type-specific expression of
m6A-related genes using the scRNA-seq data of tumors obtained
from patients. First, we analyzed the scRNA-seq datasets of breast
cancer, non-small-cell lung cancer, and gastric cancer, which are
publicly available in the GEO database, and identified clusters for
tumor, stromal and immune cells (Fig. 8a). In general, m6A-related

genes showed higher expression in nontumor cells than in tumor
cells in all three cancer types (Fig. 8b). However, there was a
striking difference in the cellular proportion of m6A-related gene
expression (Fig. 8b), which was calculated by the proportion of the
sum of the m6A signatures in each cell type to the sum of m6A
signatures from total cells. Over half of all m6A signatures were
derived from tumor cells in lung cancer, and the W, E, and
R1 signatures were derived from tumor cells in breast cancer
(Fig. 8b). For gastric cancer, the majority of the W, E, and
R1 signatures were from immune cells. However, for the
R2 signature, tumor cells were the main cells with the expression
of signature genes (Fig. 8b). Despite the gene expression at the
individual cell level, m6A-related genes seem to have pervasive
regulation in tumor cells rather than nontumor cells.
Next, we identified m6A-related genes with cell-type specificity

on tumor cells. In breast cancer, eight genes (METTL3, KIAA1429,
ZC3H13, FTO, YTHDF1, YTHDF2, IGF2BP2, and IGF2BP3) were
significantly enriched in tumor cells compared to immune or
stromal cells (Supplementary Table 1). YTHDF1 and ZC3H13 were
also enriched in nontumor cells, but the percentage of cells with
gene expression and the average fold-changes were higher in
tumor cells than in nontumor cells. Lung cancer and gastric cancer
each had a single gene (YTHDF2 and IGF2BP2, respectively)
enriched in tumor cells (Supplementary Table 1).
We further delineated the pattern of m6A-related gene

expression using tumor tissues and matched normal tissues. We
obtained scRNA-seq data from the latest study of renal clear cell
cancer, which contained paired tumor and normal samples from
the same individual, and identified cell-type clusters for tumor,
stromal and immune cells (Fig. 8a). To evaluate the expression of
the m6A signature genes, we analyzed tumor cells in tumor
samples against epithelial cells in matched normal samples. The E,
R1, and R2 signatures were significantly higher in tumor cells than
in normal epithelial cells in renal cancer (Fig. 8c), which is
consistent with the bulk tissue RNA sequencing of KIRC (Fig. 1b).
When comparing macrophages from tumor samples to macro-
phages from normal samples, normal macrophages showed
higher m6A signatures than tumor macrophages (Fig. 8c). In all
m6A-related signatures, cancer cells comprised the largest
proportion of the total m6A signature (Fig. 8c).
We further investigated whether the R2 signature was

correlated with proliferation markers in tumor cells (Supplemen-
tary Fig. 24). We found that the expression of MKI67 (encodes Ki-
67) is significantly correlated with the R2 signature in tumor cells
(P= 2.4E-4, breast cancer; P < 2.2E-16, lung and gastric cancer),
implicating the R2 signature in tumor progression. Consistent with
this, the EMT genes showed a significant positive correlation with
the R2 signatures in tumor cells (P= 7.1E-4, breast cancer;
P= 1.6E-11, lung cancer).

DISCUSSION
The dysregulation of cellular RNA m6A modification is one of the
characteristics of carcinogenesis because alterations in m6A levels
and m6A-related genes result in the remodeling of gene
expression at the posttranscriptional level8. However, whether
the alterations in m6A levels and m6A-related genes are
oncogenic or tumor-suppressive varies according to the cancer
type. Therefore, the common underlying mechanism of RNA m6A
methylation responsible for carcinogenesis across cancer types is
not fully understood. In this study, we investigated the common
features of RNA m6A alterations during carcinogenesis by
analyzing the transcriptomes of 11 solid tumors.
RNA m6A modification-mediated gene expression regulation

