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Abstract
The human microbiome has been recently associated with human health and disease. Brain tumors (BTs) are a
particularly difficult condition to directly link to the microbiome, as microorganisms cannot generally cross the
blood–brain barrier (BBB). However, some nanosized extracellular vesicles (EVs) released from microorganisms can
cross the BBB and enter the brain. Therefore, we conducted metagenomic analysis of microbial EVs in both serum (152
BT patients and 198 healthy controls (HC)) and brain tissue (5 BT patients and 5 HC) samples based on the V3–V4
regions of 16S rDNA. We then developed diagnostic models through logistic regression and machine learning
algorithms using serum EV metagenomic data to assess the ability of various dietary supplements to reduce BT risk
in vivo. Models incorporating the stepwise method and the linear discriminant analysis effect size (LEfSe) method
yielded 12 and 29 significant genera as potential biomarkers, respectively. Models using the selected biomarkers
yielded areas under the curves (AUCs) >0.93, and the model using machine learning resulted in an AUC of 0.99. In
addition, Dialister and [Eubacterium] rectale were significantly lower in both blood and tissue samples of BT patients
than in those of HCs. In vivo tests showed that BT risk was decreased through the addition of sorghum, brown rice oil,
and garlic but conversely increased by the addition of bellflower and pear. In conclusion, serum EV metagenomics
shows promise as a rich data source for highly accurate detection of BT risk, and several foods have potential for
mitigating BT risk.

Introduction
The human microbiome is the collection of genes

contributed by the total microbial community in our body
and has been associated with human health and disease.
Despite the majority of the bacteria in our bodies residing
in the gastrointestinal (GI) tract, the characteristics and
activity of the microbiome have far reaching effects on
metabolism, immune function, and carcinogenic activ-
ity1–3. Recent interest has been particularly paid to

understanding the emerging relationship between our
microbiome and cancer. Through integration of the
holobiont paradigm in oncological research, recent stu-
dies have demonstrated a complex relationship between
the microorganisms occupying our intestinal tract and
carcinogenesis. The gut microbiota has been reported to
impact the tumor macroenvironment through modula-
tion of host immune and neuroendocrine factors4. The
microbiome exerts tremendous influence on immune
function, development and response, with over 70% of the
immune cells in our body residing in our gut5,6. Fur-
thermore, certain microorganisms have been identified to
have cancer-promoting effects, while others exert inhibi-
tory effects on cancer growth by boosting the body’s
immune response and diminishing immune evasion of
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cancer cells7. Therefore, the complex dynamics between
the gut microbiome and cancer micro- and macro-
environments must be elucidated to better understand the
multifaceted manner in which cancer develops and
progresses.
While the field of microbiome research has made tre-

mendous strides in the 21st century, the nanosized
extracellular vesicles (EVs) released by bacteria and
archaea remain a relatively underexplored area of study.
Microbial EVs are typically 20–200 nm in diameter and
composed of a lipid bilayer encapsulating various pro-
teins, nucleic acids and metabolites derived from the
parent microbial cell8. The biogenesis of EVs is closely
regulated in both Gram-negative and Gram-positive
commensal bacteria, and EVs are generated throughout
cell proliferation as ectosomes and cell death as apoptotic
bodies9. Microbial EVs have been shown to travel distally
throughout the body and are detectable in a variety of
samples, including stool, urine, serum, and tissue, and
elicit a variety of immunological effects in vitro and
in vivo9,10. Previously, we reported the effective use of
microbial EVs for cancer diagnostics using human
serum11. Furthermore, Lactobacillus rhamnosus EVs have
been shown to exert a cytotoxic effect on hepatic cancer
cells12. A previous meta-analysis of 22 cohort and
case–control studies revealed that obesity is a risk factor
for meningiomas, gliomas, and brain and central nervous
system (CNS) tumors in females and meningiomas in
males13. Our group recently reported that dietary inter-
vention with several different grains was capable of
ameliorating high-fat diet-induced microbiome-
associated colorectal cancer risk in vivo14. Therefore, we
sought to apply this methodology to determine the role of
the EV microbiome in brain cancer by analyzing microbial
EVs circulating in the serum and brain tissue of brain
tumor (BT) patients and healthy control (HC) subjects.
As nanosized microbial vesicles are able to enter cir-

