ARTICLE

Open Access

Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress

Seung Un Seo¹, Kyoung-jin Min¹, Seon Min Woo¹ and Taeg Kyu Kwon¹

Abstract

Multiple cancer cells highly express cathepsin S, which has pro-tumoral effects. However, it was previously unknown whether knockdown or a pharmacological inhibitor (ZFL) of cathepsin S acts as an inducer of ER stress. Here, ZFL and knockdown of cathepsin S markedly induced ER stress through the up-regulation of calcium levels in the cytosol. Induction of calcium levels by inhibition of cathepsin S is markedly blocked by an inhibitor of the IP3 receptor and the ryanodine receptor Ca²⁺ channel in the ER, but an inhibitor of a mitochondrial Ca²⁺ uniporter had no effect on ZFL-induced calcium levels. Furthermore, production of mitochondrial ROS by ZFL was associated with an increase in cytosolic calcium levels. ZFL-mediated ER stress enhanced anti-cancer drug-induced apoptotic cell death, and pretreatment with chemical chaperones or down-regulation of ATF4 and CHOP by small interfering RNA markedly reduced ZFL plus oxaliplatin-induced apoptosis. Taken together, our findings reveal that inhibition of cathepsin S is an inducer of ER stress; these findings may contribute to the enhancement of therapeutic efficiency in cancer cells.

Introduction

Cathepsin S is a lysosomal cysteine protease highly expressed in antigen-presenting cells (B cells, macrophages, microglia, and dendritic cells)^{1–4}. The main function of this protease is the degradation of the class II major histocompatibility complex-associated invariant chain, which is related to the immune response⁴. However, cathepsin S is also detected in malignant cells^{5–7}, and many researchers have suggested the pro-tumoral effects of cathepsin S in cancer cells. For example, inhibition of cathepsin S in cancer cells. For example, inhibition of cathepsin S independence apoptosis in nasopharyngeal carcinoma^{8,9}, glioma¹⁰, and hepatocellular carcinoma¹¹ and inhibits invasion and angiogenesis in hepatocellular carcinoma¹². Furthermore, cathepsin S plays critical roles

Correspondence: Taeg Kyu Kwon (kwontk@dsmc.or.kr)

¹Department of Immunology, School of Medicine, Keimyung University, Daegu, Korea

© The Author(s) 2018

in tumor development. Cathepsin S-null (cathepsin $S^{-/-}$) mice crossed with the spontaneous pancreatic beta-cell carcinogenesis model (RIP1-Tag2) exhibited impaired tumor growth and angiogenesis¹³. In addition, the expression level of cathepsin S is related to poor outcomes in glioblastoma¹⁴, lung cancer¹⁵, and colorectal cancer¹⁶. Inhibitor of cathepsin S has a synergistic effect with chemotherapeutic drugs. For example, combined treatment with Fsn0503 (a cathepsin S inhibitory antibody) and an anti-vascular endothelial growth factor antibody exhibits a synergistic inhibitory effect of angiogenesis in the tumor microenvironment¹⁷. Fsn0503 also enhanced the anti-cancer effect of CPT-11 in colorectal cancer¹⁸, and Z-FL-COCHO (ZFL; a cathepsin S inhibitor) sensitized TRAIL (tumor necrosis factor-related apoptosisinducing ligand)-mediated apoptosis in renal carcinoma cells¹⁹. Therefore, cathepsin S is a promising therapeutic target for treating cancer.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

These authors contributed equally: Seung Un Seo, Kyoung-jin Min

The endoplasmic reticulum (ER) is responsible for protein folding, translocation, and post-translational modification in cells. However, disturbance of the ER environment by intra- or extra-cellular stimuli are detected by ER sensor proteins (IRE1a (inositol requiring enzyme/endonuclease 1), ATF6 (activating transcription factor 6), and PERK (double stranded RNA-activated protein kinase (PKR)-like ER kinase)), resulting in the induction of ER stress²⁰. To overcome such ER stress, cells turn on the unfolded protein response (UPR) (inhibition of protein translation, degradation of misfolded proteins, and production of molecular chaperones); however, if the UPR is not sufficient to reduce ER stress, cells undergo cell death²¹. Activation of PERK by severe and prolonged ER stress globally inhibits new protein synthesis and increases the translation of selected messenger RNAs (mRNAs), including ATF4 (activating transcription factor 4). Up-regulated ATF4 as a transcription factor increases the expression of CHOP (CCAAT-enhancer-binding protein homologous protein) as well as the expression of multiple proteins to recover the cell status and adapt to ER stress²¹. The up-regulation of CHOP expression has critical roles in ER stressinduced apoptosis. Mouse embryonic fibroblasts derived from $Chop^{-/-}$ animals exhibite less induction of cell death by tunicamycin-induced ER stress, compared with wild type²², and multiple drugs induce ER stress-mediated apoptosis through the up-regulation of CHOP expression²³⁻²⁶. In addition, up-regulation of CHOP has been shown to enhance the sensitivity of anti-cancer druginduced cell death^{27–29}.

In the current study, we investigated the effect of cathepsin S inhibition on ER stress as well as the molecular mechanisms underlying cathepsin S inhibitioninduced ER stress in human renal carcinoma cells.