is determined by two factors: (1) the m6A levels of target genes,
which are balanced by the addition of m6A (mediated by the
RNA m6A methyltransferase complex, writers) and the removal
of m6A (mediated by RNA m6A demethylases, erasers); and
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Fig. 7 Analysis of m6A signatures in an in-house gastric cancer cohort. a Scatter plot of m6A signatures. The X and Y axes represent writer
(W), eraser (E), and reader (R) signatures. Blue dots represent normal samples, and red dots represent tumor samples. b Box plot of the mRNA
expression of each m6A-related gene and m6A signature. A red asterisk indicates significant differences between normal and tumor samples in
the m6A gene expression or signature (P value < 0.05, estimated by t test). c Representative GSEA plots between the high and low R2 signature
groups in the gastric cancer cohort. The G2M and E2F gene sets showed a tendency toward enrichment in the high R2 signature group.
d Representative GSEA plots between the high and low W-E signature groups in the gastric cancer cohort. The Myc target gene set showed a
tendency to be enriched in the high W-E signature group, and the EMT gene set was highly enriched in the low W-E signature group.
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Fig. 8 Single-cell RNA sequencing analysis of m6A-related signatures across cancer cell types. a UMAP representation of breast, lung, and
gastric cancer single-cell datasets (top) and renal matched normal-tumor datasets (bottom). b Comparison of m6A writer (W), eraser (E), and
reader signatures (R1 and R2) of breast, lung, and gastric cancer (left). Asterisks indicate adjusted P value outputs from the pairwise Wilcoxon
rank sum test with Benjamini–Hochberg correction (ns: P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). The proportion of each cell
type in the overall m6A signature expression (right). c Comparison of m6A writer (W), eraser (E), and reader signatures (R) of matched tumor
(T) and normal (N) samples from the renal cancer dataset (left). Asterisks indicate P value outputs from the pairwise binomial test (ns: P ≥ 0.05;
*P < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). The proportion of cells in the overall m6A signature expression by cell type (right).
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(2) m6A-binding proteins (readers), which are responsible for
m6A-mediated mRNA metabolism, including splicing, transport,
translation, and degradation2. To understand the general
changes in these two factors during carcinogenesis, we
estimated the W, E, and R signatures in normal and cancer
tissues. We speculated that cellular m6A levels are estimated by
the ratio of the W and E signatures. Although we could not
validate this assumption due to a lack of m6A level data in the
TCGA database, there are some points that support the
simultaneous consideration of writer and eraser genes. First,
the expression levels of not only major components of
methyltransferase (WTAP, METTL3, and METTL14) and demethy-
lase (FTO and ALKBH5) but also appendix genes (KIAA1429,
RBM15, RBM15B, CBLL1, and ZC3H13) have been shown to have
a significant effect on m6A levels51–53. In addition, individual
m6A-related genes regulate methylation status at different sites.
For example, considering only FTO in the W-E signature cannot
represent m6A states in specific targets of ALKBH554. However,
the correlation between cellular m6A levels and the W-E
signature needs to be validated experimentally.
Because RNA m6A-binding proteins have diverse functions in

RNA metabolism, we adopted two R signatures: the R1 signature,
consisting of YTHDF1–3, and the R2 signature, consisting of
IGF2BP1–3. Previous studies suggested that YTHDF1 enhances
mRNA translation55, while YTHDF2 promotes mRNA degrada-
tion56. YTHDF3 was reported to be involved in both mRNA
translation and degradation through YTHDF1 and YTHDF2,
respectively57. However, recent studies suggest that the function
of YTHDF1–3 to mediate mRNA degradation is redundant58,59

based on sequence and structural similarity. Considering the
redundant functions of YTHDF1–3, we evaluated the role of YTHDF
proteins across cancer types by calculating the R1 signature based
on the expression of YTHDF1–3. We also estimated the
R2 signature based on the expression of IGF2BP1-3 because
IGF2BPs show redundant functions by enhancing mRNA stabi-
lity60. Some studies claim functional dissimilarity of IGF2BPs owing
to their target specificities61. However, IGF2BPs have a common
KH domain and a similar distribution in cells60. In addition, each
IGF2BP binds to more than 3,000 mRNA transcripts, and more than
2,000 mRNAs, including MYC, FSCN1, TK1 and MARCKSL1, are
targeted by all three IGF2BPs60. Thus, the resemblance of target
genes, structure, position, and function of IGF2BPs support our
integrated analysis based on the R2 signature.
Previous studies showed that inhibition of IGF2BPs, which form