culation and interact with a variety of host sites via distal
intercellular communication, microbial EVs play an
immunomodulatory role in the cancer macroenvironment
in addition to the cancer microenvironment. BTs are a
particularly difficult area to directly link to the micro-
biome, as microorganisms themselves are generally
incapable of crossing the blood–brain barrier (BBB). The
BBB also presents a major hurdle for clinical applications
of chemotherapy medications such as doxorubicin and
paclitaxel for glioma treatment due to the p-glycoprotein
drug efflux mechanisms associated with the BBB15.
However, previous studies recently revealed that nano-
sized EVs released from commensal microorganisms are
capable of crossing the BBB and entering the brain16,17.
Therefore, as the microbiome is known to affect the body’s

susceptibility to cancer and has a direct link to the brain via
the gut–brain axis, we sought to elucidate the relationship

between the EV microbiome and BTs. We conducted
metagenomic analysis of microbial EVs isolated from both
serum and brain tissue collected from BT patients and HC
subjects to determine significant microbiome alterations in
the cancer macroenvironment and microenvironment. We
then developed intelligent diagnostic models at the genus
level using serum EV metagenomic data and machine
learning algorithms. The resulting diagnostic models were
used to assess the ability of a variety of grain, protein, lipid
and vegetable dietary supplements to reduce BT risk
induced by consumption of a high-fat diet (HFD). Our
findings support the role of microbial EVs and diet in the
tumor micro- and macroenvironments and the need for
further assessment for future diagnostic and therapeutic
development.

Materials and methods
Subjects and sample collection
In total, serum samples of 152 BT patients and 198 HC

subjects were obtained from Seoul National University
Hospital and Inje University Haeundae Hospital, respec-
tively. In addition, tissue samples were obtained from 5
BT patients and 5 HC subjects enrolled from Seoul
National University Hospital. Each BT clinical subject
presented symptoms leading them to visit the hospital for
treatment. Healthy control subjects were screened
through a general health examination. The present study
was approved by the Institutional Review Board of Seoul
National University Hospital (IRB No. H-1009-025-331)
and Inje University Haeundae Hospital (IRB No. 1297992-
2015-064). All methods in this study were conducted in
accordance with the approved guidelines, and informed
consent was obtained from all clinical subjects.
All collected human serum samples were transferred to

serum separator tubes (SSTs) and then centrifuged at
3000 rpm for 15min at 4 °C. All brain tissue samples were
frozen in liquid nitrogen and stored at −80 °C for analysis.

In vivo mouse study model
All mice used in this study were female C57BL/6 mice

at 6 weeks of age (Orient Bio Inc., Seongnam, Korea).
Mice were housed and maintained under standard
laboratory conditions of 22 ± 2 °C and 50 ± 5% humidity
under 12-h day and night cycles throughout the course of
the in vivo study. The animal study was approved by the
Institutional Animal Care and Use Committee of Chung-
Ang University (Approval No. 2018-00057). All methods
in this animal study were conducted in accordance with
the approved guidelines.

Evaluation of dietary effects
To analyze dietary effects, in vivo sampling of mouse

serum was conducted before and after a dietary inter-
vention. First, mice were randomly divided into two

Yang et al. Experimental & Molecular Medicine (2020) 52:1602–1613 1603

Official journal of the Korean Society for Biochemistry and Molecular Biology



groups (n= 60): a group fed a regular chow diet (RCD)
and a group fed a HFD. Second, mice were randomly
divided into 30 groups (n= 5) including an RCD group,
HFD group, and HFD+ group fed an HFD supplemented
with adlay, glutinous rice, nonglutinous rice sorghum,
buckwheat, brown rice, acorn, mung bean, roasted bean,
fermented bean, mealworm, perilla (Perilla frutescens var.
japonica Hara), perilla oil, brown rice oil, sesame oil,
broccoli, garlic, ginger, turmeric (Curcuma longa Linne),
lotus root, cabbage, bellflower (Platycodon grandiflorum),
onion, pumpkin, pear, grape, kelp, or shiitake mushroom.
Mice within the RCD control group were fed regular chow
containing 18% dietary fat (Research Diets, Inc., New
Brunswick, NJ, USA) for 4 weeks. Mice in the HFD group
were fed a 60% fat diet (Research Diets, Inc), and diet
powder (100 µg) or oil (100 µL) was orally administered
once every day for 4 weeks. At the conclusion of the 4-
week study period, all mice were sacrificed, and serum was
collected for EV microbiome compositional assessment.

EV DNA extraction and sequencing
To extract EVs from serum and tissue samples, cen-

trifugation, filtering, and boiling methods were performed
as described in our previous study11. Serum and tissue EV
DNA were extracted using a DNeasy PowerSoil kit (QIA-
GEN, Germany). Finally, the extracted EV DNA in each
sample was quantified using QIAxpert (QIAGEN). Isolated
EV microbial genomic DNA was amplified by targeting the
16S V3–V4 hypervariable regions. The libraries were pre-
pared using PCR products, and all amplicons were
sequenced using a MiSeq instrument (Illumina, USA).

