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The field of omics, driven by advances in high-throughput sequencing, faces a data explosion. This abundance of data offers
unprecedented opportunities for predictive modeling in precision medicine, but also presents formidable challenges in data
analysis and interpretation. Traditional machine learning (ML) techniques have been partly successful in generating predictive
models for omics analysis but exhibit limitations in handling potential relationships within the data for more accurate prediction.
This review explores a revolutionary shift in predictive modeling through the application of deep learning (DL), specifically
convolutional neural networks (CNNs). Using transformation methods such as Deeplnsight, omics data with independent variables
in tabular (table-like, including vector) form can be turned into image-like representations, enabling CNNs to capture latent features
effectively. This approach not only enhances predictive power but also leverages transfer learning, reducing computational time,
and improving performance. However, integrating CNNs in predictive omics data analysis is not without challenges, including
issues related to model interpretability, data heterogeneity, and data size. Addressing these challenges requires a multidisciplinary
approach, involving collaborations between ML experts, bioinformatics researchers, biologists, and medical doctors. This review
illuminates these complexities and charts a course for future research to unlock the full predictive potential of CNNs in omics data

analysis and related fields.
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INTRODUCTION

Recent advances in genomics have bolstereed our capacity to
delve deeper into the complex etiologies of various diseases.
Among them, Genome-Wide Association Studies (GWAS) are one
example of approaches driving these developments and have
greatly improved our understanding of genetic factors that
underpin many important complex traits and diseases. However,
this research still faces many limitations that demand innovative
solutions to unlock its full potential. Many of these problems arise
from the insufficient ability of current modeling methods to
capture the full degree of underlying biological complexity. The
number of genetic variants is vast, and their individual effects are
often small and context-specific. Fully mapping out the mechan-
isms that translate genetic variation into phenotypes requires fine
integration of genetic analysis with other types of knowledge and
‘omics domains. By their nature, these aspirations closely align
with problems currently being encountered and solved in other
data-intensive domains, both in other areas of biology and more
widely. In this review we will outline promising synergies and
solutions from recent advances in DL analysis and explain their
potential applications in biomedical research.

Extensive datasets offer insights into the molecular mechanisms
behind various diseases and create novel opportunities for predictive
modeling in precision medicine, particularly in the realm of drug
efficacy prediction. However, complexity and volume of omics data
pose significant challenges in extracting meaningful information and
deciphering essential biological context. Within high-throughput

genomics, similar to other omics domains, technological advances
have brought with them both the typical challenges associated with
overabundance of data and also unique problems - like those arising
from the methodological specifics of GWAS. Meaningful interpreta-
tion of such data is complicated, as most contemporary profiling
strategies capture an outwardly extensive yet functionally narrow
view of the entire biological system. Some key challenges currently
affecting genomics research within the context of these overarching
themes are briefly outlined below.

One often-encountered criticism of the GWAS approach is its
focus on common genetic variants with modest effects that often
do not explain a significant part of the genetic contribution to
complex traits [1]. This issue arises due to the presence of rare
variants with very large contributions, complex epistatic effects,
and interactions between genes and the environment. Even once
a GWAS study has led to identification of potentially relevant
variants, it is still essential to determine their functional
consequences and causality, which can often be complicated
and require additional targeted experiments [2]. The task of
distinguishing causal variants from other markers in linkage
disequilibrium blocks and understanding their mechanistic effects
on observable phenotypes require some form of additional
information. This type of research will therefore greatly benefit
from reliable, automated integration of functional genomics [3],
epigenomics [4], and transcriptomics [5].

Attempting to explain ever more complex natural processes
inevitably requires comparably complex models. This necessitates
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the use of advanced algorithms to automate model construction
and the fitting process, which results in ‘black-box’ models that,
although very accurate, usually lack human interpretability.
Increasing complexity can ultimately limit the usefulness of these
methods for biological discovery (as it can obscure hints about
potential mechanisms) and undermine trust in such tools for
clinical applications, one example being polygenic risk scores for
complex diseases [6]. Additionally, many genetic studies have to
deal with suboptimally small numbers of samples — especially in
the case of rare diseases, variants with subtle effects or those
confined to specific population subgroups. Artificial intelligence
(Al) and ML techniques [7, 8] offer multiple new strategies to
address these limitations and, most importantly, improve our
ability to integrate knowledge and data across multiple layers of
biological organization.