Materials and methods

Cell culture and materials

American Type Culture Collection supplied all human cancer cells (renal carcinoma: Caki, ACHN, and A498, lung carcinoma: A549, breast carcinoma: MDA-MB-231) and mouse kidney cells (TCMK-1) (Manassas, VA, USA). Normal human mesangial cells were purchased from Lonza (CC-2559, Basel, Switzerland). Cells were grown in Dulbecco's modified Eagle's medium or RPMI supplemented with 10% fetal bovine serum and 100 µg/mL gentamycin. All cell lines were tested for mycoplasma contamination. The cell lines were authenticated by standard morphologic examination using microscopy. R&D Systems supplied z-VAD-fmk and tumor necrosis factor- α (TNF- α ; Minneapolis, MN, USA), and Calbiochem supplied N-acetyl-L-cysteine (NAC), Z-FL-COCHO (ZFL), Trolox, and 2-aminoethoxydiphenyl borate (APB) (San Diego, CA, USA). pEGFP-HSP70 was a gift from Lois Greene (Addgene plasmid # 15215)³⁰. Santa Cruz Biotechnology supplied sorafenib, anti-cathepsin S, anti-ATF4, and anti-HSP70 antibodies and small interfering RNA (siRNA; cathepsin S, ATF4, and CHOP), and Cell Signaling Technology supplied anti-PARP, anti-CHOP, anti-REDD1, and anti-cleaved caspase-3 antibodies (Beverly, MA, USA). Enzo Life Science supplied cisplatin, anti-GRP78, and anti-pro-caspase-3 antibodies (Farmington, NY, USA). The doxorubicin was purchased from Tocris Bioscience (Minneapolis, MN, USA). EDM Millipore supplied anti-Fas antibody (human, activating) clone CH11 (05-201) (EMD Millipore, Darmstadt, Germany), and Cayman Chemical supplied gefitinib (Ann Arbor, MI, USA). Bioneer supplied the green fluorescent protein (GFP; control) siRNA (Daejeon, Korea). Sigma Chemical Co. supplied other reagents used in our study (St. Louis, MO, USA).

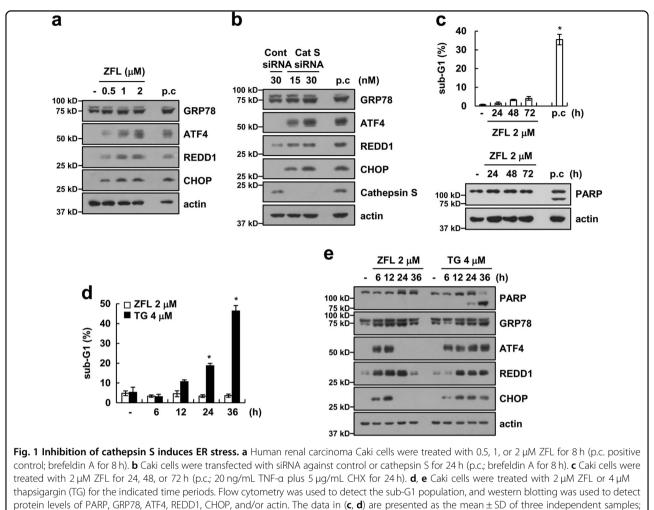
Western blot analysis and flow cytometry analysis

Whole-cell lysates were obtained as described previously using modified RIPA buffer^{31–33}. We performed the western blotting and flow cytometry analysis as described in our previous study³⁴.

Intracellular Ca²⁺ detection

Cells were harvested and resuspended in phosphatebuffered saline (PBS) containing $2 \mu M$ Fluo-4/AM (Molecular Probes, Invitrogen) for 45 min in an incubator with frequent agitation. The cells were then resuspended in PBS for FACS acquisition (BD Biosciences, San Diego, CA, USA).

DAPI staining and DNA fragmentation assay


For 4',6'-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation, cells were treated with 25 μ M oxaliplatin and/or 2 μ M ZFL for 24 h. Caki cells were fixed, washed with PBS, and stained with a 300 nM DAPI solution (Roche, Mannheim, Germany), or DNA fragmentation was detected using a cell death detection ELISA plus kit as described in our study (Boehringer Mannheim, Indianapolis, IN, USA)³¹.

Asp-Glu-Val-Asp-ase (DEVDase) activity assay

Cell were treated with 25 μ M oxaliplatin and/or 2 μ M ZFL for 24 h, and then 20 μ g of cell lysates was incubated with reaction buffer as described in our previous study³¹. We measured caspase activity at 405 nm absorbance using a spectrophotometer.

