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Implications of publicly available genomic
data resources in searching for therapeutic
targets of obesity and type 2 diabetes
Sungwon Jung1,2

Abstract
Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large
population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come
from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and
T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples
from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular
choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing
data resources can be utilized to cover various aspects of these conditions. This review presents studies with available
genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-
based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and
characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and
T2D.

Introduction
Obesity and T2D are major public health problems, and

their rates are increasing. It has been reported that 40% of
adults in the UK will have obesity by 20251, and the
worldwide population with T2D will approach 600 million
in the next 20 years2. Understanding the molecular
mechanisms of these conditions is important to identify
their therapeutic targets, but there has been limited suc-
cess in identifying target genes because they are not
genetic disorders in general aside from rare cases of clear
genetic abnormalities, such as maturity onset diabetes of
the young, Donohue syndrome, or Rabson-Mendenhall
syndrome3. Another challenge is that they are generally
not initiated from a single organ, unlike cancer. For

example, a major mechanism of obtaining T2D is
acquiring insulin resistance, which may involve the
accumulation of various environmental factors and mul-
tiple organs such as adipose, liver, and muscle are
involved in that process. These characteristics imply that
obesity and T2D result from abnormal dynamic states of
relevant biological functions rather than aberrations of
certain driver genes, which has created challenges in
searching for simple therapeutic targets. For this reason,
approaches to medically treat obesity or T2D are more
about controlling the phenotypes of subjects, such as
reducing caloric intake or appetite for obesity and
decreasing blood glucose levels, increasing sensitivity to
insulin, increasing insulin secretion, or using insulin
therapy for T2D, rather than curing the disease by elim-
inating its drivers or altering the metabolic status back to
a normal state.
Considering that obesity and T2D are due to abnormal

dynamic states of relevant biological functions, it can be
challenging to find therapeutic targets that can be applied
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to all subjects, and it may be necessary to identify different
points of intervention for different subjects as an
abnormality of the same biological function can be
achieved from multiple points of aberration of molecular
activities. For this reason, understanding the overall
mechanisms and identifying the therapeutic candidates of
obesity and T2D in the general population requires
studying cohorts of sufficient size that are large enough to
include variances in metabolic phenotypes and potentially
diverse driving mechanisms, along with comprehensive
data that can represent the exact status of individual
subjects, such as detailed phenotypes and multi-omic
profiles (such as genomic, epigenetic, metabolic,

proteomic profiles). However, research communities
studying obesity and T2D lack such comprehensive data
resources, which is unlike other diseases, such as cancer,
where many comprehensive multi-omic data resources
are publicly available.
Even though there are no comprehensive data resources

for obesity and T2D, individual studies can constitute
certain aspects of comprehensive data collections. This
review will discuss currently available genomic data
resources that can be utilized to identify therapeutic
candidates for obesity and T2D, including GWAS, a KO-
based phenotyping study, and gene expression studies
that have observed expression changes in subjects with

Table 1 Selected popular GWAS related to obesity or T2D

Study URL Studied phenotypes related to obesity or T2D Data availability

DIAGRAM

consortium

http://www.diagram-consortium.org T2D Summary statistics (open to

public)

EPIC-Norfolk study http://www.srl.cam.ac.uk/epic/ Blood lipid profiles, BMI, body fat compositions,

body measurements, glycated hemoglobin

Application required

Fenland study http://www.mrc-epid.cam.ac.uk/research/

studies/fenland

Blood insulin level, BMI, body fat compositions,

body measurements, fasting blood glucose level,

fasting lipid profiles, oral glucose tolerance, resting

energy expenditure level, various blood metabolic

profiles

Application required

GENESIS

consortium7

Not available Blood lipid profiles, BMI, fasting glucose level,

fasting insulin level, insulin sensitivity

PI contact required

GIANT consortium http://portals.broadinstitute.org/

collaboration/giant/index.php/

GIANT_consortium

BMI, body measurements Summary statistics (open to

public)

Global Lipids

Genetics

Consortium8

http://lipidgenetics.org Blood lipid profiles Summary statistics (open to

public)

