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Abstract
Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse,
fine, and ultrafine particles. Particles that are <100 nm in diameter are defined as ultrafine particles (UFPs). UFPs are
found to a large extent in urban air as both singlet and aggregated particles. UFPs are classified into two major
categories based on their source. Typically, UFPs are incidentally generated in the environment, often as byproducts of
fossil fuel combustion, condensation of semivolatile substances or industrial emissions, whereas nanoparticles are
manufactured through controlled engineering processes. The primary exposure mechanism of PM is inhalation.
Inhalation of PM exacerbates respiratory symptoms in patients with chronic airway diseases, but the mechanisms
underlying this response remain unclear. This review offers insights into the mechanisms by which particles, including
UFPs, influence airway inflammation and discusses several mechanisms that may explain the relationship between
particulate air pollutants and human health, particularly respiratory health. Understanding the mechanisms of PM-
mediated lung injury will enhance efforts to protect at-risk individuals from the harmful health effects of air pollutants.

Introduction
Particulate matter (PM) is the principal component of

indoor and outdoor air pollution. PM includes a range of
particle sizes, such as coarse, fine, and ultrafine particles.
PM is a complex mixture of materials with a carbonac-
eous core and associated materials such as organic com-
pounds, acids, and fine metal particles1–3. Particles that
are <100 nm in diameter are defined as ultrafine particles
(UFPs). UFPs are found to a large extent in urban air as
both singlet and aggregated particles4.
UFPs are classified into two major categories based on

their source. UFP typically refers to particles that are
incidentally generated in the environment, often as
byproducts of fossil fuel combustion, condensation of
semivolatile substances or industrial emissions, whereas

nanoparticles are manufactured through controlled engi-
neering processes4.
The physical properties of PM, including the mass,

surface area, and number/size/distribution of particles, as
well as their physical state, influence respiratory health in
different ways2. The primary exposure mechanism of PM
is inhalation2. Inhalation of PM exacerbates respiratory
symptoms in patients with chronic airway disease, but the
mechanisms underlying this response remain unclear.
This review focuses on the adverse effects of exposure

to ambient PM air pollution on the exacerbation, pro-
gression, and development of respiratory diseases such as
asthma and chronic obstructive pulmonary disease
(COPD). Of note, although air quality is improving in the
US, UK, and other countries, the association of PM and
COPD with asthma persists. For example, Hopke et al.5

compared the rate of COPD hospitalizations and emer-
gency department visits in New York State before, during,
and after the 2008 economic recession. The rate of
asthma-related emergency department visits and COPD-
related hospitalizations that were associated with each
interquartile range increase in the concentration of
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ambient PM2.5 (PM that is <2.5 μm in diameter) was
higher after the recession (2014–2016) than during
(2008–2013) or before (2005–2007) it. For example, each
6.8 μg/m3 increase in PM2.5 on the same day was asso-
ciated with 0.4%, 0.3%, and 2.7% increases in the rate of
asthma-related emergency department visits before, dur-
ing, and after the time period, respectively, suggesting that
the same mass concentration of PM2.5 was more toxic
after the recession.
Similarly, Doiron et al.6 used UK Biobank data on 303,

887 individuals aged 40–69 years, with complete covariate
data and valid lung function measures. Cross-sectional
analyses examined associations between land use
regression-based estimates of particulate matter [PM2.5

and PM10 (PM that is less than 10 μm in diameter)] con-
centrations with forced expiratory volume in 1 s (FEV1),
forced vital capacity (FVC), the FEV1/FVC ratio and
COPD (FEV1/FVC < lower limit of normal). A 5 μg/m3

increase in PM2.5 concentration was associated with
reduced FEV1 and FVC. COPD prevalence was associated
with increased concentrations of PM2.5 (OR 1.52) and
PM10 (OR 1.08) per 5 μg/m3. Robust associations with
lung function were observed for males, individuals from
lower-income households, and “at-risk” occupations, and
increased COPD associations were observed for obese,
lower-income, and non-asthmatic participants. Thus,
ambient air pollution remains associated with reduced
lung function and increased COPD prevalence.
This review offers insights into the mechanisms by

which particles influence airway inflammation and dis-
cusses several mechanisms that may explain the rela-
tionship between particulate air pollutants and human
health, particularly respiratory health. PM induces oxi-
dative stress and inflammation, thereby stimulating innate
and acquired immune responses in laboratory animals
and humans. Understanding the mechanisms of PM-
induced lung injury will enhance efforts to protect at-risk
individuals from the harmful health effects of air
pollutants.