Animal experiments

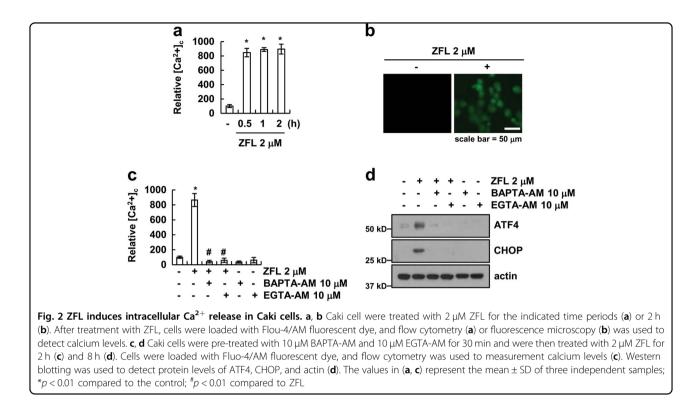
Central Lab Animal Inc. supplied male BALB/c-nude mice (5 weeks) (Seoul, Korea). The IRB Keimyung University Ethics Committee approved our research protocol, and all mice were maintained for 7 days to acclimatize to

*p < 0.01 compared to the control

the surroundings before our experiments (temperature: 25 ± 2 °C, humidity: 55 ± 5 %).

In vivo xenograft model

Caki cells $(2 \times 10^{\circ})$ were subcutaneously grafted onto male BALB/c-nude mice, and after 2 weeks, 14 mice were randomly divided into the vehicle and ZFL groups. ZFL was dissolved in 20% dimethyl sulfoxide and 80% PBS (pH 7.4), and 5 mg/kg ZFL was injected into mice via intraperitoneal (i.p.) injection. Mice were treated with vehicle or ZFL three times per week for 28 days, and the protein was obtained at the time of killing.


Statistical analysis

Data in our study were analyzed by one-way analysis of variance and post-hoc comparisons (Student–Newman– Keuls) using Statistical Package for Social Sciences 22.0 software (SPSS Inc.; Chicago, IL, USA).

Results

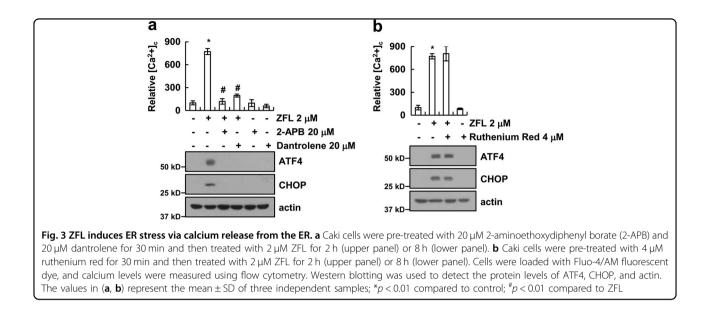
Cathepsin S inhibitor induces endoplasmic reticulum stress but not apoptosis

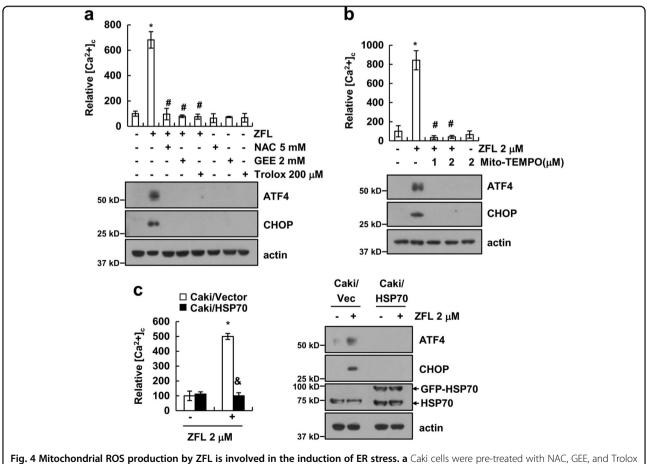
The molecular mechanism underlying cathepsin S-mediated ER stress induction remains unknown. Therefore, we investigated the effect of a cathepsin S inhibitor (ZFL) on the induction of ER stress. ZFL dosedependently increased the expression of ER stress marker proteins (GRP78, ATF4, REDD1, and CHOP) (Fig. 1a). We next investigated whether the downregulation of cathepsin S by siRNA modulates the expression of GRP78, ATF4, REDD1, and CHOP in a manner similar to ZFL treatment. Down-regulation of cathepsin S also induced GRP78, ATF4, REDD1, and CHOP protein expression (Fig. 1b). To determine the effect of ZFL-mediated ER stress on apoptotic cell death, we examined apoptosis in ZFL-treated cells. We found that ZFL induced ER stress responses, but ZFL did not induce poly (ADP-ribose) polymerase (PARP)

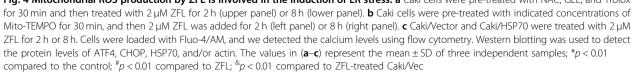
cleavage or increase the levels of the sub-G1 population, which are markers of apoptotic cell death (Fig. 1c). ER stress is critical for the induction of apoptosis³⁵, but ZFL did not induce apoptosis (Fig. 1c). Therefore, we investigated the duration and extent of ER stress in ZFL-treated cells. Thapsigargin, an ER stress inducer, markedly induced apoptosis and maintained the upregulation of ER stress marker proteins up to 36 h (Fig. 1d, e). In contrast, ZFL transiently induced the expression of ER stress marker proteins, which declined at 24–36 h (Fig. 1d, e).