Metagenomic analysis of microbial EV composition
Taxonomic assignment was performed by the profiling

program MDx-Pro ver. 2 (MD Healthcare, Korea). Briefly,
paired-end reads were filtered according to the barcode,
and primer sequences were trimmed using Cutadapt
(version 1.1.6) and then merged with CASPER. To obtain
high-quality sequencing reads, sequences with read
lengths under 350 bp or over 550 bp and with Phred
quality scores below 20 were discarded. The VSEARCH
de novo clustering method was used to assign operational
taxonomic units (OTUs) to the genus level with a 97%
similarity threshold. OTUs containing 1 sequence in only
one sample were excluded from further analysis. Subse-
quently, taxonomic assignment was conducted to the
species level using UCLUST and QIIME 1.9.1 against the
Silva 132 database under default parameters. If clusters
could not be assigned at the genus level due to insufficient
taxonomic information in the database, the taxon was
assigned to the next highest level indicated in parentheses.
Brackets around the taxon name represent an unverified,
suggested taxonomic assignment based primarily on
whole genome phylogeny within the genomic database.

Predictive diagnostic model development
For the development of a BT predictive diagnostic model,

we considered the relative abundances of OTUs at the
genus level as model variables. First, we selected candidate
biomarkers with p-values below 0.01, fold-changes >2, and
average relative abundances >0.1%. Biomarkers included as
model variables were selected by one of four methods that
were then compared to determine the model with the
highest area under the curve (AUC), sensitivity, specificity,
and accuracy. The first method (M1) used stepwise selec-
tion for which the Akaike information criterion (AIC) was
used for comparison among predictive diagnostic models
with differing variables. The second method (M2) incor-
porated age and sex as covariates in addition to stepwise
selection methodology. The third selection method (M3)
used linear discriminant analysis (LDA) and LDA effect
size (LEfSe) algorithms for biomarker discovery, while the
fourth method (M4) included age and sex as covariates in
addition to incorporating biomarkers selected using LEfSe.
In addition, the fifth model (M5) was calculated by a
machine learning algorithm based on the gradient boosting
machine (GBM) ensemble method. The GBM was incor-
porated in the modeling process using the Gradient
Boosting Regressor of scikit-learn (version 0.21.3) in
python (version 3.6.9). After variable selection, the pre-
dictive diagnostic model was calculated using logistic
regression with training and test sets established at an
80:20 ratio for model validation.

Statistical analysis
Significant differences in age between the BT and con-

trol groups were determined through Student’s t-test and
Wilcoxon rank-sum test, respectively. A chi-square test
was performed to determine any significant difference
between the groups based on sex. To analyze alpha
diversity, Chao1, Shannon index, and Simpson index were
assessed. Chao1 corrects for observed richness, and the
Shannon index considers species evenness and relative
abundance in each sample. The Simpson index evaluates
both evenness and richness by considering the total
number of species and their abundance in a community18.
Principal coordinate analysis (PCoA) was conducted to
determine individual taxa-level clustering of groups based
on Bray–Curtis dissimilarity distance. To analyze the
difference in microbiome composition between the HC
and BT groups, Student’s t-test was performed. LEfSe was
also used to determine significant, differentially abundant
genera between the clinical groups for the selection of
biomarkers with statistical and biological significance.
The LEfSe algorithm utilized the Wilcoxon rank-sum test
and linear discriminant analysis (LDA) with the cut-off
LDA score (log10) set as 2. The results were considered
significant when p-values were <0.05 (p < 0.05), and all
analyses were conducted using R version 3.6.1.
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Results
Clinical characteristics of subjects
Through assessment of the clinical characteristics of the

HC and BT subject groups, it was determined that there
was a significant difference in age between the two groups
(p < 0.001). The HC subjects ranged from 40 to 78 years of
age with a mean age of 59.7 (SD 10.5) years, while the BT
subjects yielded a mean age of 51.5 (SD 14.2) ranging
from 16 to 81 years (Table 1).

Comparison of alpha and beta diversity between healthy
controls and brain tumor patients
The Chao1 index of species richness and Shannon index

of bacterial community diversity were significantly higher
in the BT group, whereas the difference in the Simpson
index of diversity between the patient and control groups
was not significant (Fig. 1a). PCoA was conducted, and all
samples were plotted along the two principal coordinates
(PCos) that accounted for the greatest dissimilarity
between samples to evaluate the similarity between the
HC and BT groups. At all taxa levels, significant clustering
was observed between the two groups (p < 0.001) (Fig. 1b,
Supplementary Fig. 1).