ML algorithms encompass a broad range of computational
methods that enable computers to construct predictive models
leading to actionable insights. In medical genomics, ML techniques
have found diverse applications, including but not limited to,
predictive disease classification, biomarker discovery, drug response
prediction, and identification of disease-causing genetic variants.
Classical ML techniques, such as Random Forest [9], Support Vector
Machines [10], and logistic regression [11], have been instrumental
in omic data analysis. These methods excel at handling high-
dimensional data and have demonstrated success in various
genomics research endeavors. For a comprehensive survey on the
typical applications of standard ML techniques in biomedical
research, readers are referred to existing review articles [12-17].
However, as the dimensions and layers of data grow, so do the
limitations of these classical methods. One significant drawback is
their insensitivity to the relationships behind data, e.g. genes often
crucial in omics, because they are mostly from “tabular” data, where
variables are represented independently with each other. Seizing
the potential relationships of genes or elements can offer a wealth
of information as we describe in detail below.

The emergence of DL has revolutionized the field of Al and
transformed the landscape of data analysis. This ability of DL to
automatically learn hierarchical representations from raw data has
proven invaluable for predictive modeling, capturing intricate
dependencies within datasets, even when dealing with noisy and
high-dimensional data. One particularly important development in
the area of DL is the creation of new methods to deal with small
sample sizes, a recurring concern in genetic profiling of small
populations and rare diseases. While the ideal application of DL
aims to facilitate comprehensive representation learning of the
underlying structures within omics data, practical challenges
emerge when too few samples are available. In certain applica-
tions this can even hinder adequate representation learning and
complicate the direct processing of omics data within DL
frameworks. This important limitation can be mitigated using a
technique called transfer learning. Unlike classical statistical
models, neural networks are fitted sequentially meaning that
they can be continuously updated with new data. This opens a
possibility of ‘pre-training’ a model on some large, but weakly or
partially relevant dataset and then finalizing the training on a
more valuable but smaller one. For patterns that persist between
the two datasets there will be a benefit from access to all of the
combined observations, whereas irrelevant patterns will simply
be overwritten with new data. Transfer learning can facilitate the
reuse of knowledge from larger datasets to substantially improve
accuracy in smaller cohorts. In principle, pre-trained models
initialized on large-scale genetic data can be re-specialized for
new tasks, reducing the need for data collection while also
improving performance. The potential and limitations of this
strategy are discussed in detail in this review and its benefits are
demonstrated with several examples [18-24].

DL models offer a wide range of additional analysis capabilities
that can improve many kinds of high-throughput biomedical
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analysis. Firstly, artificial neural networks can easily identify large
numbers of interactions and model non-linear effects while also
offering very effective regularization to mitigate the risk of
overfitting [25]. Secondly, modern neural networks can utilize
very large input sizes, incorporate methods for imputation of
missing values [26] and accommodate very diverse types of
structured information. All of these capabilities offer additional
ways of increasing power to detect rare SNPs, epistasis, and more
accurately model the full range of possible association patterns.
DL models can jointly analyze and integrate heterogeneous data
sources, allowing for a more comprehensive view of genetic
contributions and some recently introduced methods offer ways
to integrate different omics data types within the same model and
perform inference across them simultaneously. Of particular note
is the Deeplnsight family of approaches [18-21], where several
studies have demonstrated successful cross-omics analysis that
included cancer somatic variation as one of the input types. As this
type of data is akin to germline variation, potentially similar
strategies can be used in the future for enhancing functional and
causal annotation of SNPs.

Lastly, increasing use of Al across all areas of life has brought to
the fore the need for such systems to become more transparent
and interpretable. This problem is a focus of increasing research
interest and explainable Al (XAl) is now emerging as its own sub-
discipline within Al research. As the vast majority of this work was
done with DL-based models, most of these methods can be
readily used with most typical architectures of neural networks.
Techniques like attention and gradient-based attribution can in
principle help to understand the contribution of individual
biological factors to disease risk and drug response, making the
results more interpretable for biologists and clinicians. To
demonstrate these potential benefits, this review will use
DeepFeature method as an illustrative example, which imple-
ments a gradient-based attribution approach to discover potential
mechanisms involved in cancer drug efficacy [20, 21].