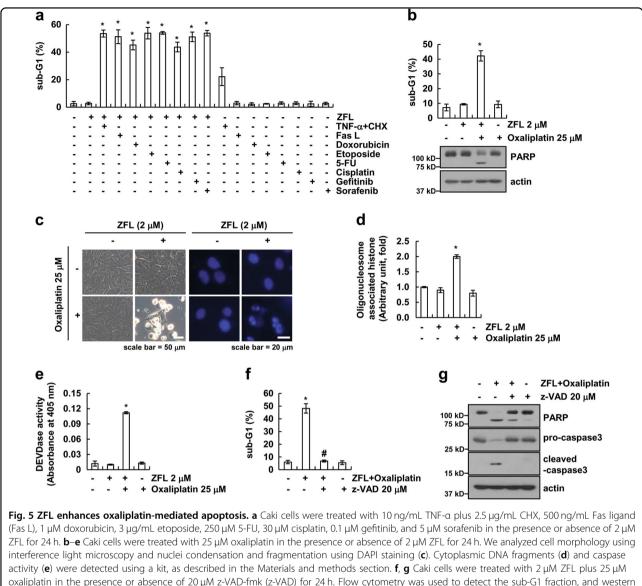
Intracellular Ca^{2+} is a key factor in the ZFL-mediated ER stress response

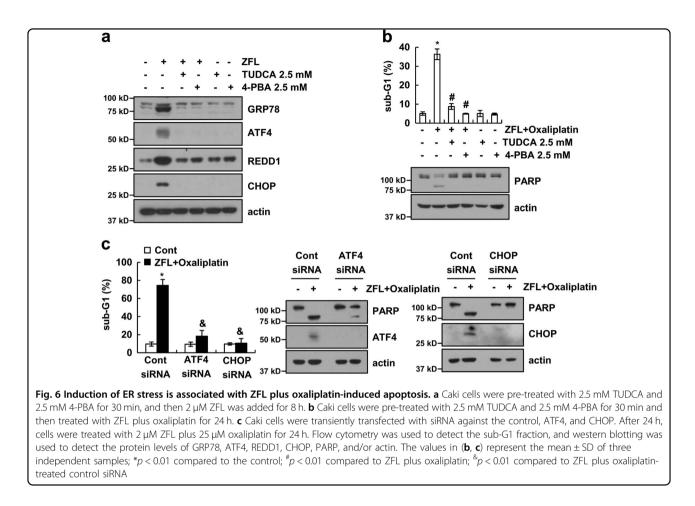
Since an imbalance of Ca^{2+} homeostasis is a key factor in ER stress, we examined the possibility that inhibition of cathepsin S modulates intracellular Ca^{2+} levels in Caki cells. We detected intracellular Ca^{2+} levels by flow cytometry and fluorescence microscopy using Fluo-4/AM (a cell-permeable Ca^{2+} -indicator dye). As shown in Fig. 2a, Fluo-4/AM fluorescence intensity increased at 30 min of ZFL treatment. We further confirmed the ZFL-induced increase in Fluo-4/AM staining intensity using fluorescence microscopy (Fig. 2b). Next, we investigated the link between ER stress and Ca^{2+} release in ZFL-treated Caki cells. The chelators of Ca^{2+} (EGTA-AM and BAPTA-AM) inhibited not only the up-regulation of intracellular Ca^{2+} levels but also the up-regulation of ATF4 and CHOP protein expression in ZFL-treated Caki cells (Fig. 2c, d). These results reveal that a ZFL-induced increase in intracellular Ca^{2+} levels has a critical role in the induction of ER stress.


Ca²⁺ release from the ER is critical for the ZFL-mediated induction of the ER stress response


Since the ER is a primary organelle for calcium storage³⁶, we employed specific inhibitors of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and the ryanodine receptor (RyR)³⁷, which regulate major Ca²⁺ release channels in the ER. We found that 2-APB (an inhibitor of IP3R)³⁸ and dantrolene (an inhibitor of the RyR)³⁹ very effectively inhibited the ZFL-induced Ca²⁺ release and the protein expression of ATF4 and CHOP (Fig. 3a). In contrast, ruthenium red (an inhibitor of mitochondrial Ca²⁺ uptake and release)^{40,41} had no effect on Ca²⁺ levels or the expression of ATF4 and CHOP in ZFL-treated cells (Fig. 3b). Collectively, our data reveal that Ca²⁺ release from the ER may play a critical role in the ZFL-mediated induction of ER stress.


Mitochondrial ROS production is critical for ZFL-induced ${\rm Ca}^{2+}$ release


Recently, we reported that ZFL induces lysosomal membrane permeability (LMP), which is associated with mitochondrial dysfunction and mitochondrial reactive oxygen species (ROS) production¹⁹. To investigate the role of ROS in the ZFL-induced Ca²⁺ release, we used ROS scavengers [NAC, glutathione ethyl ester (GEE),



oxaliplatin in the presence or absence of 20 μ M z-VAD-fmk (z-VAD) for 24 h. Flow cytometry was used to detect the sub-G1 fraction, and western blotting was used to detect the protein levels of PARP, pro-caspase-3, cleaved-caspase-3, and/or actin. The values in (**a**, **b**, **d**, **e**, **f**) represent the mean \pm SD of three independent samples; *p < 0.01 compared to the control; *p < 0.01 compared to ZFL plus oxaliplatin

