
ARTICLE OPEN

Heritability of complex traits in sub-populations experiencing
bottlenecks and growth
Cameron S. Taylor1 and Daniel J. Lawson 1,2✉

© The Author(s) 2024

Populations that have experienced a bottleneck are regularly used in Genome Wide Association Studies (GWAS) to investigate
variants associated with complex traits. It is generally understood that these isolated sub-populations may experience high
frequency of otherwise rare variants with large effect size, and therefore provide a unique opportunity to study said trait. However,
the demographic history of the population under investigation affects all SNPs that determine the complex trait genome-wide,
changing its heritability and genetic architecture. We use a simulation based approach to identify the impact of the demographic
processes of drift, expansion, and migration on the heritability of complex trait. We show that demography has considerable impact
on complex traits. We then investigate the power to resolve heritability of complex traits in GWAS studies subjected to
demographic effects. We find that demography is an important component for interpreting inference of complex traits and has a
nuanced impact on the power of GWAS. We conclude that demographic histories need to be explicitly modelled to properly
quantify the history of selection on a complex trait.
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INTRODUCTION
Recent advancements in Genome Wide Association Studies
(GWAS) of large human genetic datasets facilitate the study of
how genetic variation associates with phenotypes [1–3], offering
insight into the causal genetic structure of complex traits.
However, not all populations used in association studies are
equivalent - some will contain a diversity of ancestries in their
history whilst others may have been relatively isolated. Here we
investigate the consequences of studying isolated subpopulations
who experienced a population bottleneck on the association with
complex traits. Examples include the Ashkenazi Jewish population
[4], Icelanders [5], Finns [6], and even experimentally explored in
Bacteria [7], whose relatively low genetic variation provides a
unique opportunity to isolate SNPs associated with traits and
disease [8]. The same principle applies to the ‘Out-of-Africa’
bottleneck that affected all non-Africans, in which includes the
largest studies such as UK Biobank [9] on which — arguably too
much [10] genetic inference is based. However, the genealogies of
the ancestral populations in which complex traits evolved may not
be well represented by the more homogeneous subgroup that
was studied. Here, we explore the consequences of studying these
population subgroups via simulation.
A number of Single Nucleotide Polymorphisms (SNPs) con-

tribute to genetic variation of a single complex trait, with a
distribution of the effect size βi for each SNP i [11]. The frequency
of the SNPs fi can depend on the effect size, which (along with
polygenicity and linkage disequilibrium between them) can jointly
be considered as the ‘genetic architecture’ of the trait [12]. This
relationship is linked to whether the trait is under selection, and

can be quantified by a selection parameter s that takes values s < 0
if variation in the trait is selected against (‘negative selection’
which reduces the frequency of large effect SNPs) and s > 0 if the
trait is selected to change (‘positive selection’ which makes large
effect SNPs more common). The complex traits we consider here
evolved a long time ago and are now under negative selection.
However, the frequency of SNPs is affected by genetic drift, an
evolutionary mechanism that leads to changes in the frequency of
different alleles between generations [13], and hence different
apparent selection. The relationship between frequency and effect
size can be amplified or reduced by drift depending on the
genetic architecture of a trait, the history of the population [14],
and which SNP frequencies are examined. Figure 1 illustrates this
process.
Although increased genetic drift is well exploited to discover

associations between SNPs and traits, the impact on the
distribution of effects is less studied. We consider the impact of
a population contraction creating a “bottlenecked population”
(potentially considering recovery) within a single ethnicity on the
nature of a complex trait. One example is BRCA in Ashkenazi
Jewish women [15] for which testing focuses on a single gene,
although many genome-wide genetic effects are associated with
breast cancer in the wider population [16]. On a much larger scale,
the same bottleneck process leads to benefits and limitations of
European Biobanks. The bottleneck that took place as the
ancestors of Eurasians left Africa means that these data contain
a subset of African diversity, with a concentrated gene pool [17].
As a consequence, Biobanks of primarily non-African ancestry are
not representative of the populations where the traits evolved.
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Genome-wide trait associations differ systematically in these
populations, by the same isolation process described above,
though varying in date, severity and migration history. We will
investigate how these historical processes affect the association
between genetic variation and complex traits.
A natural measure of the genome-wide relationship between