Here we focus more on biologically inspired CNNs [27], which
are one of the fundamental architectures widely used in the
computer vision domain, and their adoption to it has led to
unprecedented improvements in performance. Two-dimensional
(2D) CNNs are extensively used tools, particularly for image data
analysis, as they extract spatial features hierarchically, starting
from raw image data, through edge-detection etc., and finally for
object prediction. While 2D CNNs have traditionally thrived in
image analysis, recent interest has arisen in their application to
omics data analysis. Researchers have contemplated the prospect
of harnessing the potency of 2D CNNs for tabular or omics data
analysis, necessitating the revelation of latent (we sometimes call
“spatial”) information inherent among genes (or elements) within
a sample (or feature vector) [28-31]. Zhou et al. [32] underscored
the significance of DL including CNN in predictive tasks like
determining the sequence specificity of DNA- and RNA- binding
proteins and pinpointing cis-regulatory regions, among other
applications. Notably CNNs and recurrent neural networks have
become the architectures of choice for modeling these regulatory
elements with sequence patterns, illustrating the wide-ranging
utility of DL in genomics. Talukder et al. further explore the
intricacies of deep neural network (DNN) interpretation methods,
particularly their applications in genomics and epigenomics [33].
This breadth of application also extends to synthetic biology,
emphasizing its promise in plant and animal breeding [34].
Nonetheless, existing reviews have not extensively addressed how
to effectively handle tabular data like omics data without explicit
patterns by converting them to adequate representations
for CNNs.

With the emergence of converter techniques like Deeplnsight
[18], a groundbreaking development has transpired: the conver-
sion of tabular data, such as omics data, into image-like
representations. This transformative conversion now empowers
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the effective harnessing of CNNs for analysis. Deeplnsight, a
pioneering technique, revolutionizes data preprocessing by
instilling latent information among genes or elements within a
feature vector. This reimagining of data arranges elements sharing
similar characteristics into proximal neighbors, while distant
elements remain distinct. This spatial context generates a rich
environment for CNNs to operate not only feasibly but also
insightfully. Unlike traditional ML techniques, which indepen-
dently handle variables and sometimes pick representative ones,
this new technique gathers similar variables close together and
treats them as a group, which reflects the structure behind the
omics data.

To clarify further, when biological data is transformed into an
image format, the latent relationships between biological entities,
such as genes, are encoded as spatial proximities within the
image. Subsequently, using a CNN with these images allows for a
substantial reduction in the number of model parameters. This
reduction is achieved through the architectural design of
convolutional layers, which are adept at identifying opportunities
for parameter sharing among appropriate inputs, specifically in
cases characterized by partial linear or even non-linear correla-
tions among features. Given the prevalence of such correlations in
biological data, the resulting models usually have better general-
ization capabilities, while preserving the neural networks’ innate
ability to discover and model more complex features if and when
needed. Moreover, these images facilitate the interpretation of
results by explicitly showing the potential relationship between
the biological entities found to be important by the model, as will
be explained in detail further on.

One additional notable advantage is the capability of utilizing
transfer learning, negating the necessity for network creation from
scratch. This attribute allows for all-encompassing learning across
a diverse spectrum of omic data, unlocking novel avenues for
comprehensive analysis. Through transfer learning, models can be
initialized with weights from a pre-trained model [35], typically
developed using extensive and diverse image datasets such as
ImageNet. These pre-trained models have already learned
essential patterns from millions of natural images, hierarchically
capturing universal features that are surprisingly effective when
repurposed for distinct tasks, even in seemingly unrelated
domains like genomics. This approach allows researchers to
capitalize on the foundational knowledge embedded in these pre-
trained models, drastically reducing the computational effort and
time required for training, and often enhancing performance.

Utilizing transfer learning with pre-trained models offers a
unique advantage for omic data analysis [18, 19]. Genomic
datasets, unlike publicly available image datasets, are often limited
in size. Leveraging the pattern learned by models from vast image
datasets through transfer learning can provide a robust founda-
tion, enabling researchers to fine-tune these models for the
specifics of omics data, without the need for large training sets.
Additionally, transfer learning allows for the extraction of intricate
and nuanced patterns from omics data that might be overlooked
or unattainable when starting the model training from scratch.
The prowess of transfer learning using CNNs is vividly showcased
in various applications beyond just image processing, demonstrat-
ing their potential to revolutionize data analysis across fields
[18, 22, 36, 37].