Mechanisms of UFP-induced health effects
UFPs deposit readily in the airways and centriacinar

regions of the lung and induce and incite airway diseases
such as asthma and COPD and respiratory diseases.
Oxidant-mediated cellular damage4,7, including the pro-
duction of reactive oxygen species (ROS) and oxidative
stress, innate immunity, and adaptive immunity (Fig. 1),
can lead to PM-mediated adverse health effects.

Reactive oxygen species and oxidative stress
Oxidative stress is highly implicated in the pathogenesis

of respiratory diseases. Reactive radical species are ubi-
quitous in nature and are produced by endogenous and
exogenous sources8. Cellular organelles such as

mitochondria and peroxisomes are major sources of ROS
and nitrogen species9. Production of reactive species by
exogenous sources such as environmental toxins and diet
promotes the onset of lung diseases10. The physical
characteristics and the chemical composition of PM play a
key role in ROS generation in vitro and in vivo8–10.
Oxygen is readily reduced by an electron to form oxy-

gen free radicals, such as superoxides11. In the presence of
iron ions, superoxide acquires a second electron, leading
to hydrogen peroxide formation, which generated the
extremely reactive hydroxyl radical. Hydroxyl radicals
react very quickly with biomolecules, such as proteins,
fatty acids, and DNA12–14. All molecules in the direct
vicinity of the hydroxyl radical will react with this reactive
form of oxygen12–15.
Diesel exhaust particles (DEPs) consist of polyaromatic

hydrocarbons, which are hydrophobic molecules that can
diffuse easily through cell membranes. As free radicals
cause oxidative damage to biological macromolecules,
such as DNA, lipids, and proteins, they are believed to be
involved in the pathogenesis of many diseases16. The
particles induce the generation of free radicals, which may
lead to an increase in oxidative stress, exacerbating some
respiratory symptoms. Metals present on the particle
surface, including Fe, Co, Cr, and V, undergo redox
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Fig. 1 The proposed mechanism of ultrafine particle (UFP)-
induced lung diseases. PM causes the activation of oxidative stress
and reactive oxygen species, innate immunity, adaptive immunity, and
other mechanisms, leading to the development and exacerbation of
respiratory diseases such as bronchial asthma, COPD, lung fibrosis, and
lung cancer.
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cycling, while Cd, Hg, and Ni, as well as Pb, deplete glu-
tathione and protein-bound sulfhydryl groups, resulting
in ROS production17–20.
PM10 exposure at any time during pregnancy is posi-

tively associated with levels of mitochondrial 8-hydroxy-
2′-deoxyguanosine in maternal blood and umbilical cord
blood21. PM induces increased mitochondrial oxidative
DNA damage during pregnancy in both mothers and their
newborns, indicating that particulate air pollution expo-
sure in early life plays a role in increasing systemic oxi-
dative stress at the mitochondrial level, both in the
mother and fetus.
The water-insoluble fraction of PM10 is similar to the

water-soluble fraction of PM10 and is also capable of
inducing oxidative stress by inducing the generation of
hydrogen peroxide and impairing enzymatic antioxidant
defense, resulting in oxidative DNA damage and apoptotic
cell death through the iron-catalyzed Fenton reaction22.
Redox reactions regulate signal transduction as impor-

tant chemical processes. The response of a cell to a
reactive oxygen-rich environment often involves the
activation of numerous intracellular signaling pathways,
which cause transcriptional changes and allow the cells to
respond appropriately to the perceived oxidative
stress13,14. Nuclear factor-κB (NF-κB), activation protein-
1 (AP-1), nuclear factor erythroid 2 related factor 2 (Nrf2),
and CREB-binding proteins (CBPs) are regulated and
influenced by redox status and have been implicated in
the transcriptional regulation of a wide range of genes that
are involved in oxidative stress and cellular response
mechanisms23.
Nrf224 is a major contributor to cellular defense against