GoT2D http://www.type2diabetesgenetics.org/

projects/got2d

T2D Genetic data (application

required), summary statistics

(open to public)

InterAct project http://www.inter-act.eu Blood lipid profiles, T2D, various blood metabolic

profiles

Application required

MAGIC consortium https://www.magicinvestigators.org Fasting glucose level, fasting insulin level, fasting

proinsulin level, glucose-stimulated insulin

secretion, HbA1c, insulin resistance/sensitivity, oral

glucose tolerance

Summary statistics (open to

public)

T2D-GENES http://www.type2diabetesgenetics.org/

projects/t2dGenes

T2D Genetic data (application

required), summary statistics

(open to public)

UK Biobank http://www.ukbiobank.ac.uk Blood lipid profiles, body fat compositions, various

blood metabolic profiles

Application required

UKHLS study https://www.understandingsociety.ac.uk Blood lipid profiles, BMI, body measurements,

various blood metabolic profiles

Application required
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Table 2 Selected major GWAS publications related to obesity or T2D

Authors Year Studied phenotype of association Related GWAS from Table 1

Kathiresan et al.35 2008 Blood lipid profiles GLGC

Sandhu et al.36 2008 LDL EPIC-Norfolk

Willer et al.37 2008 Blood lipid profiles GLGC

Zeggini et al.38 2008 T2D DIAGRAM

Kathiresan et al.39 2009 Blood lipid profiles GLGC

Prokopenko et al.40 2009 Fasting glucose levels EPIC-Norfolk, MAGIC

Ingelsson et al.41 2010 Fasting proinsulin, insulinogenic index, insulin sensitivity by

intravenous methods, insulin sensitivity by oral glucose tolerance

MAGIC

Li et al.42 2010 BMI EPIC-Norfolk

Saxena et al.43 2010 Oral glucose tolerance Fenland, MAGIC

Speliotes et al.44 2010 BMI Fenland, GIANT

Teslovich et al.45 2010 Blood lipid profiles Fenland, GLGC

Voight et al.46 2010 T2D DIAGRAM, GIANT, MAGIC

Dupuis et al.47 2010 Fasting glucose level, fasting insulin level, HOMA-B, HOMA-IR Fenland, MAGIC

Strawbridge et al.48 2011 Fasting proinsulin level DIAGRAM, Fenland, GIANT, MAGIC

Wang et al.49 2011 Obesity

Manning et al.50 2012 Fasting glucose and insulin (while considering BMI) DIAGRAM, Fenland, MAGIC

Morris et al.5 2012 T2D DIAGRAM

Scott et al.51 2012 Fasting glucose, fasting insulin, oral glucose tolerance DIAGRAM, Fenland, MAGIC

Xue et al.52 2012 BMI, waist and hip circumferences EPIC-Norfolk

Yang et al.53 2012 BMI EPIC-Norfolk, Fenland, GIANT

Berndt et al.54 2013 BMI, clinical classes of obesity, WHR EPIC-Norfolk, Fenland, GIANT

den Hoed et al.55 2013 BMI, body fat percentage, overweight and obesity, waist

circumference

EPIC-Norfolk, Fenland

Randall et al.56 2013 BMI, hip circumference, waist circumference, weight, WHR (while

considering sex)

DIAGRAM, GIANT, MAGIC

van Vliet-Ostaptchouk57 2013 Influence of BMI, WHR associated variants on blood lipids and

glycemic traits

EPIC-Norfolk, Fenland

Willer et al.8 2013 Blood lipid profiles EPIC-Norfolk, Fenland, GLGC

Langenberg et al.58 2014 Combination of genetic factors and other risk factors on T2D InterAct

DIAGRAM Consortium

et al.59
2014 T2D DIAGRAM, T2D-GENES

Scott et al.60 2014 Insulin resistance/secretion, metabolic profiles along with T2D InterAct

Gaulton et al.61 2015 T2D DIAGRAM

Locke et al.62 2015 BMI DIAGRAM, GIANT, GLGC, MAGIC

Shungin et al.63 2015 Waist and hip circumferences GIANT

Fuchsberger et al.64 2016 T2D DIAGRAM, GoT2D, T2D-GENES

Knowles et al.7 2016 Insulin sensitivity GENESIS

Yaghootkar et al.65 2016 Low disease risk adiposity EPIC-Norfolk, UK Biobank

Lotta et al.9 2017
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obesity and type 2 diabetes across relevant organs. The
included data sets range from individual studies to large
data sets curated by many international consortia. Uti-
lizing these data sets and considering their characteristics
can be an alternative approach that mimics comprehen-
sive molecular profiling and provides a useful reference by
curating customized genomic data sets to study ther-
apeutic candidates for specific phenotypic conditions.