genetic variation and a complex trait is heritability h2, that is, the
proportion of phenotype variation due to genetic variation [18].
Aside from environmental variation, heritability of complex traits is
determined by the number and frequency of SNPs and their
respective effect sizes. The importance of the increase in
frequency of rare SNPs with large effect size due to random drift
is demonstrated in Fig. 1a in which a population reduction induces
a change in the genetic architecture and a subsequent increase in
heritability (from 0.5 to around 0.8). Complex traits are inherently
polygenic so drift and selection acting on rare SNPs can be offset
by that of common SNPs, and vice versa. Therefore, intuition on
how genetic drift interacts with selection from well-studied single
SNP models, based on the Nearly Neutral Theory of Molecular
Evolution [19] which has been followed up experimentally [20] still
require work to translate into the polygenic case. Polygenic
selection [21] has been shown to change the distribution of
private variants in populations [22] and has been shown to be
associated with heritability across traits [11, 23] but without an
explicit accounting for genetic drift.
We use a genome-wide simulation approach to explore how

demographic structure, population separation and other factors
characterise how a complex trait that has arisen in the past will
evolve in future generations. We also consider how the realities of
a detection threshold for associations interact with genetic drift. In
only well-powered SNP subsets, we find that heritability is still
strongly affected by genetic drift, implying that the patterns we
observe will impact complex trait analysis from GWAS.

RESULTS
Our evolutionary framework regards selection on a complex trait
considered to have been under selection in the past. Whilst this
selection is strong, it is distributed over many loci leading to
“nearly neutral” behaviour for each locus under a range of
conditions (e.g. Eyre-Walker [24]). This facilitates a neutral model
by assuming that selection has maintained SNPs at or below the

threshold where selection would efficiently reduce their frequency
[19]. This model is practical for inference and widely used for
inference of heritability (e.g. Yang et al. [25]), and is appropriate
following a contraction if selection is either negligible (because it
is less effective in a smaller or growing population) or absent
(because the conditions in modern populations have changed).
We use a simulation-based approach to generate population

histories accounting for genetic drift, mutation and recombination
using the coalescent simulator msprime [26]. This generates
(correlated) genealogies for every genetic loci for each individual
of both a reference population and a Bottlenecked population.
The population structure is simulated such that the ancestral
population splits at some time T in the past, taken to be 200
generations in the base case, when some members form a sub-
population that remains isolated from the Reference population,
as shown in Fig. 1b. Typically, the size of the Reference population,
N0, is large relative to the Bottlenecked population, N, taken to be
10,000 and 1000 respectively (unless otherwise stated).
To generate a phenotype, we choose a random sample of SNPs

to be causal, and assume that the frequency of these SNPs has
been under selection as a result of their effect on the phenotype.
A proportion 1 − π of SNPs are assumed to have no causal effect
whilst the proportion π (typically small) that contribute to
phenotypic variance are distributed as:

βj � Nð0; σ2βÞ;
σ2
β ¼ f jð1� f jÞ

� �s (1)

where fj is the frequency of the jth mutation in the sample.
Because we are dealing with a simulation in which effect sizes are
known, we can use a scaled mutation rate µ= πµ0 as the mutation
rate for causal SNPs leading to a random number of causal SNPs L
with corresponding genotype values xij for individual i at SNP j,
where frequencies fj are for the reference population.
This is used to construct a simulated phenotype yi ¼PL
j¼1xijβj þ ϵi [27]. The relationship between effect size and

frequency is determined using the parameterisation in which is
equivalent to the model used in LDAK [28]. Selection strength (on
the trait) is parameterised by s in Eq. 1, and we report results for
negative selection (s=−1) so that SNPs with large effect sizes
have been selected to become rare. These effect sizes are
transferred from the reference to the bottlenecked population,

Fig. 1 Illustration of the effect of genetic drift on complex trait architecture. a The relationship between minor allele frequency and the effect
size of SNPs in a population that has experienced a bottleneck (blue) and one that has not (red). The arrow shows the effect of drift, allowing
rare causal SNPs with large effect size to become common, and changing heritability of complex traits after a population experiences a
bottleneck. b A simple simulation scenario including a population separation time T generations in the past, leading to a Reference and
Bottlenecked Population of size N0 and N respectively. The green lines show the lineages of individuals for one locus that coalesce at the most
recent common ancestor, which are relatively more diverse in the larger population