oxidative damage. There was a significant decrease in the
expression of Nrf2 and its upstream regulator genes upon
PM10 exposure, suggesting that Nrf2 is involved in PM10-
induced oxidative damage24.
Redox status in the nucleus affects histone acetylation

and deacetylation status, which regulates inflammatory
gene expression by activation of redox-sensitive tran-
scription factors25. NF-κB is activated in epithelial cells
and inflammatory cells during oxidative stress, leading
to the upregulation of many proinflammatory genes23.
NF-κB is a protein heterodimer that consists of p65 and
p50 subunits. NF-κB acts as an inflammatory switch that
induces genome-wide epigenetic modification upon
ultrafine PM exposure26. Many inflammatory genes
related to the pathogenesis of asthma are regulated by
NF-κB26.
AP-1 is a protein dimer composed of a heterodimer of

Fos and Jun proteins. AP-1 regulates many of the
inflammatory and immune genes in oxidant-mediated
diseases. Gene expression of gamma-glutamylcysteine
synthetase, the rate-limiting enzyme for GSH synthesis,
is induced by activation of AP-1. In addition, the family of

mitogen-activated protein kinases is directly or indirectly
altered by redox changes27. Oxidative stress and other
stimuli, such as cytokines, activate various signal trans-
duction pathways, leading to the activation of transcrip-
tion factors, such as NF-kB and AP-128.
Binding of transcription factors to DNA elements leads

to the recruitment of CBP and/or other coactivators to the
transcriptional initiation complex on the promoter
regions of various genes28. Activation of CBP leads to
acetylation of specific core histone lysine residues by
intrinsic histone acetyltransferase activity28–30.
ROS influence airway cells and reproduce many of the

pathophysiological features associated with asthma. ROS
initiate lipid peroxidation, alter protein structure, enhance
the release of arachidonic acid from cell membranes,
increase the synthesis and release of chemoattractants,
and induce the release of tachykinins and neuroki-
nins14,15. This, in turn, augments airway smooth muscle
contraction, increases airway reactivity and airway secre-
tions, increases vascular permeability, decreases choli-
nesterase and neutral endopeptidase activities, and
impairs the responsiveness of β-adrenergic receptors31.
Asthma attacks are associated with the immediate for-

mation of superoxide that persists throughout the late
asthmatic response32. Allergen challenge in the airways of
atopic individuals causes a twofold increase in superoxide
generation32. Spontaneous and experimental allergen-
induced asthma attacks lead to eosinophil and neutrophil
activation, during which NADPH oxidase is activated and
ROS, such as superoxide and its dismutation product
H2O2, are rapidly formed33. ROS production in people
with asthma correlates with the severity of airway reac-
tivity34. Asthma is characterized by oxidative modifica-
tions35. Increased levels of eosinophil peroxidase (EPO)
and myeloperoxidase (MPO) parallel the numbers of
eosinophils and neutrophils, respectively, and are found at
higher than normal levels in peripheral blood, induced
sputum and BAL fluid36 of patients with asthma. Mal-
ondialdehyde and thiobarbituric acid-reactive substances
have also been detected in urine, plasma, sputum, and
BAL fluid in relation to the severity of asthma37,38. In
addition, 8-isoprostane, a biomarker of lipid peroxidation,
is also elevated in exhaled breath condensate from adults
and children with asthma37,38.
Reduced exposure to PM10 attenuates age-related

declines in lung function, particularly in the small air-
ways39. Polymorphisms in glutathione S-transferase
(GST) and heme oxygenase-1 (HMOX1) genes, which
are important for oxidative stress defense, modify these
beneficial effects39. A population-based sample of 4365
adults was followed up after 11 years, including ques-
tionnaires, spirometry and DNA blood sampling. The
benefits of reduced PM10 exposure were not equally dis-
tributed across the population but were modified by the
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individual genetic make-up determining oxidative stress
defense39.
The generation of ROS and nitrogen species is markedly