The adaptability of Deeplnsight is evident through its applica-
tions across various domains, including its pivotal role in shaping
the winning model (‘Hungry for gold') of the Kaggle.com
competition [19, 20, 22, 23, 38-46]. For an in-depth exploration,
those curious can delve into a comprehensive compendium of
image conversion methods and their applications, as elucidated
by Ye and Wang [47]. This transformative progression in data
transformation and analysis signifies a momentous stride forward
not only for unraveling the intricate nuances ingrained within
tabular data but also for enhancing its predictive modeling
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capabilities. The schematic representation of the tabular-to-image
converter process for using CNN is illustrated in Fig. 1.

CHALLENGES IN ADVANCING CNN APPLICATIONS IN OMICS
ANALYSIS

While the amalgamation of tabular-to-image conversion with
CNNs for omics analysis has propelled significant advancements, a
panorama of challenges and issues still beckon resolution. These
include:

1. Interpretability: DL models, including CNNs, are often
considered as “black box” due to their complex architec-
tures. The ability to comprehend the specific genes or
elements influencing a model’s decisions is pivotal in
elucidating biological mechanisms, such as pathways.
Although techniques like DeepFeature [20], which leverages
class activation maps (CAMs) [48], have been introduced,
the challenge remains open, necessitating the development
of models to interpret learned features for deeper insights.

2. Data heterogeneity: Omics data is intrinsically heteroge-
neous, spanning diverse biological information types such
as gene expression, methylation, and mutation. Adapting
various omics data types while preserving each latent
structure poses a challenge.

3. Data scaling and size: DL models, including CNNs, demand
substantial data quantities for effective generalization. How-
ever, omics datasets, especially those associated with rare
disease or specific conditions, may have limited sample sizes.
Overcoming the constraints of small-scale datasets and
ensuring the model’s robustness are vital considerations.

4. Oveffitting: Traditional ML methods, particularly when dealing
with high-dimensional omics data, have been known to be
susceptible to overfitting. This led to an understanding that
model complexity should be carefully managed to prevent
such overfitting. However, recent theoretical advancements
are challenging this view, particularly in the realm of DL.
Specifically, DL algorithms possess intrinsic regularization
features within their back propagation learning process.
Intriguingly, these features can actually reduce the risk of
overfitting as the network scales - contrary to what one might
expect, adding more nodes or layers can make the model
more robust. This upends our traditional understanding from
classical statistics and ML, where increased model complexity
usually exacerbates overfitting. Therefore, while the impor-
tance of balance model complexity, capacity, and data still
holds, these new insights suggest that the considerations for
achieving this balance in the context of DNNs may be
fundamentally different.

5. Hyperparameter tuning: DL models encompass multiple
hyperparameters influencing their performance. Identifying
the optimal set of hyperparameters for specific omics datasets
can be time-intensive, demanding expertize. Bayesian opti-
mization techniques offer avenues for exploring optimal
hyperparameters.

6. Computational resources: Training DL models, especially
CNNs, can strain computational resources. For researchers
with limited resources, optimizing the training process and
exploring techniques like transfer learning becomes crucial.

7. Biological relevance: While models convert omics data into
image-like representations, preserving the biological rele-
vance of these representations remains paramount. Validating
the meaningfulness of transformed data in terms of capturing
underlying biological mechanisms stands as a challenge.

8. Generalizability: Ensuring the generalizability of a model
across varying experimental conditions, platforms, and
biological contexts demands attention. While recent efforts
have integrated single-cell data from different platforms for
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Fig. 1

Tabular-to-image conversion with Deeplnsight. This composite figure illustrates the transformation of tabular omic data into an

image format for analysis using convolutional neural networks (CNNs). Comparative expression levels of genes in cancer versus non-cancer
samples are input as tabular omic data. A manifold technique is applied to find optimal gene locations in a two-dimensional sample space,
depicted by a scatter plot. The optimal gene locations are then adjusted for coordinate mapping and overlaid onto a grid to create an image
representation where each point corresponds to a gene expression value. The resulting image is processed through a CNN, where the
architecture is trained to classify the samples into categories, shown here as Class-1, Class-2, and Class-c, based on the learned patterns from

the image data

cell identification in the context of tabular-to-image conver-
sion with CNN application [21], further research in this
direction is warranted.