the R2 signature, decreased cancer aggressiveness. Knockdown or
knockout of IGF2BPs inhibited cell proliferation, colony formation,
migration and invasion in cervical carcinoma HeLa cells and
hepatocellular carcinoma HepG2 cells60. Knockout of IGF2BPs also
inhibited colony formation, migration, and in vivo tumor
formation in renal cell carcinoma 786-0 and Caki-1 cells62. In
addition, a small molecule inhibitor of IGF2BP1 suppressed cell
migration and colony formation in soft agar in non-small-cell lung
carcinoma H1299 cells63. We also found that knockdown of
IGF2BPs with siRNA decreased cell proliferation in breast cancer
MDA-MB-231 cells and gastric cancer MKN1 cells (Supplementary
Fig. 25). These data suggest that increased levels of IGF2BPs play
crucial roles in cancer progression and aggressiveness.
When we estimated the global RNA m6A levels based on the W-E

signature, we found that the W and E signatures were positively
correlated in all 11 tumor types (Fig. 1c and Supplementary Fig. 1),
suggesting that writers and erasers regulate each other’s effect on
the cellular homeostasis of RNA m6A levels64. In addition, the
prognostic effect of RNA m6A levels estimated by the W-E signature
was diverse according to the cancer type (Fig. 3). Therefore, we
could not find a common increase or survival effect of RNA m6A
levels across cancer types, which suggests that simple increases or
decreases in m6A levels are not associated with cancer develop-
ment and prognosis.

At the molecular pathway level, a high W-E signature promoted
cell proliferation across cancer types via high expression of the G2/
M checkpoint and E2F/MYC target genes (Fig. 4). Previous studies
reported that METTL3 and 14 act as oncogenes in several types of
cancer by regulating DRG1 and MYC, respectively65,66. However, in
tumor types showing better prognosis in patients with a high W-E
signature (Cluster 2; BLCA, BRCA, STAD, LUSC, and COAD), high W-E
signature samples had lower expression of EMT genes and a
relatively higher proportion of early-stage cancer (Fig. 4 and
Supplementary Fig. 7). A previous study showed that METTL3
promotes EMT via m6A methylation in Snail mRNA when TGFβ was
applied to HeLa and HepG2 cells67. In contrast, METTL14 inhibits
GC cell invasiveness by deactivating Wnt and PI3K-Akt signaling68.
Therefore, increased m6A levels are associated differently with EMT
according to the tumor type. In addition, m6A-mediated differ-
ential regulation of the TME is also associated with patient
prognosis. Patients in Cluster 2 with a low W-E signature had high
levels of M2 macrophages (Supplementary Fig. 12). However,
patients with a high W-E signature in Cluster 1 (KIRC, LIHC, and
UCEC), who showed worse prognoses than patients without a high
W-E signature, had high levels of M0 macrophages and eosinophils
(Supplementary Fig. 12). Lower m6A levels in myeloid cells
enhance cancer progression by blocking the YTHDF1-mediated
translation of SPRED2, and knockout of METTL3 induced a higher
count of M2 macrophages in the TME69. Therefore, m6A-mediated
regulation of tumor-infiltrating myeloid cells is associated with
patient prognosis in a tumor type-specific manner. However, the
underlying molecular mechanism of these tumor type-specific
effects of m6A levels on EMT and immune cell infiltration need to
be further investigated.
Although the alterations in m6A levels had a diverse effect on

patient prognosis across cancer types, augmentation of the R
signature in tumor tissues was significant in most cancer types
(Fig. 1a, b). In particular, the R2 signature and the expression of
IGF2BPs were ubiquitously related to poor prognosis (Fig. 5).
Several studies have shown that each IGF2BP is related to cell
proliferation, MYC signaling, and the G2/M checkpoint70,71 and
has an oncogenic effect in multiple cancers34. Consequently,
the higher expressor of the R2 signature had a higher
enrichment of not only the G2M, MYC, and E2F gene sets but
also the EMT and apical junction gene sets in GSEA (Fig. 6).
These data suggest that alterations in RNA m6A-binding
proteins are more critical in carcinogenesis and patient
prognosis than alterations in the m6A level itself. Therefore,
targeting m6A reader proteins is a promising strategy for cancer
treatment across cancer types.
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