increased during acute asthma attacks40,41. Nitric oxide
(NO) is a short-lived molecule that causes vasodilation
and bronchodilation42. In that study, the nitrite con-
centration in BAL fluid, which is indicative of in vivo
generation of NO in the airways, was significantly higher
in DEP-exposed animals than in the control group. In
another study, alveolar macrophages produced nitrite
during in vitro exposure to DEPs (50 μg/ml), with max-
imal induction 4 h after exposure43.
The loss of superoxide dismutase (SOD) contributes to

oxidative stress during acute episodes of asthma exacer-
bation40,41. Oxidative modification of manganese SOD
(MnSOD) is present in asthmatic airway epithelial cells44.
The loss of SOD activity reflects increased oxidative and
nitrative stress in asthmatic patients, suggesting that SOD
serves as a surrogate marker of oxidative stress and
asthma severity45.
Catalase catalyzes the decomposition of hydrogen per-

oxide to water and oxygen, and its activity was found to be
50% lower in BAL fluid obtained from individuals with
asthma compared to that of healthy controls46. Tyrosine
oxidant modifications of catalase occur in asthma, such as
chlorination of tyrosine by peroxidase-catalyzed halo-
genation and oxidative crosslinking of tyrosine to form
dityrosine, a product of tyrosyl radicals46. The most
extensive modification found in asthmatic lungs is tyr-
osine chlorination, which is 20-fold more extensive than
that of tyrosine nitration47. In contrast to SOD and cat-
alase, extracellular glutathione peroxidase (GPX) is pre-
sent at higher than normal levels in the lungs of
individuals with asthma47. This increase is due to induc-
tion of GPX mRNA and protein expression by bronchial
epithelial cells in response to increased intracellular or
extracellular ROS47.
During asthma exacerbation in humans, the levels of

serum thioredoxin (TRX1) increase and are inversely
correlated with airflow48. Cigarette smoke induces
increased oxidant burden and causes irreversible changes
to the protective antioxidant effects in the airways48. The
smoke-derived oxidants damage airway epithelial cells,
inducing direct injury to membrane lipids, proteins, car-
bohydrates, and DNA, leading to chronic inflammation48.
Cigarette smoking delivers and generates oxidative stress
within the lungs49. These imbalances in oxidant burden
and antioxidant capacity have been implicated as impor-
tant contributing factors in the pathogenesis of COPD49.
However, smoking also causes the depletion of anti-
oxidants, which further contributes to oxidative tissue
damage49.
Glutathione S-transferases (GSTs) are a family of

enzymes that play an important role in detoxification by

catalyzing the conjugation of many hydrophobic and
electrophilic compounds to reduced glutathione (l-g-
glutamyl-l-cysteinyl-glycine) and participating in anti-
oxidant defense through a number of mechanisms,
including the repair of ROS-induced damage and the
detoxification of xenobiotics present in air pollutants50.
Glutathione present in human epithelial lining fluid is a
key enzyme that protects the lungs from oxidative
stress51. Titanium dioxide (TiO2) particles activate and
deactivate the phosphorylation of several inflammatory
proteins in lung epithelial cells, especially the serine
and tyrosine phosphorylation of GSTP1, which reg-
ulates cell damage and apoptosis following exposure to
TiO2 particles. Collectively, our data suggest that
GSTP1 is an important modulator of TiO2 particle-
induced inflammation52.
The downregulation of antioxidant pathways has also

been associated with acute exacerbations of COPD49.
Disruption of the oxidant/antioxidant balance is impor-
tant in the pathogenesis of acute lung injury and acute
respiratory distress syndrome. Different cytokines and
growth factors play a role in the pathogenesis of lung
fibrosis53. ROS mediate TGF-β formation in lung epi-
thelial cells53.

Innate immunity
Particles larger than 10 μm generally get caught in the

nose and throat and never enter the lungs54,55. Particles
less than 10 μm but greater than 2 μm land in the tra-
cheobronchial tree and are cleared by mucociliary clear-
ance. Smaller particles can transverse through the airways
and deposit in the alveolar region. In this region, phago-
cytic cells, including neutrophils and macrophages, are
recruited to foreign particles by cytokines and chemokines
and engulf the particles by phagocytosis54,55. The muco-
ciliary escalator then transports particle-laden neutrophils
and macrophages56. PM induces the release of inflamma-
tory cytokines, such as IL-6, IL-8, GM-CSF, and TNF-α57,
from immune cells (e.g., macrophages) as well as structural
airway cells58,59.
Chitin is commonly found in organisms including