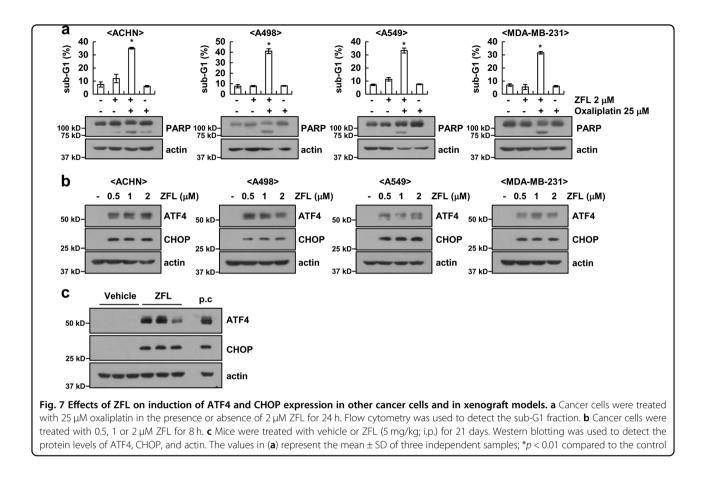
and Trolox]. ROS scavengers markedly inhibited the ZFL-induced Ca^{2+} release and the expression of ATF4 and CHOP (Fig. 4a). Furthermore, Mito-TEMPO (a mitochondrial ROS scavenger) also markedly inhibited ZFL-induced Ca^{2+} release and the expression of ATF4 and CHOP (Fig. 4b). We previously reported that HSP70 could inhibit ZFL-induced LMP¹⁹. Ectopic expression of HSP70 also inhibited ZFL-induced Ca^{2+} release and the expression of ATF4 and CHOP (Fig. 4c). Therefore, our data indicate that LMP-mediated mitochondrial ROS production plays a critical role in ZFL-mediated ER stress via the up-regulation of cytosolic calcium levels.

ZFL-mediated ER stress enhances death receptor- or anti-cancer drug-induced apoptosis

Previous studies reported that the induction of ER stress enhanced the sensitivity of anti-cancer drugs^{27–29}. Therefore, we examined whether ZFL enhances the ligands of death receptors or anti-cancer drug-induced cell death. All tested agents markedly induced apoptosis in ZFL-treated cells (Fig. 5a). However, a sub-lethal dose of a single agent did not induce apoptosis. We chose oxaliplatin for further studies because it is an effective chemotherapeutic drug in several types of cancer. Oxaliplatin alone and ZFL alone did not increase apoptosis, but oxaliplatin plus ZFL markedly induced

apoptosis and PARP cleavage (Fig. 5b). Furthermore, oxaliplatin plus ZFL altered cellular morphology and induced chromatin damage of the nucleus (Fig. 5c) and cytoplasmic DNA fragments (Fig. 5d). Combined treatment with oxaliplatin and ZFL markedly increased caspase-3 activation (Fig. 5e), and a pan-caspase inhibitor (z-VAD) attenuated oxaliplatin and ZFL-induced apoptosis as well as the cleavage of caspase-3 and PARP (Fig. 5f, g).

ER stress plays a critical role in oxaliplatin plus ZFLinduced apoptosis

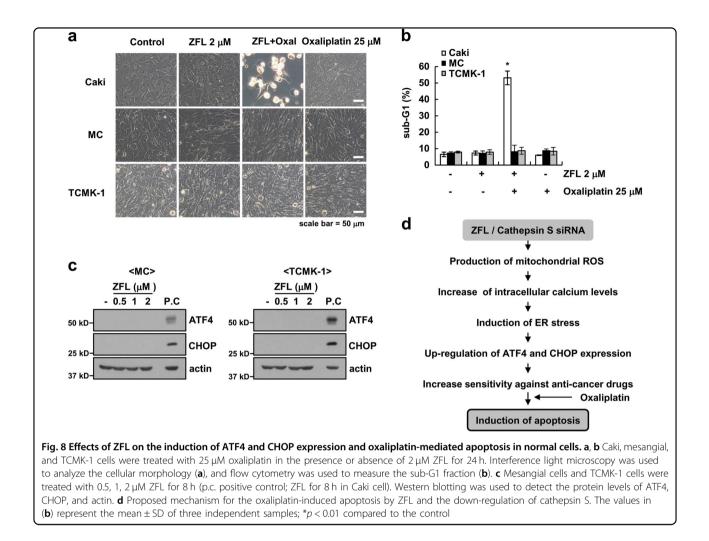

Recent studies have reported that chemical chaperones such as tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (PBA) reduce ER stress^{42,43}. Therefore, we investigated the functional significance of ER stress responses under the combined treatment of these chaperones with oxaliplatin and ZFL. TUDCA and 4-PBA markedly inhibited ZFL-induced GRP78, ATF4, REDD1, and CHOP expression (Fig. 6a). Both chemical chaperones also inhibited oxaliplatin plus ZFLinduced apoptosis and cleavage of PARP (Fig. 6b).