Differences in microbial EV abundance in serum between
healthy controls and brain tumor patients
At the phylum level, Firmicutes abundance was sig-

nificantly lower in the control group than in the patient
group, whereas Actinobacteria and Proteobacteria were
higher (Fig. 2a, b). LEfSe analysis of phylum-level bio-
markers yielded Actinobacteria, Proteobacteria, and Fir-
micutes as the only phyla with log(LDA score) values >4
(Fig. 2c). At the class level, Clostridia, Bacilli, Erysipelo-
trichia, Gammaproteobacteria, Actinobacteria, Alphapro-
teobacteria, and Negativicutes were significantly altered.

Eight class-level biomarkers were determined with Acti-
nobacteria yielding a log(LDA score) of 4.0, indicating
statistically and biologically significant higher abundance
in the control group (Supplementary Fig. 2a). At the order
level, Clostridiales, Bifidobacteriales, Erysipelotrichales,
Lactobacillales, Micrococcales, Sphingomonadales, and
Selenomonadales were determined to be significantly
altered between the healthy control and patient groups.
LEfSe assessment at the order level revealed 13 taxa that
were significantly different between the healthy control
and patient groups, with Clostridiales being the most
significantly altered with a log(LDA score) value of 3.9
(Supplementary Fig. 2b). At the family level, Rumino-
coccaceae, Lactobacillaceae, Peptostreptococcaceae,
Erysipelotrichaceae, Lachnospiraceae, Streptococcaceae,
Sphingomonadaceae, and Porphyromonadaceae were
significantly altered. Family-level biomarker analysis
using LEfSe revealed a total of 21 taxa, and Rumino-
coccaceae was the microbial EV family that differed the
most between the patient and control groups with a log
(LDA score) value >4.0 (Supplementary Fig. 2c). Finally,
genus-level analysis revealed a multitude of significantly
different taxa between the HC and BT groups (Fig. 3a).
Ruminococcaceae UCG-014, Lachnospiraceae NK4A136,
Ruminococcaceae UCG-013, Lactobacillus, Ruminiclos-
tridium 6, and Peptoclostridium were significantly lower
in the control group than in the BT group, whereas
[Eubacterium] coprostanoligenes, Escherichia-Shigella,
Blautia, Bifidobacterium, Streptococcus, and Sphingo-
monas were significantly higher (Fig. 3b). LEfSe analysis
of genus-level serum EV microbiome composition yiel-
ded a total of 30 genera, with Ruminococcaceae UCG-014
standing out with a log(LDA score) over 4.0 (Fig. 3c).
A total of 4, 9, 12, 18, and 29 taxa showed a proportion

higher than 0.5% in either group and significant difference

Table 1 Subjects’ clinical characteristics.

Serum Tissue

HC (n= 198) BT (n= 152) p-Value HC (n= 5) BT (n= 5) p-Value

Sex (M/F) 119/79 87/65 0.893 3/2 3/2 1.000

Age (mean ± SD) 59.7 ± 10.5 51.5 ± 14.2 <0.001 46.8 ± 11.9 54.0 ± 14.6 0.548

Pathology glioma (WHO grade III/IV) 107 (15/92) 2 (–/2)

Metastatic brain tumor 45 3

EGFR (+) 75 –

EGFR VIII (+) 26 –

IDH1/2 mutation (+) 15 –

MGMT methylation (+) 61 1

Chromosome 1p/Chromosome 19q (+) 3/8 −/1

HC healthy control subjects, BT brain tumor patients, EGFR epidermal growth factor receptor, IDH isocitrate dehydrogenase, MGMT O6-methylguanine DNA
methyltransferase.
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Fig. 1 Alpha and beta diversity of serum in healthy control (HC) subjects and brain tumor (BT) patients. Differences in (a) alpha diversity
(Chao1, Shannon, and Simpson index) and (b) beta diversity of the serum EV microbiome between the HC and BT groups using PCoA based on
Bray–Curtis dissimilarity at the genus level.

Fig. 2 Differences in microbiome abundance between healthy control (HC) subjects and brain tumor (BT) patients in serum at the phylum
level. a Heatmap of serum microbial EV abundance. b Major bacterial EVs and significant difference between the HC and BT groups by t-test (>1% in
any group). c Significantly different bacterial EVs determined through LEfSe analysis (>4 log(LDA score)).
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between the control and patient groups using a t-test at
the phylum, class, order, family, and genus levels,
respectively (p < 0.05).