parasites, fungi, and bacteria but does not occur in
mammalian tissues60, allowing for selective antimicrobial
activity of chitinase. Macrophage-synthesized Ym1 and
Ym2 are homologous to chitinase and have chitinase
activity61,62. Through the IL-4/STAT 6 signal transduc-
tion pathway, Ym1 is implicated in allergic peritonitis63.
Acid mammalian chitinase may also be an important
mediator of IL-13-induced responses in Th2 disorders,
such as asthma64. Indeed, polymorphisms in acid mam-
malian chitinase are associated with asthma, further
supporting the involvement of acid mammalian chitinase
in asthma development65. DEPs induce airway hyperre-
sponsiveness (AHR), as well as Ym mRNA expression,
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which is a Th2 cell-biased response by activated macro-
phages66. The chitinase Ym1 is expressed in the spleen
and lungs, with lower expression in the thymus, intestine,
and kidney, whereas Ym2 is expressed at high levels in the
stomach, with lower levels in the thymus and kidney66.
Conserved STAT6 sites probably account for the similar,
striking induction of Ym1 and Ym2 expression in Th2-
type environments. In a murine model of DEP exposure,
BALB/c mice intranasally exposed to DEPs followed by a
DEP challenge had upregulation of lung-specific expres-
sion of Ym1 and Ym2 transcripts relative to that of mice
that were not exposed nor similarly challenged43. The
regulation and function of chitinase have not been well
explored in air pollution asthma models. However, in one
study, Ym1 was one of the most highly induced IL-4
target genes, exhibiting at least a 70-fold increase in
macrophage populations43. Alveolar macrophages play an
important role in particle-induced airway and lung
inflammation via direct production of IL-13.
Proteomics offers a unique means of analyzing expres-

sed proteins and has been successfully used to examine
the effects of oxidative stress at the cellular level67. In
addition to revealing protein modifications, this approach
is also used to assess changes in protein expression
levels68. In a previous study, 20 proteins were identified
whose expression levels in the human bronchial epithelial
cell line BEAS-2B changed in response to TiO2 particle
exposure69. These proteins included defense-related, cell-
activating, and cytoskeletal proteins that are implicated in
the response to oxidative stress and can be classified into
four groups according to the pattern of the TiO2-induced
change in expression over time. One protein, macrophage
migration inhibitory factor (MIF, Fig. 2), was also induced

at the transcriptional level. Similarly, black carbon and
diesel exhaust particles induced the protein expression of
MIF in BEAS-2B cells. The expression of MIF also
increased in the lungs of TiO2-instilled rats. These results
indicate that a portion of these proteins may serve as
mediators of or markers for airway disease caused by
exposure to PM.
The inflammatory effects of PM10 have been demon-

strated in experimental animal studies by using direct
instillation into the lung prior to human studies that
showed pulmonary effects after experimental exposure to
PM17. Clinically, PM10 particles likely provoke airway
inflammation via the release of mediators that exacerbate
lung disease in susceptible individuals70; even a single
exposure compromises a host’s ability to respond to
ongoing pulmonary infections71. Fine and UFPs directly
stimulate macrophages and epithelial cells to produce
inflammatory cytokines such as TNF-α, TGF-β1, GM-
CSF, PDGF, IL-6, and IL-872, and reactive oxygen species
are responsible for acute and chronic lung inflammation73.
The inflammasome is a multiprotein complex that