Integration with domain knowledge: Infusing domain-specific
knowledge into the model training process enhances
interpretability and result relevance. Developing methods to
seamlessly integrate prior biological knowledge with CNN-
based analysis holds promise.

Benchmarking and comparison: Rigorous benchmarking
against established methods and cross-dataset comparisons
are vital for evaluating the true potential of a model.

10.

A summary of these issues is depicted in Fig. 2. Addressing
these multifaceted challenges necessitates interdisciplinary colla-
boration between ML experts, bioinformatics researchers, and
biologists. This collaboration is pivotal in advancing the
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integration of tabular-to-image converter models with CNNs, thus
propelling the horizons of omics data analysis and interpretation.

DEEPINSIGHT AND DEEPFEATURE: A NEW QUIRK IN OMIC
DATA ANALYSIS

The application of ML to genomics has primarily been within the
realm of tabular (table-like, including vector) data analysis. Yet,
with the advent of new methodologies, we are now able to bridge
the gap between tabular and image data analysis, enhancing the
extraction of meaningful insights from omic datasets.

Deeplnsight: transforming tabular data to image-like form
and use of pre-trained CNN

At the forefront of this transformation approach is Deeplnsight
[18], a methodology designed to convert tabular data (including

Journal of Human Genetics
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Fig. 2 Overview of challenges in CNN applications for omics data. The figure outlines the ten main challenges in the use of convolutional
neural networks (CNNs) for omics analysis, including interpretability, data diversity, model overfitting, computational demands, and the
necessity for robust benchmarking to ensure biological validity and generalizability, which need to be addressed to advance the field
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Fig. 3 Deeplnsight pipeline and network. a Transformation of the feature vector into a feature matrix. b Pipeline of converting a feature
vector into image pixels. ¢ Visualization of two tumor types using Deeplnsight’s image transformation method. Differences between the
tumor types are observable at various points. These transformed images are subsequently fed into a deep learning architecture (DLA). d The
CNN architecture used in the original Deeplnsight paper. This architecture consists of two parallel CNN architectures where each consists of
four convolutional layers. Parameters are tuned using Bayesian Optimization technique. However, one can use various pre-trained CNN
architectures. (From Deeplnsight paper [18] under creative commons license.)

omic data) into image-like representations reflecting the latent
structure behind the data. Figure 3 provides an illustration of
the Deeplnsight pipeline. Briefly, a feature vector, x, containing
gene expressions or elements is transformed to a feature matrix
MM through a transformation T. The placement of individual
features within this matrix depends on their similarities, as shown
in Fig. 3a. Once locations for the features are determined, their
expression or element values are mapped onto these positions.
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The

transformation process consists of several key steps, as

shown in Fig. 3b:

1.

2.

Placing the genes or elements on the Cartesian coordinates
using manifold methods such as t-SNE, UMAP, or kernel PCA.
Utilizing the convex hull algorithm to find the smallest
rectangle that encapsulates the feature spread, followed by
rotation to align with the horizontal and vertical axes.

SPRINGER NATURE
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3. Converting the Cartesian coordinates to a pixel framework.

4. Mapping the values of elements or gene expression onto

their corresponding positions within this pixel framework.

In this conversion process, similarity between genes or other
factors of interest is represented by relative closeness of their
spatial positions. This encoding ensures that elements with similar
characteristics are positioned proximal to each other, while those
that are dissimilar are distant. This transformation yields an image
representation equivalent to the original feature vector, as shown
in Fig. 3c. These generated images serve as input for CNNs in
subsequent predictive modeling, as depicted in Fig. 3d. Further
improvements expanded on this paradigm, such as adding
blurring technique to Deeplnsight [49], fusion with Gabor filtering
[50], with autoencoders [24], aligning features into different layers
(to avoid averaging) [38, 46], transforming to fixed-pixel frame-
work [45], and multifacet representation model [51]. The original
Deeplnsight has been further refined and was first adapted for
integration with Vision Transformers (ViT) by Gokhale and team,
making a significant leap forward in this field [24].