BT diagnostic model development based on serum
microbial EV metagenomics
Using the serum microbial EV metagenomic profiles of

the control and BT groups, diagnostic model sets were
developed to determine BT risk in healthy subjects. The M1
and M2 models used logistic regression with stepwise
selection and incorporated age and sex, respectively, as
covariates in addition to stepwise selection. The M1 andM2
models were selected by the lowest AIC as optimal diag-
nostic models, while the M3 and M4 models applied logistic
regression to selected biomarkers. The biomarkers of M3
were selected through LEfSe, while M4 included age and
sex as covariates in addition to biomarkers selected using
LEfSe. Finally, M5 was calculated by a machine learning
algorithm based on the GBM method. Following stepwise
selection and logistic regression analysis, the M1 and M2
models, which were optimized, yielded 12 significant
microbial EV genera: Stenotrophomonas, Knoellia, Sphin-
gomonas, Solanum melongena, Parabacteroides, Actino-
myces, Ruminiclostridium, Lactococcus, Turicibacter,

Faecalibacterium, Streptococcus, and Bifidobacterium
(Fig. 3b). In addition, logistic regression utilizing bio-
markers determined by LEfSe analysis for the M3 and M4
models revealed 29 different significant microbial EV
genera: Ruminococcaceae UCG-014, Lachnospiraceae
NK4A136, Lactobacillus, Lachnospiraceae (f), Acineto-
bacter, Staphylococcus, Pseudomonas, Ruminococcaceae
UCG-013, Klebsiella, Bifidobacterium, Ruminococcus 1,
Streptococcus, Ruminiclostridium 6, Peptoclostridium,
Sphingomonas, Clostridiales vadinBB60 (f), Turicibacter,
Ruminococcaceae (f), Ruminococcus 2, Peptococcaceae (f),
Diaphorobacter, Corynebacterium 1, Lactococcus, Propio-
nibacterium, Solanum melongena, Actinomyces, Knoellia,
Stenotrophomonas, and Veillonella (Fig. 3c). In the case of
M5, the relative abundance of the total microbial EV
metagenomic information analyzed was input rather than
specific biomarkers as features for analysis. Model per-
formance using the test sets was evaluated based on the
AUC, sensitivity, specificity, and accuracy of each method
to determine the optimal BT diagnostic model. The
resulting BT diagnostic models all yielded AUCs higher
than 0.93, and the stepwise selection method showed a
trend of lower AUC than LEfSe analysis for their given
models (Fig. 4a). The model based on the GBM method

Fig. 3 Differences in microbiome abundance between healthy control (HC) subjects and brain tumor (BT) patients in serum at the genus
level. a Heatmap of serum microbial EV abundance. b Major bacterial EVs and significant difference between the HC and BT groups by t-test (>1% in
any group). c Significantly different bacterial EVs determined through LEfSe analysis (>2 log(LDA score)).
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showed the highest sensitivity, specificity, and AUC with
values of 1.000, 0.936, and 0.993, respectively (Fig. 4b).

Metagenomics of microbial EVs in brain tissue and
comparison with serum microbiome
At the phylum level, Firmicutes, Bacteroidetes, Actino-

bacteria, and Proteobacteria were the most abundant phyla
in all groups, accounting for over 80% of the tissue EV taxa
in the patient and control groups. Cyanobacteria and Sac-
charibacteria were significantly higher in the control group
than in the patient group (Fig. 5a, c). At the class level,
Erysipelotrichia was significantly lower in the control group
than in the patient group, whereas Clostridia, Sacchar-
ibacteria (p), and Chloroplast were significantly higher
(Supplementary Fig. 3a). At the order level, Clostridiales,
Chloroplast (c), and Saccharibacteria (p) were significantly
enriched in the control group, whereas Erysipelotrichales
was significantly depleted (Supplementary Fig. 3b). At the
family level, Bacteroidaceae, Ruminococcaceae, Bacteroi-
dales S24-7 group, Erysipelotrichaceae, Chloroplast (c),
Prevotellaceae, and Saccharibacteria (p) were significantly
altered between the clinical groups, and biomarkers dis-
covered through LEfSe included Bacteroidales S24-7 group,
Ruminococcaceae, Prevotellaceae, Bacteroidaceae, and
Erysipelotrichaceae (Supplementary Fig. 3c). At the genus
level, Bacteroides and Erysipelatoclostridium were sig-
nificantly lower in the control group than in the BT group,
whereas Bacteroidales S24-7 group, Chloroplast (c), Lach-
nospiraceae NK4A136 group, Prevotella 9, and Candidatus
Saccharimonas were significantly higher (Fig. 5b, d). Genus-
level LEfSe assessment revealed Bacteroidales S24-7 group,