regulates inflammation by activating specific proin-
flammatory cytokines, resulting in an effective host
immune response74. The innate immune system is the
first line of host defense, and the inflammasome is
essential for maintaining a delicate balance between pro-
and anti-inflammatory signals to generate an appropriate
immune response without harming the host74. The
inflammasome is a major regulator of inflammation
through its activation of pro-caspase-1, which cleaves pro-
interleukin-1β (pro-IL-1β) into its mature form. IL-1β is a
critical proinflammatory cytokine that controls the
severity of inflammation associated with a wide spectrum
of inflammatory diseases. NAIP, CIITA, HET-E, TP-2
(NACHT), and leucine-rich repeat and pyrin domain-
containing protein 3 (NLRP3) are key components of the
inflammasome complex, and multiple signals and stimuli
trigger formation of the NLRP3 inflammasome com-
plex75. In our studies76, AHR and inflammation increased
in OVA-sensitized/challenged mice, and these responses
were exacerbated by exposure to TiO2 particles (Fig. 3).
TiO2 particle exposure increased IL-1β and IL-18
expression in OVA-sensitized/challenged mice. UFPs
augmented the expression of NLRP3 and caspase-1,
leading to the production of active caspase-1 in the lung.
Caspase-1 expression was increased and exacerbated by
exposure to TiO2 particles in OVA-sensitized/challenged
mice. ROS levels tended to increase in OVA-sensitized/
challenged and OVA-sensitized/challenged-plus-TiO2

particle-exposed mice. Our data demonstrate that
inflammasome activation occurred in asthmatic lungs
following exposure to particles, suggesting that targeting
the inflammasome may assist in controlling particle-
induced airway inflammation and AHR.

TiO2 Ultrafine particles

Increase in airway inflammation 
and airway responsiveness

Fig. 2 Schematic of the inflammasome cascade in the lungs of the
TiO2 particle-exposed model.
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The effect of air pollution-related PM on epithelial
barrier function and tight junction (TJ) expression in
human nasal mucosa has not been studied to date.
Exposure to PM2.5 leads to a loss of barrier function in the
human nasal epithelium through decreased expression of
TJ proteins and increased release of proinflammatory
cytokines77.

Adaptive immunity
PM causes an increase in changes in T cell responses.

PM induces a Th2-like microenvironment in the lung,
with overproduction of IL-4 and IL-1368. Lung IL-13
transcripts increased 24 h after treatment with fine TiO2

particles (mean diameter= 0.29 μm) compared to that of
sham-treated rats68. IL-13 levels also increased in the BAL
fluids of TiO2-treated rats 72 h after treatment relative to
those of sham-treated rats. To investigate the time- and
dose-dependence of macrophage IL-13 production, iso-
lated alveolar macrophages were stimulated with 1, 10,
and 40 μg/ml TiO2 for 24, 48, and 72 h. The control group
consisted of untreated alveolar macrophages. IL-13 levels
in the supernatants of the macrophage cultures were
measured by ELISA. Macrophages cultured for 48 h with
TiO2 produced IL-13 in a dose-dependent manner. In
addition, 10 μg/ml TiO2 significantly enhanced IL-13
production relative to that of the controls. IL-13 protein
production increased in a time-dependent manner and

peaked 48 h after TiO2 exposure. Using immunohisto-
chemical staining, we also found that macrophages that
were engulfing TiO2 were the main source of IL-13 in
TiO2 particle-induced lung inflammation. Taken together,
our results suggest that alveolar macrophages are major
effectors of innate immunity by modulating inflammatory
responses towards a Th2 phenotype by producing IL-13,
as seen in the adaptive immune response (Fig. 4).
Currently, evidence is not sufficient to demonstrate a

direct relationship between particulates and the induction
of Th2-like cytokines, including IL-4 and IL-13. TiO2

particles are a component of PM10 found in dusty work-
places in industries that are involved in the crushing and
grinding of the mineral ore rutile78, and 50% of TiO2-
exposed workers have respiratory symptoms accompanied
by reduced pulmonary function. Because acute and
chronic exposure to TiO2 particles also induce inflam-
matory responses in the airways and alveolar spaces of
rats68,79–81, TiO2-treated rats are a useful model for
studying epithelial responses to PM10 particles.
PM10 or DEPs increase lung inflammation by inhaled

allergens or respiratory viral infection by acting as adju-
vants. The response may enhance existing allergies or IgE
responses to neo-allergens and susceptibility to respira-
tory infection. This adjuvant effect is exerted by the
enhanced production of inflammatory Th2 and/or Th1
cytokines59. In animal experiments and human studies,
several cytokines and CC chemokines, including IL-4, IL-
5, IL-13, GM-CSF, RANTES, MCP-3, and MIP-1, were
increased when lymphocytes and macrophages/mono-
cytes were costimulated with particulates in the presence
of specific allergens82. The immune system responds in
different ways depending on the type of particulate. DEPs
favor a Th2 response, while asbestos fiber and carbon

Ultrafine particles
Carbon black and diesel particles 

Aggravates respiratory symptoms 
in patients with chronic airway diseases

Increase in 
macrophage migration-
inhibitory factor (MIF)

Fig. 3 PM exposure initiates innate immunity through macrophage
migration inhibitory factors, leading to exacerbation of respiratory
symptoms.