The resulting image-like representations are ideally suited for
analysis by CNNs. Furthermore, as mentioned above, Deeplinsight
facilitates the use of pre-trained CNN models, which have
historically excelled in image analysis. The benefit of such an
approach is twofold: it not only capitalizes on the robust capabilities
of pre-existing CNN architectures but also offers accelerated
insights by eliminating the need to train models from scratch.

To evaluate the performance of Deeplnsight, several scenarios
were examined, as detailed in [18], including cancer-type
prediction, in which the method delivered an improved perfor-
mance relative to several other ML methods. In a subsequent
study, Deeplnsight-3D [19] was compared to multiple neural
network architectures (feed forward, autoencoder, ANNF), opti-
mized random forest pipeline (AutoBorutaRF), support vector
machine-based classifier, and three recent drug response predic-
tion pipelines (Gelleher et al. model, MOLI and Super.FELT).
Deeplnight-3D showed a 7-29% improvement in performance, as
measured by model AUC-ROC, across all these methods.

DeepFeature: extracting features with CAM

DeepFeature [20] complements the analytical capabilities intro-
duced by Deeplnsight. While Deeplnsight focuses on data
transformation, DeepFeature targets the interpretability challenge,
particularly in the context of DL models. Utilizing CAMs [48],
DeepFeature extracts and highlights the pivotal features that
influence a model’s decisions, e.g. prediction. In genomics, this
translates to identifying key genes or elements that are crucial in
determining specific phenotypic outcomes or disease manifesta-
tion. Figure 4 illustrates the DeepFeature methodology pipeline. An
input vector of tabular data is presented in the upper left, leading to
the selected features or genes displayed in the lower right.

The biological implications are profound, especially when
analyzing cancer types as described above. By transforming
omic data of various cancer samples into image-like formats,
researchers can use CNNs to discern patterns and differences
that might be elusive in traditional tabular analysis. The feature
extraction capabilities of DeepFeature further enrich this analysis.
By highlighting genes or elements of significance inside the
CNNs through visualization techniques like CAM, researchers can
derive deeper insights into the molecular mechanisms driving
different cancer types. When applied to the cancer-type identifica-
tion task described above, it could extract many more known
cancer related genes/pathways than traditional statistical model-
ings or ML methods like penalized logistic regression, and
also could discover new pathways for the classification of different
types of cancer. Such insights have the potential to elucidate
pathways that are activated or suppressed in specific cancer
forms, paving the way for targeted therapeutic strategies and
personalized medicine.
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In summary, the innovative transformation of omic data to images
offers a paradigm shift in omic analysis. Through advanced data
transformation and feature extraction, these methodologies provide a
more refined lens to probe the complex world of genomics, particularly
in understanding the intricacies of various diseases like cancer. That is,
these methodologies can conduct “scientific discovery” from “big data”.

DEEPINSIGHT-3D

To address the issue of heterogeneous data modality across multi-
omics as mentioned above, we have conceptualized and
developed Deeplnsight-3D [19], an extension of the original
Deeplnsight, tailored specifically for multi-omic analyses.

Extension of Deeplnsight for multi-omic analysis

Deeplnsight, originally designed to transform tabular omic data
into image-like representations, paved the way for harnessing the
computational prowess of pre-trained CNNs for genomics.
Deeplnsight-3D takes this a notch higher. By adapting to multi-
omic data, it integrates information across different omic types
into a unified three-dimensional (3D) space. This 3D representa-
tion captures the synergistic interactions among different omic
data types, facilitating a holistic understanding and offering a
richer context for analysis. Figure 5 provides a graphical depiction
of the Deeplnsight-3D model. The multi-omics data is displayed
on the left-hand side, culminating in the selection of genes after
the Element Decoder block (in the lower middle of Fig. 5).

Application to anti-cancer drug response prediction

Recent advancements in the fields of Al, especially ML and DL, have
shown remarkable potential in predictive modeling for drug
response in various diseases, including cancer. The applicability of
these computational techniques ranges from characterizing mole-
cules numerically for ML algorithms [52] to evaluating the general-
izability of drug response models [53]. Complex DL methods, in
particular, have been employed to predict drug responses in cancer
cell lines, although challenges like overfitting to limited data sets
still exist [54]. These computational methods offer avenues for more
accurate, individualized treatment options, providing a significant
impact on precision medicine and healthcare [55].