DNA-level susceptibility to obesity and T2D
Many early approaches to identify genetic effects on

obesity and T2D were GWAS. GWAS observes known or
candidate single-nucleotide polymorphisms (SNPs) and
phenotypes that are related to obesity and T2D, where the
statistical association between each SNP and phenotype is
evaluated. Based on GWAS, it is possible to identify genes
that have or are close to loci that are associated with
susceptibility to the studied phenotypes. Unlike rare cases
of diabetes with clear genetic drivers, variants at these
susceptibility loci can have subtle effects on the function
of relevant genes, as previous studies reported rather
modest effect sizes of genetic variants on T2D that range
from 10 to 35%4, 5. Nevertheless, T2D is known to have a
notable genetic basis, as the co-occurrence of T2D in
monozygotic twins is significantly higher at ~70% fre-
quency, whereas dizygotic twins showed a frequency of
only 20–30%6. In normal populations with susceptibility
loci, these subtle effects can generate long-term pheno-
typic differences in conjunction with other non-genetic,
often environmental factors.
Table 1 lists selected popular GWAS that assessed

phenotypes related to obesity or T2D. Most consortia or
studies are based on a collection of cohorts, and it should
be noted that occasionally, some cohorts are included in
multiple consortia or studies. Phenotype information
available from these individual cohorts may not be com-
pletely coherent with each other within a consortium or
study. Thus, the phenotypes listed in Table 1 are those
that each consortium or study made an effort to generate

via coherent collections and analyses. Some consortia or
studies directly analyzed the association with disease
outcomes (obesity or T2D; DIAGRAM, InterAct, GoT2D,
and T2D-GENES), whereas others studied associations
with more detailed phenotypes, such as body measure-
ments or fat compositions (EPIC-Norfolk, Fenland,
GENESIS7, GIANT, UK Biobank, and UKHLS), lipid
profiles (EPIC-Norfolk, Fenland, GENESIS7, GLGC8,
InterAct, UK Biobank, and UKHLS), and insulin resis-
tance/sensitivity (Fenland, GENESIS7, and MAGIC).
Individual-level genetic data are rarely available except for
a few that accept applications; thus, it is difficult to collect
individual-level raw genetic data from multiple cohorts
together with phenotypic information to conduct an
association analysis. However, the analyzed summary
statistics of statistical associations between SNPs and
phenotypes are often publicly available, where p-values of
statistical significance, frequencies in cohorts, and effect
sizes are available in general, and this information is useful
for designing and conducting a meta-analysis of interest.
Table 2 lists selected major GWAS publications that

assessed genetic associations with phenotypes relevant to
obesity or T2D. Studied phenotypes are listed for each
work, but it should be noted that most studies consider
additional phenotypes for the adjustment of statistical
associations or prioritization of associated variants. Most
studies are meta-analyses that utilize multiple cohorts
from several consortia or studies. A general approach of
these meta-analyses is to identify novel loci with sus-
ceptibility by increasing the size of population with mul-
tiple cohorts or by providing independent evidential
support for the identified novel loci by using extra cohorts
as independent validation data. Another approach of
meta-analysis is systematically integrating the results of
multiple GWAS of various phenotypes to model certain
types of conditions or diseases. A good example of this
type of meta-analysis is the work by Lotta et al.9, where
they identified candidate loci that are associated with
lipodystrophy-like phenotypes by integrating the results of