Ultrafine particles
Carbon black and diesel particles 

Alveolar 
macrophage

Airway 
inflammation

IL-5 IL-25

Fig. 4 Th2 cytokine changes in macrophages exposed to TiO2

particles.
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particles upregulate both Th1 and Th2 cytokines pro-
duced by autologous lymphocytes stimulated by antigen82.
In addition to adjuvant effects, inhaled inert particles

cause a spectrum of pulmonary responses, ranging from
minimal changes to marked acute and chronic inflam-
mation. In our study, BALB/c mice were exposed to
100 μg/m³ (low dose) or 3 mg/m³ (high dose) DEPs for up
to 12 weeks (1 h/d × 5 d/wk)83. AHR increased more in
the DEP group than in the control group, and increased
more in the high-dose DEP group than in the low-dose
DEP group at 4, 8, and 12 weeks. IL-5, IL-13, and inter-
feron-γ increased more in the low-dose DEP group than
in the control group at 12 weeks. IL-10 was higher in the
high-dose DEP group than in the control group at
12 weeks. Vascular endothelial growth factor was
increased in the low-dose and high-dose DEP groups
compared to that of the control group at 12 weeks.
Transforming growth factor-β increased more in the
high-dose DEP group than in the control group at 4, 8,
and 12 weeks. The lung collagen content and lung fibrosis
were increased in the high-dose DEP group at 8 and
12 weeks. These results suggest that long-term DEP
exposure increases AHR, inflammation, lung fibrosis, and
goblet cell hyperplasia in a mouse model.

Other mechanisms
Neurogenic inflammation in the lung involves airway

obstruction, an increase in vascular permeability, extra-
vasation of plasma and leukocytes, mucus hypersecretion
and the release of additional inflammatory mediators84.
The neurogenic inflammatory pathway is associated with
the release and activity of neuropeptides such as tachy-
kinins and calcitonin gene-related peptide as a response of
sensory neurons to inflammatory mediators and noxious
stimuli84,85. Transient receptor potential vanilloid 1
(TRPV1) plays a particularly important role in increasing
C-fiber excitability and neuronal inflammatory pathways
during airway inflammation86. ATP and histamine
responses to tussive stimuli are activated via P2X
receptor-mediated mechanisms87,88. P2X7 receptors,
which play a role in neuroinflammation, are frequently
coexpressed with another P2X receptor, P2X489. Silica
nanoparticles inhibit TRPV4 activation and impair the
positive modulatory action of TRPV4 channel stimulation
on the frequency of ciliary beating in airway epithelial
cells90. The P2X7 receptor is involved in inflammation
triggered by SiO2 and TiO2 UFPs by increasing IL-1β
secretion, likely through the inflammasome pathway91. In
our study92, bradykinin, ATP, substance P and CGRP
levels in BALF were increased in OVA mice, and these
increases were augmented in OVA plus UFP-exposed
mice and in NHBE cells with increasing UFP doses, sug-
gesting that UFPs activate TRPVs and P2X7 and secrete
neuromediators that lead to airway inflammation,

exacerbating asthma. Our data92 revealed that TRPV1,
TRPV4, P2X4, and P2X7 were involved in the patho-
genesis of bronchial asthma and that UFPs exacerbate
asthma via a neurogenic mechanism (Fig. 5).

Conclusions
Human and animal studies suggest that PM is involved

in the pathogenesis of airway inflammation and exacer-
bates respiratory diseases. The mechanism of UFP-
induced human health effects can be explained by oxi-
dative cellular damage, including innate immunity,
adaptive immunity, and reactive oxygen species. Further
studies are needed to clarify the mechanism by which
UFPs induce health effects to prevent respiratory and
human diseases by UFPs.
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