C.S. Taylor and D.J. Lawson

2

Journal of Human Genetics



under the assumption of constant environmental variance. The
environmental noise ϵi is chosen to control the heritability in the
reference population (see Methods) to h2= 0.5.
Figure 2a, b shows the distribution of heritability in simulated

traits from this model for Bottlenecked Populations of different sizes
(from N= 500 to 10,000) with T= 200. With the parameters
described, the population contraction typically leads to an decrease
in the heritability of complex traits. Several factors influence the
extent to which heritability is impacted. A more severe contraction
leads to lower levels of heritability on average. This is a result of
amplified genetic drift due to fewer founding members of the sub-
population, resulting in many SNPs being lost. Conversely, the
variance increases with contraction size, as there is a possibility of
rare SNPs with large effect being able to reach high prevalence.
The timing of the contraction can also impact how heritability is

distributed. The mean heritability of the complex trait in the
bottlenecked population decreases with age as more SNPs are
likely to be lost. However, traits vary more when the contraction
was longer ago (from T= 50 to 500, Fig. 2c, d) as the most extreme
effect size SNPs can become more prevalent as a consequence of
genetic drift. Over these time scales, the variance of heritability

increases close to linearly with time in the past (Fig. 2d), so
heritability becomes increasingly varied for complex traits with
equal genomic architecture. For reference, 200 generations
corresponds to a split time of around 6000 years, similar in scale
to the origin of the Ashkenazi Jewish population; 500 generations
corresponds to 15 kya, around the time of the migration to the
Americas; and the out-of-Africa bottleneck took place of the order
of 2000 generations (60 kya) ago.
Introducing migration rate, m, from the reference population to

the bottlenecked population offsets the impact of the contraction
on the heritability of complex traits [29]. There is clear
dependence between the time of the contraction and the impact
of migration (from m= 0–0.1) on mean heritability of traits
(Fig. 3a), with older events being more effected. Only modest
migration (m= 0.01 with these parameters) is required to mitigate
the effect of the contraction. For some problems even ‘one
individual per generation’ [30] is enough migration to offset drift,
for complex traits the threshold becomes age-dependent as drift
interacts with replenishment of variability.
Population growth also impacts heritability change in the

population after a contraction. As observed in Fig. 3b, whilst

Fig. 2 Impact of demographic factors of a bottleneck on heritability. a Distribution of heritability at different sizes of bottleneck over 500
repeated simulations. Heritability distributions of populations with initial sizes N= 1000 and N= 8000 with a bottleneck that occurred at
T= 200 generations ago. bMean heritability decreases as the size of the initial Bottlenecked population N decreases. 30 samples were taken at
each bottleneck size and the mean and error bars are plotted. c Heritability is distributed with similar tail but different mean and variance over
3 different Bottleneck times. 500 samples are taken for each bottleneck population with different times, T= 50, 200, 500. d There is a positive
relationship between the time in the past that the bottleneck occurred, and the variance in heritability. 95% confidence intervals are shown
for the 200 samples taken at each time point using an empirical bootstrap
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growth following a bottleneck does recover some heritability, this
is dominated by the strength of the contraction. It should be
noted that the total bottlenecked population size can consider-
ably exceed the reference population size in these figures - the
population grows by a factor of nearly 20 in 200 generations with
a growth rate of 0.015.