Table 2 continued

Authors Year Studied phenotype of association Related GWAS from Table 1

Fasting insulin and lipid profiles along with adipose mass in

peripheral compartments

DIAGRAM, EPIC-Norfolk, Fenland, GENESIS,

GLGC, InterAct, MAGIC, UK Biobank, UKHLS

Graff et al.66 2017 BMI, BMI-adjusted waist circumference, WHR (while considering

physical activity)

EPIC-Norfolk, Fenland, GIANT, InterAct

Liu et al.67 2017 Blood lipid profiles GLGC, InterAct

Prins et al.68 2017 Serum biomarker levels including lipid profiles Fenland, UKHLS

Scott et al.69 2017 T2D DIAGRAM

LDL low-density lipoprotein, BMI body mass index, HOMA-B homeostatic model assessment-beta, HOMA-IR homeostatic model assessment-insulin resistance, WHR
waist-hip ratio
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several GWAS consortia. Most studies provide a list of
identified loci, and some studies also provide more
detailed summary statistics through their related con-
sortia. A novel meta-analysis of GWAS can be designed to
study genetic loci susceptible to specific combinations of
phenotypes by integrating GWAS summary statistics that
were derived from analyzing associations with individual
phenotypes.
In addition to GWAS-derived data sources from indi-

vidual consortia or studies, there are online data resources
in which previous GWAS results are curated and can be
accessed with user-friendly interfaces. NHGRI-EBI
GWAS Catalog10 provides searches and visualization of
published SNP-trait associations and bulk download of its
contents for systematic analysis. It currently contains
63,205 unique SNP-trait associations from >3200 pub-
lications, and it contains GWAS on phenotypes other
than obesity and T2D. Type 2 Diabetes Knowledge Por-
tal11 is a T2D-focused online data portal in which 22
GWAS/exome chip/whole genome sequencing/exome
sequencing data sets are curated with association infor-
mation for 47 traits. It provides user interfaces that can
simulate the systematic integration of multiple GWAS
with various phenotypes, where users can search for
variants of interests in individual GWAS data sets from
participating consortia and form combinations. However,
it does not provide bulk download of entire integrated
data sets. These data portals provide the functionality of
various searches on diseases, genes, phenotypes, or
variants.
Available GWAS results cover associations with various

phenotypes that are related to obesity or T2D, most of
which belong to one of four categories: insulin resistance/
sensitivity-related phenotypes, lipid profile-related phe-
notypes, outcome of obesity, and outcome of T2D. For a

better understanding of gene coverages that are associated
with these phenotypes, genes that have been associated
with any of the four phenotype categories were collected
from the NHGRI-EBI GWAS Catalog10. Specifically, the
bulk GWAS result data of all 63,205 SNPs that have ever
been reported to be associated with phenotypes were
obtained, and SNPs that were associated with phenotypes
of at least one of the four categories were collected. For
each SNP with such an association, a gene that includes
the SNP was determined to be associated with the cor-
responding phenotype, or a gene that is closest to the SNP
was determined to be associated if the SNP was in an
intergenic location. Fig. 1 shows a Venn diagram of the
2375 genes that are associated with at least one of the four
obesity/T2D-related phenotype categories. A certain
degree of common genes is shown, but each phenotype
category has its own genes of exclusive associations. The
six genes that show associations with all four categories of
phenotypes include the well-known peroxisome pro-
liferator activated receptor gamma (PPARG), where
PPARG is a regulator of adipocyte differentiation12 and
has been implicated in numerous diseases, including
obesity13 and T2D14. Another gene is peptidase D (PEPD),
and it is known to play an important role in collagen
metabolism15.
As already mentioned, the direct effect size of GWAS-

identified loci to obesity/T2D-related phenotypes is rela-
tively small. It should be noted that the genes related to
GWAS-identified loci imply the biological functions of
certain roles in developing metabolic disorders rather
than these genes being decisive disease drivers. For this
reason, considering the genes from GWAS generally
requires further direct validation of the mechanisms that
drive these metabolic disorders.