Lachnospiraceae NK4A136, Bacteroides, and Erysipelato-
clostridium as significant BT biomarkers (Fig. 5e).
To compare the microbiome compositional alterations

of serum and tissue between controls and BT patients,
fold-change of the microbial EV composition of serum
and tissue obtained from the same individuals was ana-
lyzed. At the phylum level, Saccharibacteria in patients
was significantly decreased in both serum and tissue
(Supplementary Fig. 4a). At the class level, Erysipelo-
trichia was significantly increased in both serum and tis-
sue samples collected from BT patients (Supplementary
Fig. 4b). At the order level, Erysipelotrichiales was also
significantly increased in both patient serum and tissue
samples (Supplementary Fig. 4c). At the family level,
Erysipelotrichiales was significantly higher and Pre-
votellaceae was significantly reduced in patient serum and
tissue (Supplementary Fig. 4d). Finally, at the genus level,
[Eubacterium] rectale (E. rectale) and Dialister were sig-
nificantly decreased in both serum and tissue samples
obtained from BT patients. In addition, Lachnospiraceae
NK4A136 was significantly lower in BT patient tissue,
whereas it was significantly increased in patient serum
compared to its levels in control tissue and serum samples
(Fig. 6).

Dietary effect on brain tumor risk based on the HFD mouse
model
To analyze the relationship between EV microbiome-

associated BT risk and diet, genus-level relative abun-
dances of the serum EV microbiome of mice fed an HFD
and mice fed an HFD supplemented with an additional

Fig. 4 Brain tumor diagnostic models based on the serum EV microbiome at the genus level. Receiver operating characteristic (ROC) curves for
(a) stepwise selection-based M1 (red) and M2 (blue) models, linear discriminant analysis effect size (LEfSe)-based M3 (green) and M4 (yellow) models,
and (b) ROC curve for AI-based M5 model.
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food item (HFD+) were fitted to the M1 and M3 models.
Serum bacterial EV composition differed significantly
between the different dietary groups, and the fitted value
obtained through each model was also subsequently
altered. However, the difference between the dietary effect
of the regular chow diet and the HFD on brain tumor risk
was not significant (Supplementary Fig. 5). The absolute
value and negative/positive values of fold-changes in the
fitted model values between the HFD and HFD+ groups
differed between the M1 and M3 models. BT risk was
drastically decreased through the addition of sorghum,
brown rice oil, and garlic to the HFD with under 0.0625-
fold changes in the fitted model value obtained through
both M1 and M3 models. In addition, supplementation of
fermented bean, mealworm, turmeric, cabbage, onion,
and shiitake mushroom reduced BT risk in HFD-fed mice.
Conversely, BT risk was increased by the addition of
bellflower and pear. The cooking process of the dietary
supplements also affected the alteration of EV
microbiome-associated BT risk. The addition of roasted
beans increased BT risk, while fermented beans drastically

decreased BT risk. In addition, lipids derived from brown
rice were shown to significantly reduce BT risk in both
diagnostic models (Fig. 7).

Discussion
In this study, we established significant differences

between the serum EV microbiome of healthy subjects
and BT patients. Based on this analysis, we developed
diagnostic models using serum microbial EV biomarkers
with high model strength and accuracy. Recently, studies
on the relationship between the gut microbiome and
brain have increased. Previous studies have shown that
the gut microbiome is associated with brain health,
especially in a variety of neurological disorders17,19. While
the relationship between BT growth and development and
neurological disorders is uncertain, BTs can place a sig-
nificant burden on patient vision, mobility, speech, and
other cognitive functions20. Thus, the gut microbiome
might be associated with overall brain function, particu-
larly through the gut–brain axis. The ways in which the
gut microbiome affects brain health include excessive

Fig. 5 Differences in EV microbiome abundance between healthy control (HC) subjects and brain tumor (BT) patients in brain tissue at the
phylum and genus levels. Heatmap of core microbial EV taxa in brain tissue at the a phylum and b genus levels. Major bacterial EVs of both clinical
groups and significant differences between groups were assessed using a t-test at the c phylum and d genus levels. e Significantly different bacterial
EV biomarkers selected via LEfSe at the genus level.
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Fig. 6 Fold-change between healthy control (HC) subjects and brain tumor (BT) patients in serum and tissue at the genus level. Red
indicates genera of microbial EVs that were significantly different between the clinical groups in serum, while green represents those that were
significant in tissue. Blue data points indicate microbial EV genera with significant differences in both serum and tissue samples.