The functional role of ATF4 and CHOP in oxaliplatin plus ZFL-induced cell death was investigated by

knockdown using siRNA. We found that combined treatment-induced apoptosis and PARP cleavage were markedly attenuated by transfection with ATF4 or CHOP siRNA (Fig. 6c). Our results indicate that ER stress plays a critical role in oxaliplatin plus ZFL-induced apoptotic cell death.

Oxaliplatin plus ZFL induces apoptosis in other cancer cells

We next investigated the effect of oxaliplatin and ZFL on apoptosis in other renal carcinoma cells (A498 and ACHN cells) and other cancer cells (human lung carcinoma (A549) and breast carcinoma (MDA-MB-231)). We found that oxaliplatin plus ZFL induced apoptosis and cleavage of PARP (Fig. 7a) and that ZFL also induced the up-regulation of ATF4 and CHOP in all tested cells (Fig. 7b). Furthermore, we investigated the effect of ZFL on the induction of ER stress using an in vivo xenograft model. Mice bearing tumors were treated with ZFL, and we found that ZFL increased the expression of ATF4 and CHOP (Fig. 7c). However, oxaliplatin plus ZFL did not induce morphological changes or cell death in normal human mesangial cells or normal mouse kidney cells (TCMK-1) (Fig. 8a, b). In addition, ZFL did not increase the expression of ER stress marker proteins in normal


cells (Fig. 8c). Therefore, our results indicate that ZFL may selectively sensitize cancer cells to oxaliplatininduced apoptotic cell death while sparing normal cells.

Discussion

In the present study, we demonstrated that inhibition of cathepsin S induced cytosolic Ca^{2+} release from the ER, resulting in the induction of ER stress. Furthermore, upregulation of CHOP and ATF4 expression by ER stress was associated with sensitization to anti-cancer drug-induced apoptosis in ZFL-treated cancer cells (Fig. 8d).

Moderate ER stress usually plays a pro-survival role, returning the cell to homeostasis⁴⁴. However, high loads of UPR and prolonged ER stress induce caspase-mediated apoptosis⁴⁴. Our data indicate that inhibition of cathepsin S by siRNA or ZFL induces the ER stress response but does not induce apoptotic cell death. As shown in Fig. 1d, e, ZFL transiently induced the up-regulation of ER stress marker proteins, but thapsigargin induced and maintained the up-regulation of all proteins for up to 36 h. Moreover, thapsigargin, but not ZFL, induced cell death. Therefore, the transient induction of ER stress by ZFL may affect signaling molecules that induce sensitivity to anti-cancer drugs. In addition, ZFL enhanced oxaliplatininduced apoptosis in various cancer cell lines, but combined treatment did not increase apoptosis in normal cells (Figs. 7a, 8b). Because ZFL did not induce the expression of ER stress marker proteins in normal cells, the mode of ZFL-induced ER stress may be dependent upon the cell context and cell type.

Deficiency of cathepsin proteins (cathepsin L, E, and S) induces mitochondrial dysfunction^{45–47}. We reported that an inhibitor of cathepsin S generated mitochondrial ROS levels by affecting LMP, which is involved in mitochondrial dysfunction¹⁹. HSP70 was identified as the first survival protein that functions by preventing deathassociated LMP⁴⁸. We also previously reported that overexpression of HSP70 inhibited the induction of LMP and markedly blocked ROS production in ZFLtreated cells¹⁹. In the present study, ectopic expression of HSP70 inhibited Ca²⁺ release and the expression of ATF4 and CHOP in ZFL-treated cells (Fig. 4c). Therefore, ZFL-induced LMP may act as an initial signal, which causes calcium-mediated ER stress. Furthermore, our previous study suggested that ZFL has an anti-cancer effect via the up-regulation of p53 expression. Therefore, we examined the relation between p53 and ER stress. Down-regulation of CHOP or ATF4 by siRNA inhibited ZFL-induced p53 expression (data not shown). Lin et al.⁴⁹ reported that ER stress increases p53 expression at the

transcription level through nuclear factor (NF)-KB activation. ER stress inducers (tunicamycin or brefeldin A) induced the nuclear localization of NF-KB, leading to an increase in p53 mRNA expression. The authors suggested that induction of p53 is related to ER stress-induced apoptosis⁴⁹. In addition, CHOP activates NF-κB signal ing^{50} . CHOP binds to the promoter of peroxisome proliferator-activated receptor- γ (PPAR γ), a negative regulator of NF-KB activity, resulting in the suppression of PPAR γ expression⁵⁰. Therefore, there is a possibility that inhibition of cathepsin S induces the up-regulation of p53 expression via CHOP-mediated NF-KB activation. Further experiments are warranted to identify the mechanism underlying the ATF4 or CHOP-mediated upregulation of p53 expression. Previous studies reported that inhibition of cathepsin S induces cell death via the induction of autophagy $^{8-10}$. However, since inhibition of cathepsin S did not induce autophagy in Caki cells¹⁹, we concluded that ER stress induced by the inhibition of cathepsin S is not related to autophagy in our system. In addition, c-Jun N-terminal kinase (JNK) activation is one of the mechanisms to induce cell death by inhibition of cathepsin S; however, a JNK inhibitor (SP600125) did not reverse ZFL plus oxaliplatin-induced apoptosis (negative data; data not shown). Therefore, ER stress caused by the inhibition of cathepsin S sensitized cells to anticancer drug-mediated apoptosis through the modulation of apoptosis-related proteins rather than the induction of autophagy or the activation of JNK phosphorylation.