Causal gene identification with gene KO mouse
models
GWAS takes a passive observational approach that

searches for associations between the phenotypes of
interest and genetic variants in real populations. For this
reason, it is challenging to uncover specific mechanisms
of action from the identified susceptible loci as they can
explain marginal effect sizes in general. In comparison,
understanding the function of genes by knocking them
out in model species and observing the resulting pheno-
types is an extreme interventional approach. In this
approach, knocking-out each gene is done for model
species and the resulting phenotypes are observed based
on predefined protocols. A good example of this approach
is the International Mouse Phenotyping Consortium
(IMPC)16, where the objective is producing KO mouse
lines for >20,000 known genes and observing various
resulting phenotypes with standardized protocols. It is an
international consortium of multiple institutions, and

Fig. 1 Genes that were ever reported to be associated with
phenotypes relevant to obesity or T2D, which were assessed from
NHGRI-EBI GWAS Catalog10
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these institutions produce germ line transmissions of
targeted KO mutations in embryonic stem cells for
known/predicted mouse genes. Each mutant mouse line is
tested through a standardized primary phenotyping
pipeline (see the website of the consortium for a complete
list of studied phenotypes) in all major adult organ sys-
tems and most areas of major human disease. Briefly,
phenotypes are observed from embryonic status until the
16th week and include fatality, body measurements and
compositions, metabolic profiles, insulin-related pheno-
types, pathological, physical, and physiological pheno-
types. It is an ongoing project, and the current release
(Release 6.1) includes phenotype information from knock
outs of 3371 mouse genes. IMPC provides online search
functionality for genes, diseases, and phenotypes, and
detailed phenotype information is provided if available for
queried KO models.
Among the studied phenotypes from IMPC, phenotypes

relevant to obesity or T2D can also be grouped into the
following three categories: insulin resistance/sensitivity-
related phenotypes, lipid profile-related phenotypes, and
obesity-related phenotypes, such as weight changes.
Among the 3371 studied IMPC genes, genes that showed
statistically significant changes in phenotypes that belong
to any of the three categories were assessed from IMPC
Release 6.1. Fig. 2 shows the Venn diagram of 856 genes
that caused these statistically significant phenotypic
changes for each phenotype category. Like the case of
GWAS-identified genes, genes from KO-based pheno-
typing studies also show a certain degree of overlap and
unique genes in each phenotype category. There are 30
genes that show changes in all three phenotype categories,
and they include previously known genes involved in
energy transfer and metabolism. CHN1 is a GTPase-
activating protein17, BNIP2 is related to myogenesis18 and
GTPase activator activity19, and HBS11L and GIMAP620

are related to GTP binding. NCOA1 is involved in

controlling the energy balance between white and brown
adipose tissues21. CYP17A1 and CYP27B1 are members of
the cytochrome P450 superfamily of enzymes22, and they
are monooxygenases that catalyze many reactions
involved in drug metabolism and the synthesis of cho-
lesterol, steroids and other lipids. LEPR is a receptor for
leptin and is involved in the regulation of fat
metabolism23.
The advantage of this KO-based phenotyping approach

is its direct observation of resulting phenotypes from
individual gene KO, which minimizes the undesirable
effects of other factors in analyzing the biological function
of the target gene. However, there are a few challenges
with this approach. Establishing KO mouse models itself
is a challenging task, often requiring significant time and
effort. Controlling the quality of the standardized phe-
notyping protocol can also be a technical obstacle, espe-
cially when multiple independent organizations
collaborate internationally. There is also an inherent
limitation that lethal genes are hard to study with this
approach, as KO of these genes will disable producing
adult mouse lines and the following phenotyping pro-
cesses. In addition to such challenges in a KO-based
phenotyping approach, a few characteristics should be
noted before utilizing the phenotyping results of gene KO.
Current phenotyping protocols are focused on identifying
phenotypes in normal environments (for example, feeding
normal chow); thus, these studies do not represent pos-
sible phenotypic changes under certain environmental
stresses of interest (for example, a high fat diet) that were
not considered in the phenotyping protocols. As this
approach is conducted based on model species, potential
discrepancies between the model species and humans
should be considered. Another issue is that this approach
performs KO of genes in the whole body rather than
tissue-specific silencing, whereas in realistic situations,
several relevant organs can have individual roles via spe-
cific biological functions in developing metabolic dis-
orders. Thus, consideration of the genes from KO-based
phenotyping studies requires an understanding on these
pros and cons and their relationships with human disease
mechanisms.