One of the applications of Deeplnsight-3D is in the realm of
oncology, specifically for anti-cancer drug response prediction.
Although limited drug response data cause the model’s stability
issue, this concept is a step forward in handling multi-modality of
data. By representing multi-omic data in 3D, Deeplnsight-3D can
capture the complex interactions of genes. When combined with
patient-specific data, this tool offers predictions on how a tumor
might respond to a specific anti-cancer drug. This kind of
prediction holds the potential to revolutionize medicine by
guiding therapeutic decisions based on individual patient profiles.

In the Deeplnsight-3D paper, multi-omics data of gene
mutations, gene expression, and copy number alterations were
input to make the prediction model of drug efficacy. The mapping
of data points was determined from the expression data by
Deeplinsight and positioned the mutations and copy number
alterations to the gene positions, with different colors according
to their levels. Cancer Cell Line Encyclopedia (CCLE) and Genomics
of Drug Sensitivity in Cancer (GDSC) cell lines accompanied with
drug efficacy, and The Cancer Genome Atlas (TCGA) and patient-
derived xenografts (PDX) datasets were used for learning and
testing the CNN, respectively. As a result, it showed 72% accuracy,
which outperformed other deep-learning based methods by more
than 7%. This clearly proved the power of the transforming
scheme of Deeplnsight.

Feature selection with DeepFeature and pathway analysis

Representing and predicting aren’t enough; understanding the why
and how behind these predictions is paramount, especially in a
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clinical setting. DeepFeature used in tandem with Deeplinsight-3D,
extracts crucial features using CAMs, highlighting specific regions in
the 3D representation that significantly influence predictions. This
feature selection is crucial not just for model interpretability but
also for guiding subsequent biological investigations.

Furthering our understanding, pathway analysis, post DeepFea-
ture extraction, deciphers the biological significance of these
influential features. For instance, in the context of anti-cancer drug
response, identifying pathways associated with drug resistance or
sensitivity can shed light on potential molecular targets and
therapeutic strategies. Deeplnsight-3D has identified many path-
ways known to be involved in multiple drug responses: STAT3,
PI3K/AKT, JAK/STAT, Rho GTPase, protein degradation and
recycling, extracellular structure and cell adhesion, and could find
new pathways: tryptophan metabolism X, and clathrin-dependent

Journal of Human Genetics

endocytosis. Having said that, stability is an issue with
Deeplnsight-3D and the limited scale of data can prompt incorrect
predictions. Therefore, such considerations should be given when
estimating the model. Nevertheless, the successful integration of
multi-omics through Deeplnsight-3D, combined with the feature
extraction capabilities of DeepFeature, holds promise for myriad
applications, from drug development to personalized therapy.

SCDEEPINSIGHT

Unraveling the cellular landscape with enhanced precision -
application to scRNA-seq data for cell-type identification
Single-cell RNA sequencing (scRNA-seq) has opened new frontiers
in understanding cellular heterogeneity, revealing insights that
are often obscured in bulk RNA sequencing. The challenge,
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however, lies in the processing and interpretation of the high-
dimensional data produced. Inputting a gene expression profile
for a single cell from scRNA-seq, the cell type annotation task
identifies the cell type from which the profile came from.
Traditional cell type annotation methods rely on manual labeling

SPRINGER NATURE

of the unsupervised clustering results. This process requires the
analysis of the expression results of specific marker genes.
However, the available marker genes are limited and overlapping,
especially for similar cell subtypes. The selection and subjective
interpretation of marker gene lists also neglect the complex
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interrelationships among genes, further impeding accurate
annotation. This is where scDeeplnsight [21] comes into play,
leveraging the strengths of Deeplnsight and augmenting it with
quality control and batch normalization measures, to cater
specifically to the intricacies of single-cell analysis. Figure 6
presents an overview of the scDeeplnsight on the left-hand side.
On the right-hand side, the figure contrasts the true cell
annotation with the cell annotation predicted by scDeeplnsight.

scDeeplnsight revolutionizes the cell type annotation by
applying the tabular-to-image transformation methodology to
scRNA-seq data. This transformed representation, combined with
the analytical strength of CNNs, facilitates precise and robust cell-
type identification. Instead of relying solely on known markers, the
model harnesses the whole transcriptomic profile of individual
cells, offering a more comprehensive classification. This is done by
training scDeeplnsight on reference dataset and identifying cell
types for query datasets. The performance improvement noted
was over 7% compared to other competing methods.