Fig. 7 Fold-change in brain tumor (BT) risk between high fat diet (HFD) and HFD+ fed mouse groups. The M1 (stepwise selection) and M3
(LEfSe) BT diagnostic models developed in this study were applied to mice fed either an HFD or an HFD with an additional food item (HFD+). The
fold-change of the fitted value of BT risk between the HFD and HFD+ groups was plotted for each dietary food as well as each diagnostic model.
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stimulation of the immune system by bacterial compo-
nents such as LPS, antigenic proteins, neurotoxic meta-
bolites released by bacterial enzymes, hormones and
neurotransmitters released by gut microbes, and direct
stimulation of gut bacteria through the vagus nerve19. We
suggest that bacterial EVs may be a key mechanism of
interaction between the gut microbiome and the brain
because nanosized microbial EVs can transverse the BBB
and deliver a variety of molecules, including LPS, proteins,
nucleic acids, and metabolites, to host cells21–23. While
commensal gut bacteria are generally restricted to the
gastrointestinal system, their EVs can transverse the gut
epithelial lining and enter systemic circulation in the
bloodstream10. BBB-penetrating microbial EVs warrant
increased investigation, as their cargo, such as sRNAs, can
promote neuroinflammation via TNF-alpha activation24.
In light of these findings, we suggest that the gut micro-
biome can affect brain health via circulating EVs and that
bacterial EVs in blood could be powerful biomarkers in
the assessment of brain disease.
In this study, we analyzed bacterial EVs in blood and

tissue as BT biomarkers for the first time. We found that
the distribution of bacterial EVs in both blood and tissue
samples was significantly different between HC and BT
patients. At the genus level, the number of significantly
different bacterial EVs between HCs and BT patients was
higher in blood than in tissue samples. Through this
analysis, we revealed that the Dialister and E. rectale of BT
patients are significantly decreased in both blood and
tissue in comparison to the respective levels in HC sub-
jects. However, Lachnospiraceae NK4A136 was sig-
nificantly increased in the blood of BT patients, whereas it
was decreased in BT-derived tissue. A previous study
showed that the abundance of Dialister, E. rectale, and
Lachnospiraceae NK4A136 in the gut is related to several
neurological disorders. For example, E. rectale is lower in
patients with amyloid-positive and amyloid-negative mild
cognitive impairment (MCI)17, while Dialister has been
shown to be diminished in individuals with autism spec-
trum disorder, Alzheimer’s disease, and depressive dis-
order patients compared to the respective levels in healthy
subjects25–27. In addition, an in vivo study demonstrated
that Lachnospiraceae NK4A136 is reduced in Alzheimer’s
disease patients in comparison to the levels in healthy
controls28. Bacterial EVs are secreted from bacteria as
shedding vesicles, ectosomes, and apoptotic bodies9.
Decreased bacterial populations could lead to a reduction
in proliferation activity, leading to fewer secreted EVs;
therefore, communication components might also be
decreased. However, as bacterial populations are reduced,
apoptosis induces the secretion of apoptotic bodies that
may cross the intestinal epithelial cell layer and circulate
throughout the blood. Therefore, we suggest that the
interplay of gut microbiota abundance and the blood EV

microbiome has a very complex and potentially nonlinear
relationship. Further studies on the role of circulating
bacterial EVs in communication between the gut micro-
biota and various organs should be performed. Additional
investigations should focus on verifying the efficacy of
bacterial EVs in the treatment and diagnosis of a variety of
neurological diseases.
In a previous study, we demonstrated that bacterial EVs

in serum had strong potential as diagnostic biomarkers
for hepatocellular carcinoma11. Following those findings,
in this study, we analyzed bacterial EVs in blood as bio-
markers for BT diagnosis for the first time. Furthermore,
we applied machine learning to analyze blood EV
microbiome data for highly accurate BT diagnosis. The
results of this study are significant as a novel and accurate
diagnostic method for BTs and yielded an AUC over 0.93
in all diagnostic models. Other studies exploring diag-
nostic applications for BTs used a computer-aided
detection method based on magnetic resonance imaging
(MRI) with an accuracy of 99%29 in addition to a core of
iron oxide as a nanoparticle based on MRI contrast
agents15. Our results showed that bacterial EVs in blood
also have strong potential as biomarkers aiding in the
detection of BTs that may not be readily detected through
conventional imaging methods.
Aside from determining the diagnostic potential of