Human gene expression profiling of obesity and
T2D
A metabolic disorder is a condition in which the

dynamic status of in vivo metabolism falls into disorder
throughout the body (for example, insulin-resistant state
of T2D). Thus, developing effective therapeutic approa-
ches can require an understanding of the exact dynamic
states of metabolic systems within the body of individual
patients. This understanding of exact dynamical states of
in vivo metabolic systems can require the following con-
siderations. First, comprehensive molecular profiling is

Fig. 2 Genes that showed statistically significant phenotype changes
after KO from IMPC (based on Release 6.1)
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necessary to form broad multi-omic observations,
including gene expression, protein expression, and
metabolic profiles. Second, this comprehensive molecular
profiling needs to be conducted on various relevant
organs, such as adipose, liver, and muscle to study insulin
resistance. However, gene expression profiling is the only
relatively popular approach for high-throughput mole-
cular profiling due to its advantages of higher reliability
and lower costs than the other techniques. There are also
certain challenges in acquiring the human tissue samples
needed for molecular profiling as surgical treatment is not
a general treatment for obesity or T2D. For these reasons,
few studies are currently available that have conducted
comprehensive molecular profiling in various relevant
organs, even when only gene expression is considered.
Nevertheless, some studies have conducted gene

expression profiling in specific organs in certain condi-
tions of interest. Like the case of GWAS with various
phenotypes, appropriate integration of these data sets can
enable data set assessment in a way that mimics com-
prehensive multi-organ profiling. To integrate multiple
gene expression profiles from independent studies, nor-
malization of data sets between data sets is required to
achieve data-level coherency. The most desirable nor-
malization of data sets requires all data sets to be gener-
ated from the same platform; however, gene expression
profiling has been performed with various microarray and
next-generation sequencing platforms. There are many
different platforms for gene expression profiling, but the
most popular platform with the largest number of studies
is the Affymetrix GeneChip Human Genome U133 Plus
2.0 microarray, despite recent advancements in next-
generation sequencing platforms. Table 3 lists the studies
on obesity or T2D with available gene expression profiles
based on the Affymetrix GeneChip Human Genome U133
Plus 2.0 microarray. Most studies profiled samples of only
one tissue, except for two data sets (GSE13070 and
GSE41168). The approaches of the studies vary, such as
studying gene expression profiles of disease only, com-
paring disease profiles with normal control profiles,
comparing profiles across different stages of disease,
comparing profiles before and after certain interventions,
and comparing profiles from siblings or twins to reduce
the effect of genetic backgrounds. From this collection of
expression profiles of various conditions performed with
the same profiling platform (as listed in Table 3), gene
expression profiles from multiple studies can be inte-
grated into a single normalized data set so that the subject
conditions of the studies match our conditions of interest.
As a simple example of integrating gene expression

profiles of several studies with subjects of interest, dif-
ferentially expressed genes (DEGs) between lean healthy
subjects and obese healthy or obese diabetic subjects were
identified in a tissue-specific way. From the 20 data sets