Impacts for GWAS inference
We have assumed in the simulation study that the effect size of
SNPs for a particular complex trait are known. However, in reality
effect sizes are inferred from SNP-trait association data using
GWAS, which results in constraints being placed on what is
known. It might therefore be feared that the outcomes of this
paper cannot be directly applied to current complex traits, which
we explored in [14]. There are 2 main issues that impact inference
in real studies. The first of these is linkage disequilibrium which
causes difficulties in isolating causal SNPs. We do not address this
problem in this paper but it is explored elsewhere, for example by
fine mapping, e.g. in [31, 32], and is unlikely to prevent the genetic
drift we describe here.
The second issue pertains to the lack of statistical power of the

data in real GWAS studies, weakening the power to resolve many
traits. Whilst the models for which our genetic architecture was
introduced [28] already considered missing heritability, these
models assume selection acts to create the distribution of effect
sizes relating to frequency that are present in the observed
population. However, that distribution changes by genetic drift. To
explore this further, we considered only SNPs that surpass a
threshold of detectability in the bottlenecked population, either
by conducting GWAS and ranking by p-value or using variance
explained vj = fj(1 − fj) β

2
j in the trait. We considered only the top

SNPs by choosing a variance explained threshold over a large
number of simulations. For example, when we report the top 1/25

SNPs, we consider the top ∼ 3% of SNPs when averaged over 200
traits. As shown in Fig. 4, the heritability distribution can be
effected by limited detection power. Specifically, for traits with low
heritability in the target population, measured heritability for
thresholded SNPs drops, as there are few (or even no) remaining
SNPs that have sufficient explanatory power to be recorded.
However, for traits with high observed heritability, the true
heritability remains high. It follows that our observations on the
impact of genetic drift on selection are valid for traits with high
heritability, and increasingly for traits with lower heritability as
GWAS sample size grows. This also implies that (as is widely

assumed) there will be a number of traits that are highly heritable,
but that are more difficult to study in drifted (e.g. European)
populations.

DISCUSSION
Population bottlenecks lead to genetic drift, which simultaneously
reduces genetic variation whilst shifting the frequency of causal
variants. Because large effect variants were selected to be rare,
genetic drift will tend to increase the variance of these and hence
can dramatically increase heritability. However, prediction of
heritability is also affected by demographic factors, including
growth and migration. Out of this, some general trends emerge.
Sharper bottlenecks have more dramatic impacts on the

heritability of complex traits, likely due to a stronger ’founder
effect’. The average heritability of a complex trait decreases for
population contractions that occurred long ago, as the total
amount of genetic drift determines mean heritability. However the
variability of heritability between equally selected traits increases
as the bottleneck age increases. Therefore some traits increase in
heritability and some large effect SNPs rise to high frequency.
Migration has a relatively simple impact on heritability as a
regression to the mean, by mixing the two populations and
maintaining all SNPs at intermediate frequency.
The discoverability of SNPs in GWAS does not appear to strongly

interact with the relationship between heritability estimated in a
bottlenecked population, and the heritability evolved in the
reference population, as long as the heritability was not too low.
Therefore inferences from GWAS studies are likely to be effected
by the genetic drift process as we described here, even when only
a small fraction of the effective SNPs are observed.
The simulation models used here imply that whatever genomic

architecture evolved in ancestral populations, the complex
process of demography will have changed it. We have demon-
strated that it is relatively straight forward to perform inference
forward in time, but there are currently no tools to perform the
inverse inference: given an observed genomic architecture, and
putative population history, can we infer how genomic architec-
ture looked in the past? It seems unlikely that it will resemble what
we see today. Further, it would seem to be sensitive to
demographic parameters that remain difficult to infer [33]. Ancient
DNA studies [34] provide constraints on what ancient populations
might have looked like, but without massive samples we are not
likely to obtain high-quality measurements of the frequency and

Fig. 3 Growth, migration and time since bottleneck change heritability. a Mean heritability in the Bottlenecked population as migration rate
m is increased. 400 samples are taken at each time point and the mean with error bars is plotted. b Effect of bottleneck size and growth on
heritability. Shown are the mean and standard errors based on 400 repeated simulations. The reference population is controlled to have
heritability 0.5 throughout
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correlation structure of causal variants. Understanding selection
for complex traits then is likely to remain a challenge [35, 36].
Quantifying these issues better is important for predicting future
evolutionary responses, for example to climate [37] and the
Anthropocene [38].