serum EVs in BTs, we also sought to further determine
dietary interventions that could reduce BT risk associated
with the serum EV microbiome. Dietary habits have sig-
nificant impacts on gut microbiota activity and commu-
nity structure that are known to influence health30. Here,
we found that different diets impacted the composition
serum EV microbiome components associated with BTs
in mice. Of the dietary supplements tested in this study,
sorghum, brown rice oil, garlic, cabbage, and onion were
the primary foods that decreased serum EV microbiome-
associated BT risk, whereas bellflower increased the risk.
Only a few published epidemiological studies have
reported the impact of vegetable consumption on glioma
risk31,32. Specifically, different colored vegetables showed
different abilities to decrease glioma risk33. Leafy green
vegetables and yellow-orange vegetables were significantly
related to decreased BT risk, especially glioma, whereas
eggs, grains, noncured meat, and citrus fruits were sig-
nificantly related to increased risk34. These previous stu-
dies targeted combined diets, such as vegetables, grains,
and fruits, rather than specific foods, as these studies were
primarily epidemiological studies assessing diet on a large
scale. However, this study showed the relation between
BT risk and individual foods based on differential serum
EV microbiome composition in an in vivo model. Fur-
thermore, the BT risk associated with a certain food can
vary according to the applied cooking method. The results
of this study suggest that roasting might increase risk and
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extracted oil (lipid) might decrease risk of BT. However,
further study is necessary using other foods and compar-
isons of precise cooking methods such as cooking time,
concentration of ingredients, and cooking environment.
Recently, studies on medicinal food and dietary treat-

ments for neurological diseases have been increasing. For
example, supplementation of arginine-rich food with
conventional therapeutics has been shown to improve
several aspects of stable angina patients’ quality of life and
vascular function35. Furthermore, consumption of med-
icinal food containing phosphatide precursors and various
cofactors for 12 weeks was demonstrated to improve
memory in patients with mild cases of Alzheimer’s dis-
ease36. Several taxa of bacterial EVs derived from serum
that were shown to be significantly decreased in BT
patients in this study, Dialister, Bifidobacterium, and
E. rectale, were demonstrated to be significantly increased
by certain dietary treatments, including brown rice and
whole grain barley, in a previous study37. Strategic dietary
management could improve the symptoms of brain dis-
eases and enhance treatment efficacy. Dietary manage-
ment affects human health through various routes,
including chemical, nutrient, immunology, and micro-
biome modulation. Therefore, dietary treatment has vast
potential to supplement and enhance neurological disease
therapy and medicinal approaches. The dietary interven-
tion findings reported in this study provide a strong
foundation for further investigation of dietary treatment
to reduce BT risk.
This study has several limitations, including a relatively

small sample size and limited clinical information that
included only age and sex. In addition, there was a sig-
nificant difference in age between the BT and HC groups,
which could potentially act as a confounding factor in this
study. Age may affect the microbiome composition of
serum38; however, the relation between age and serum
microbiome composition has yet to be clearly demon-
strated. Further study should determine if the factor of
age is a potentially complicating effect and minimize such
factors accordingly. In addition, the samples used in this
study were drawn solely from a hospital population, which
could limit the representativeness and generalization of
these results. The diagnostic models developed in this
study should be further validated using a larger sample
size from a more diverse patient population, and more
clinical information should be collected. Another limita-
tion of this study that could act as a confounding factor in
our diagnostic models was the lack of control for medi-
cation usage, sampling time, diet, and physical activ-
ity39,40. In the future, we should incorporate drug-naive or
drug-free patients, dietary information, and physical
activity of patients for greater insight. In addition, more
precise exploration of the influence of diet on BT risk is
necessary. To thoroughly determine the effect of diet on

BT patients, clinical testing should be conducted as well as
larger animal brain tumor models. In addition, the cooking
method should be more precisely characterized. Altera-
tions in cooking methods such as roasting, fermentation,
oil extraction, temperature, time, humidity, and con-
centration could have different effects. Therefore, future
studies should more tightly control these variables and
compare various cooking methods of the same food to
determine the optimal dietary intervention for BTs. Finally,
the exact mechanism through which serum bacterial EVs
influence BT development should be verified in the future.
In conclusion, this study provides further evidence to

support our expanding understanding of the complex,
underexplored role of circulating EVs as biomarkers of
chronic disease. By incorporating machine learning and
serum EV metagenomics, we developed high-strength BT
diagnostic models in a clinical cohort that were then used
to determine the efficacy of individual foods to reduce
serum microbial EV-BT risk in vivo. Future studies
including larger patient cohorts, more detailed clinical
information, and efforts to determine the mechanism
through which microbial EVs impact brain health should
be conducted to validate the results of this study.
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