listed in Table 3, 17 studies (except for E-TABM-325,
GSE27916, and E-MTAB-1895) provide BMI information
and metabolic profiles or insulin resistance/sensitivity
information. A total of 602 gene expression profiles of
adipose, liver, and muscle samples from the 17 studies
were integrated into a single data set, where lean/obese
conditions of the samples were determined based on BMI
and healthy/diabetic conditions of the samples were
determined based on the metabolic profiles and insulin
resistance/sensitivity information. For each tissue type, a
gene was declared as a DEG if it showed more than a 1.5-
fold change in expression with an FDR-adjusted p-value <
1E-6 (t-test) between lean healthy samples and obese/
diabetic samples. Fig. 3 shows the Venn diagram of 2334
DEGs identified from three tissue types. Due to tissue-
specific gene expression, many DEGs are differentially
expressed in a tissue-specific manner. For example,
PPARG is an adipose-specific DEG, which is a regulator of
adipocyte differentiation. There are 34 common DEGs
that show differential expressions from all three tissue
types. Five of these 34 DEGs are known to be related to
metabolism or mitochondria. FAHD1 is related to tyr-
osine metabolism and a mitochondrial enzyme24, and
THRSP is related to regulation of lipid metabolism and
lipogenesis25. DNAJC1526 is a negative regulator of the
mitochondrial respiratory chain, prevents mitochondrial
hyperpolarization states and restricts mitochondrial gen-
eration of ATP, MRPS10 is a mitochondrial ribosomal
protein, and LIAS is localized in mitochondria and known
to be associated with hyperglycinemia27. Note that they
are DEGs common to all tissue types, and the relevance to
mitochondria and metabolism may not be tissue-specific.
Compared to DNA-level genetic variants, which make a
relatively small contribution to effect sizes, DEGs of sig-
nificant expression changes from phenotypes of interest
can imply more direct representation of the biological
mechanisms that drive such phenotypes because these
expression changes are a snapshot of the current biolo-
gical dynamic status. Thus, searching therapeutic targets
based on gene expression profiles may provide higher
chances of identifying points of intervention compared to
searching solely based on DNA-level susceptible genetic
variants. However, it should be noted that gene expression
profiles are based on transcription profiles; thus, they have
their own limitations. First, there can be discrepancies
between transcription-level activities and protein levels or
metabolic activity levels, as there are many post-
transcriptional regulatory mechanisms, such as small
RNA activities. Second, identifying key driver events of
these transcriptional changes is still a challenge. Never-
theless, publicly available gene expression profiles from
relevant studies of obesity and T2D are important and
beneficial resources as they provide unique information
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on dynamical gene-regulations that cannot be inferred
from DNA-level phenotype associations.

Comparing biological coverage of GWAS, KO-
based phenotyping, and gene expression profiles
To compare the coverage of obesity/T2D-related genes

that can be identified from currently available data from
GWAS, KO-based phenotyping, and gene expression
profiles, the genes that were identified from different data
types were compared to one another. Fig. 4 illustrates the
Venn diagram of the obesity/T2D-related genes that were
identified from each data type in the previous sections and
the amount of overlap between them. The identified genes
show very little overlap between different data types,
where DEGs from gene expression profiles show sig-
nificantly low overlap with the other two data types (p-
value of low overlap: DEG–GWAS= 7.73E-17,
DEG–IMPC= 0.026). The overlap between the genes
identified from GWAS and the KO phenotyping study is
also very low, but its statistical significance is not as strong
as the other cases. This low commonality between the
obesity/T2D-related genes from different data types sug-
gests that their different approaches to assessing the
relationships between genes and phenotypes cause biases
in the coverage of identified genes. The discrepancy is
clearer between the DEGs from gene expression profiles
and the genes from the other two data types, suggesting
that gene expression-level changes and DNA-level genetic
effects may cover different biological aspects. This dif-
ference in coverage between the results of studying gene
expression profiles and the results of studying DNA-level
genetics becomes more evident when their enriched bio-
logical functions are compared one another. For each list
of genes identified from studies of gene expression pro-
files, GWAS, and KO-based phenotyping, the statistical
enrichment levels of known biological functions were

evaluated to identify the most strongly relevant biological
functions for each list of genes. Molecular Signatures
Database28, 29 is a collection of annotated gene sets, where
17,774 gene sets are curated with a related list of genes
(Molecular Signatures Database v5.2). Among these data,
each of the 6659 gene sets that represent known biological
pathways (curated from pathway databases, such as
KEGG30 and REACTOME31, 32) and Gene Ontology33, 34