Both calcium and ROS are cellular signaling molecules, and they can interact to modulate cellular responses. In our study, mitochondrial ROS were found to regulate intracellular calcium levels (Fig. 4b). Previous studies suggest that mitochondrial ROS modulate calcium channel activity in the ER via the following mechanisms. (1) RyRs and IP3Rs have reactive Cys thiols at multiple sites, and thiol oxidation by ROS increases RyR activity. Menshikova and Salama⁵¹ reported that both reactive disulfides and nitric oxide induce the oxidation of RyRs, resulting in increased release of calcium and increased cytosolic calcium levels. In addition, superoxide and hydrogen peroxides also increase the release of calcium

via the oxidation of thiol groups in RyRs^{52,53}. (2) ROS decrease the threshold concentration for receptor activation. Hu et al.³⁴ reported that hydrogen peroxide and NADPH increase the sensitivity of IP3R via a decrease in the threshold concentration of InsP3-induced intracellular calcium release. (3) ROS may regulate interactions of RyRs-FK506 binding protein (FKBP). The cytoplasmic domain of the RyR acts as a scaffold, and multiple proteins (FKBP, calmodulin, phosphodiesterase, kinases, and phosphatases) bind to this domain, which modulates RyR receptor activity⁵⁴. Among these proteins, FKBP is important for RyR are modulated by the ROS state. ROS induces FKBP dissociation from RyR, which leads to an increase in calcium release⁵⁶.

Collectively, these results reveal that the inhibition of cathepsin S sensitizes cells to apoptosis induced by various anti-cancer drugs through the calcium-mediated up-regulation of ER stress. Therefore, inhibition of cathepsin S may be an effective strategy for the enhancement of cell sensitivity to anti-cancer drugs.

Acknowledgements

This work was supported by an NRF grant funded by the Korea Government (MSIP) (2014R1A5A2010008 and NRF-2016R1A2B2013393) and a 2018 Scholar Research Grant from Keimyung University.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 March 2018 Revised: 28 May 2018 Accepted: 30 May 2018. Published online: 17 August 2018

References

- Driessen, C. et al. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 147, 775–790 (1999).
- Pluger, E. B. et al. Specific role for cathepsin S in the generation of antigenic peptides in vivo. *Eur. J. Immunol.* **32**, 467–476 (2002).
- Clark, A. K., Wodarski, R., Guida, F., Sasso, O. & Malcangio, M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. *Glia* 58, 1710–1726 (2010).
- Nakagawa, T. Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. *Immunity* 10, 207–217 (1999).
- Fernandez, P. L. et al. Expression of cathepsins B and S in the progression of prostate carcinoma. *Int. J. Cancer* 95, 51–55 (2001).
- Flannery, T. et al. The clinical significance of cathepsin S expression in human astrocytomas. Am. J. Pathol. 163, 175–182 (2003).
- Xu, J. et al. Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. *Mol. Med. Rep.* 2, 713–718 (2009).
- Chen, K. L. et al. Targeting cathepsin S induces tumor cell autophagy via the EGFR-ERK signaling pathway. *Cancer Lett.* **317**, 89–98 (2012).
- Huang, C. C., Chen, K. L., Cheung, C. H. & Chang, J. Y. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. *Free Radic. Biol. Med.* 65, 1473–1486 (2013).