MATERIALS AND METHODS
Generating genealogies
Tree sequence data for individuals in the chosen demography is generated
using msprime [26, 39]. The demographic model chosen here is outlined in
Fig. 1b, where two populations are derived from an ancestral population
that experiences a split at some point in the past.
For a single simulation, the genealogies are created on 0.1 Morgans of

genome. This is kept short for computational reasons, but the 200 simula-
tions we average over can equivalently be thought of as generating 20
Morgans, with no change to the conclusions. However, it is important to
emphasise that polygenicity and recombination rate are parameters of
genomic architecture (See Supplement on scaling genomes). The time at
which this split occurred and size of the initial bottleneck population are
parameters that are explored throughout this paper, although a standard
of N0= 10,000 initial people in the Reference population, N= 1000 in the

Bottleneck population and a split that occurred T= 200 generations ago is
assumed by default.
Genetic variation is added to the model by superimposing mutations

under the infinite sites model, with no time restriction as to when mutations
may occur. Other complexities such as a population growth rate and
continuous per-generation migration rate are included using the corre-
sponding msprime parameters (see Software Availability for exact details).

Complex trait simulation
A complex trait is generated by statistically imposing the effect sizes of
each SNP present in the reference population. Using the frequency of each
SNP in the reference population, fi, the effect sizes βi are calculated by
Eq. 1. In this paper the mutation rate is scaled to only include causal SNPs,
so all SNPs have non-zero effect sizes.
In order to calculate the phenotype of an individual i, we need the

contribution of environmental noise, ϵi. ϵi is distributed according to the
environmental variance, Ve, of the trait, ϵi ∼ N(0,Ve). We simulate ϵi with
variance chosen such that the heritability in the Reference population
remains at 0.5. Heritability is calculated as:

h2 ¼ Vg

Vg þ Ve
(2)

Fig. 4 The distribution of heritability of a bottlenecked population as observable in a GWAS study against simulated heritability present, over
200 repeated experiments. a the simulated heritability distribution (yellow) and observed thresholded heritability (green) where only the 1/29

percentile of most informative SNPs (by VE = variance explained) are observed. b Comparing heritability when thresholding on p-values over
200 repeated experiments, where the threshold heritability only captures the t= 1/2n most extreme SNPs. The red line depicts values such
that simulated and threshold heritability are equal. c as b, but where SNPs are ranked by variance explained. d Pearson correlation and
regression coefficient between the real heritability and threshold heritability for thresholds t= 1/2n with standard error bars
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This expression uses the genotype variance of the Reference population,
Vg = Var(Y0), where Y0

i ¼
PL

j¼1X
0
ijβj is the genetic component of the

phenotype. Here, Xij
0 is the genotype of individual i at SNP j in the

Reference population.
Constant environmental variance is assumed in this model, therefore we

can formulate the phenotype of for an individual Yi from their genome Xi,
as well as the Ve and β calculated in the reference population. This leads to
the mixed linear model

Yi ¼
XL

j¼1

Xijβj þ ϵi (3)

By recalculating the genotype variance Vg in the bottleneck population,
the heritability may be calculated using the equation above.
In Figs. 2–4 new genealogies with a different complex trait (i.e. new

effect sizes) were created in each simulation. Figure 2d uses an empirical
bootstrap to create error bars for the variance data.

Thresholding
The variance explained by SNP j is

vj ¼ f jð1� f jÞβ2j (4)

which determines the power to detect the SNP in a GWAS study. We aim to
mimic the findings that would realistically be found by thresholding the
data to only include SNPs that surpass a certain power threshold.
The power threshold is determined by 200 repeated simulations that

share the same demography, but are given unique population genealogies
thus different complex trait effect sizes and frequencies. For each
simulation the power of each SNP is calculated and the power threshold
of the chosen quantile is determined from their combined distribution. In
this case the 1

2n th quantile is used for n= 1,2,3,… The complex trait
simulation procedure is then repeated, but SNPs that don’t surpass the
power threshold in the bottleneck population are discarded. Heritability is
then recalculated with the reduced number of effective SNPs.
For Fig. 1d, Pearson correlation coefficients between the simulated and

thresholded observed heritability values for each threshold level are
calculated, as are regression coefficients. Standard error bars are added
using Fishers z-transformation.
We further repeated the analysis thresholding not on variance

explained, but on p-values, keeping only the smallest.

Software availability
The code used to obtain the results in this paper is available at https://
github.com/camerontaylor123/TaylorLawson2023.
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