biological processes and molecular functions was eval-
uated for its overlap with each list of genes identified from
gene expression profiles, GWAS, and KO-based pheno-
typing, and the statistical significance of overlap was
computed as a hypergeometric p-value. For the list of
genes from each data type, biological functions with an
FDR-adjusted p-value < 1E-10 were declared as the most
strongly relevant functions, and Fig. 5a shows the Venn
diagram of the most strongly relevant biological functions
for the three data types. The biological functions that are
very strongly enriched in the genes that showed obesity/
T2D-related phenotypes from KO-based phenotyping
(IMPC) were mostly discovered by other data types except
for one function, whereas 37 biological functions were
discovered by both GWAS and gene expression profile-
based analysis, and three functions were also discovered
by gene expression profile-based analysis. The biological
functions from gene expression profile-based studies
show large discrepancies with those from GWAS, which
strongly implies differences in the biological coverage of
gene expression profiles and DNA-level genetic suscept-
ibility information. Fig. 5b illustrates the very strongly
enriched biological functions for different data types that
are relevant to obesity/T2D, and it shows different bio-
logical mechanisms that are specifically enriched in DEGs
from gene expression profiles. From Fig. 5b, the list of
genes from gene expression profiles, GWAS, and KO-

Fig. 3 Tissue-specific DEGs between the lean healthy group and
obese/diabetic group Fig. 4 Genes that were identified from each data type and their

overlaps. Hypergeometric p-values for lower overlapping amount are
given for each overlap
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Fig. 5 Biological functions that are very strongly enriched (FDR-adjusted p-value < 1E10-10) in the list of obesity/T2D-related genes from
each data type . a The Venn diagram of the very strongly enriched biological functions. b Very strongly enriched biological functions for at least one
data type, while being relevant to Obesity/T2D-relevant. For each biological function, its related functional categories are also presented
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based phenotyping commonly have strongly enriched
biological functions that are related to metabolism, dif-
ferentiation, homeostasis, and lipids. However, biological
functions that are related to muscle, immune, catabolism,
cytokine, epigenetic modification, and inflammation are
specifically enriched in the genes from gene expression
profiles in general. This finding implies that genes
involved in such biological functions are more affected by
dynamic gene expression changes than by static genetic
backgrounds. These results emphasize that we need to
consider all discrepancies in gene coverage and biological
functions that can be identified with different data types
in searches for therapeutic targets and strategies.

Conclusion
Many efforts to understand obesity and T2D and find

their therapeutic targets have been made. However, few
data resources exist with comprehensive high-throughput
molecular profiles for obesity or T2D whereas such
comprehensive molecular information is essential for
understanding these conditions. In this review, publicly
available genomic data resources of obesity and T2D are
discussed, covering major GWAS, a KO-based pheno-
typing study, and studies with gene expression profiles
based on a popular microarray platform. While no com-
prehensive data resource is available, systematic integra-
tions of these individual data sources based on their
associated phenotypes and experimental conditions give
us a chance to mimic comprehensive collections of
genomic data. GWAS and the KO-based phenotyping
study provided insights into the function of individual
genes, whereas gene expression profiles provided com-
plementary opportunities to observe dynamical systematic
changes of biological functions that could not be observed
with DNA-level information. A comparison of obesity/
T2D-associated genes that were identified from different
data types showed different coverage of identifiable genes,
and a comparison of their enriched biological functions
provided stronger clues into the biological discrepancies
that can be recognized with different data types. Thus,
utilizing these data resources for own studies with specific
disease models requires the consideration of such dis-
crepancies in data characteristics and coverage.
From this point of view, a desirable approach to build-

ing a comprehensive molecular profile for obesity or T2D
requires consideration of the following. First, a cohort
must be broadly collected so that it can represent various
ranges of metabolic conditions as metabolic conditions,
such as obesity or T2D, are continuously developed with
varying states of metabolic dynamics. Second, a compre-
hensive collection of phenotypes must be monitored to
precisely model the progression status of metabolic con-
ditions. Third, a collection of tissue samples for relevant
organs must be collected from individuals in the cohort as

several organs participate in the development of meta-
bolic conditions. Lastly, efforts should be put towards
making the molecular profiles of tissue samples as com-
prehensive as possible by covering various levels of
molecular mechanisms, including information at the
DNA, transcript or gene expression, epigenetic, protein,
and metabolic profile levels. Such comprehensive mole-
cular profiling from human multiple organs (if possible)
or even organs from model species will give us informa-
tion on molecular activities in obesity and T2D with an
unparalleled level of resolution, and this rich information
will become a solid basis for searching for therapeutic
targets and developing treatment strategies.
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