- Zhang, L., Wang, H., Xu, J., Zhu, J. & Ding, K. Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROSmediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. *Toxicol. Lett.* 228, 248–259 (2014).
- Wang, X. et al. Cathepsin S silencing induces apoptosis of human hepatocellular carcinoma cells. Am. J. Transl. Res. 7, 100–110 (2015).
- Fan, Q. et al. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro. *Biochem. Biophys. Res. Commun.* 425, 703–710 (2012).
- Gocheva, V. et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. *Genes Dev.* 20, 543–556 (2006).
- Flannery, T. et al. Cathepsin S expression: an independent prognostic factor in glioblastoma tumours–a pilot study. Int. J. Cancer 119, 854–860 (2006).
- Kos, J. et al. Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis. *Br. J. Cancer* 85, 1193–1200 (2001).
- Gormley, J. A. et al. The role of cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. *Br. J. Cancer* 105, 1487–1494 (2011).
- 17. Ward, C. et al. Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. *PLoS ONE* **5**, e12543 (2010).
- Burden, R. E. et al. Inhibition of Cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. *Biochimie* 94, 487–493 (2012).
- Seo, B. R. et al. Inhibition of cathepsin S induces mitochondrial ROS that sensitizes TRAIL-mediated apoptosis through p53-mediated downregulation of Bcl-2 and c-FLIP. *Antioxid. Redox Signal.* 27, 215–233 (2017).
- Logue, S. E., Cleary, P., Saveljeva, S. & Samali, A. New directions in ER stressinduced cell death. *Apoptosis* 18, 537–546 (2013).
- 21. Verfaillie, T., Garg, A. D. & Agostinis, P. Targeting ER stress induced apoptosis and inflammation in cancer. *Cancer Lett.* **332**, 249–264 (2013).
- Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. *Genes Dev.* 12, 982–995 (1998).
- Guo, H. et al. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. *Oncotarget* 8, 82207–82216 (2017).
- Jang, J. H., Min, K. J., Kim, S., Park, J. W. & Kwon, T. K. RU486 induces proapoptotic endoplasmic reticulum stress through the induction of CHOP expression by enhancing C/EBPdelta expression in human renal carcinoma Caki cells. J. Cell. Biochem. 117, 361–369 (2016).
- Chen, Y. J. et al. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/elF2alpha/ ATF4/CHOP pathway. *Molecules* 18, 10146–10161 (2013).
- Sanchez-Lopez, E. et al. Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. *Cell Death Dis.* 4, e933 (2013).
- Trivedi, R., Maurya, R., & Mishra, D. P. Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. *Cell Death Dis.* 5, e1465 (2014).
- Yoon, M. J. et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. *Cell Death Dis.* 5, e1112 (2014).
- Gupta, S. C., Francis, S. K., Nair, M. S., Mo, Y. Y. & Aggarwal, B. B. Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J. Biol. Chem. 288, 32343–32356 (2013).
- Zeng, X. C. et al. Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J. Cell Sci. 117, 4991–5000 (2004).
- Seo, S. U., Kim, T. H., Kim, D. E., Min, K. J. & Kwon, T. K. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. *Redox Biol.* **13**, 608–622 (2017).
- Park, Y. S., Kwon, Y. J. & Chun, Y. J. CYP1B1 activates Wht/beta-catenin signaling through suppression of Herc5-mediated ISGylation for protein degradation on beta-catenin in HeLa cells. *Toxicol. Res.* 33, 211–218 (2017).
- Jo, Y. & Shin, D. Y. Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest. *BMB Rep.* 50, 379–383 (2017).

- Um, H. J., Park, J. W. & Kwon, T. K. Melatonin sensitizes Caki renal cancer cells to kahweol-induced apoptosis through CHOP-mediated up-regulation of PUMA. *J. Pineal Res.* 50, 359–366 (2011).
- 36. Clapham, D. E. Calcium signaling. Cell 131, 1047-1058 (2007).
- Marks, A. R. Calcium channels expressed in vascular smooth muscle. *Circulation* 86, III61–III67 (1992).
- Maruyama, T., Kanaji, T., Nakade, S., Kanno, T. & Mikoshiba, K. 2APB, 2aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5) P3-induced Ca2+release. J. Biochem. 122, 498–505 (1997).
- Xu, L., Tripathy, A., Pasek, D. A. & Meissner, G. Potential for pharmacology of ryanodine receptor/calcium release channels. *Ann. N. Y. Acad. Sci.* 853, 130–148 (1998).
- Vasington, F. D., Gazzotti, P., Tiozzo, R. & Carafoli, E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. *Biochim. Biophys. Acta* 256, 43–54 (1972).
- Kuba, M., Higure, Y., Susaki, H., Hayato, R. & Kuba, K. Bidirectional Ca2+coupling of mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+entries in rat brown adipocytes. *Am. J. Physiol. Cell. Physiol.* 292, C896–C908 (2007).
- 42. Xie, Q. et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. *Hepatology* **36**, 592–601 (2002).
- Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. *Science* **313**, 1137–1140 (2006).
- Wang, W. A., Groenendyk, J. & Michalak, M. Endoplasmic reticulum stress associated responses in cancer. *Biochim. Biophys. Acta* 1843, 2143–2149 (2014).
- Petermann, I. et al. Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J. 20, 1266–1268 (2006).

- Pan, L. et al. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. *PLoS ONE* 7, e35315 (2012).
- 47. Tsukuba, T. et al. Cathepsin E deficiency impairs autophagic proteolysis in macrophages. *PLoS ONE* **8**, e82415 (2013).
- Nylandsted, J. et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200, 425–435 (2004).
- 49. Lin, W. C. et al. Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. *PLoS ONE* **7**, e39120 (2012).
- Park, S. H. et al. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 285, 35330–35339 (2010).
- Menshikova, E. V. & Salama, G. Cardiac ischemia oxidizes regulatory thiols on ryanodine receptors: captopril acts as a reducing agent to improve Ca2 +uptake by ischemic sarcoplasmic reticulum. J. Cardiovasc. Pharmacol. 36, 656–668 (2000).
- Kawakami, M. & Okabe, E. Superoxide anion radical-triggered Ca2+release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2 +channel. *Mol. Pharmacol.* 53, 497–503 (1998).
- Anzai, K. et al. Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. *Biochem. Biophys. Res. Commun.* 249, 938–942 (1998).
- Zalk, R., Lehnart, S. E. & Marks, A. R. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385 (2007).
- Richardson, S. J. et al. Association of FK506 binding proteins with RyR channels - effect of CLIC2 binding on sub-conductance opening and FKBP binding. J. Cell Sci. 130, 3588–3600 (2017).
- Holmberg, S. R. et al. Reactive oxygen species modify the structure and function of the cardiac sarcoplasmic reticulum calcium-release channel. *Cardioscience* 2, 19–25 (1991).