Discovering new cell types

One of the most promising facets of scDeeplnsight is its potential
to unearth previously undiscovered or rare cell types. By
transforming the scRNA-seq data into a visual landscape, clusters
that might be overlooked or merged in traditional analyses stand
out. These unique clusters represent potential new cell types or
transitional states, furthering our understanding of tissue biology,
developmental processes, and disease mechanisms.

Identifying marker genes

Marker genes play a critical role in cell-type identification, offering
biological insights into the function and nature of various cell
populations. Beyond classification, scDeeplnsight also aids in the
identification of these marker genes. By reverse engineering the
image-like representation and linking it back to genomics data,
one can pinpoint genes that are distinctly expressed in specific
cell types. This not only solidifies the identification but also
provides a foundation for functional assays, therapeutic targeting,
and further biological inquiries.

In essence, scDeeplnsight amplifies the power of single-cell RNA
sequencing, providing tools not just for identification but also
discovery. As the world of genomics moves towards higher
resolution, tools like scDeeplnsight will be instrumental in
ensuring that we fully harness the data’s potential, advancing
both science and medicine.

CONCLUSIONS AND FUTURE PERSPECTIVES

As the boundaries of genomics continue to expand, our analytical
strategies must evolve in tandem. Deeplnsight and its derivatives
represent a monumental leap in this progression. They merge the
worlds of image-based data analysis with omic data, facilitating
nuanced interpretations that were previously challenging to
achieve:

1. Redefining omic data interpretation: The transformation of
omic data into image-like representations through Deepln-
sight or similar technology has undoubtedly expanded our
analytical capacities and robustness by capturing latent
structures and coherences behind data, e.g. omics data. Its
adaptability, as seen in its fusion with diverse methodolo-
gies highlights the technique’s dynamic potential.

2. Holistic multi-omic integration: The emergence of integra-
tive models highlights the growing need for more
comprehensive approaches within genomics. As reliance
on single omic data might become limiting, the future could
see a heightened dependence on tools like Deeplnsight and
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its derivatives, e.g. Deeplnsight-3D, to provide a holistic
perspective on biological systems. Their applications,
especially in fields such as anti-cancer drug response
prediction, underscore their potential clinical relevance.

3. Decoding cellular heterogeneity: Single-cell analyses, pow-
ered by tools like scDeeplnsight, have transformed our
understanding of cellular landscapes. The discovery of new
cell types and marker genes underscores its potential to
contribute immensely to cell biology.

While the amalgamation of tabular-to-image conversion
with CNNs for omics analysis has propelled significant
advancements, still there exists a panorama of challenges
that require resolution:

4. Interpretability and biological relevance: The “black box”
nature of DL models, including CNNs, has led to the
emergence of techniques like CAMs and DeepFeature. While
such tools offer promise, ensuring interpretability and
preserving the biological relevance of data representations
are paramount challenges.

5. Data challenges, model complexity, and overfitting: Omics
data is intrinsically heterogeneous, encompassing informa-
tion like genomic, epigenomic, transcriptomic, proteomic,
and metabolomic data. Adapting these diverse data types
and handling issues of data scaling, size, and overfitting are
substantial concerns. Striking a balance between model
complexity, capacity, and available data is essential to
prevent overfitting, especially when dealing with high-
dimensional omics data.

6. Technical challenges: Issues like hyperparameter tuning,
computational resource limitations, and model general-
izability across different conditions and platforms need
addressing.

7. Integration and benchmarking: Infusing domain-specific
knowledge into model training and rigorous benchmarking
against established methods is crucial for assessing the true
potential of a model.

8. Future horizons: The confluence of DL and biology, as
manifested by these methodologies, will likely intensify in
the coming years. We can envision a future where real-time
omic data transformation and analysis become standard in
clinical settings, expediting diagnostic and therapeutic
decisions. Moreover, the emergence of even more robust
models, adaptable to a diverse range of omic data types, is
anticipated.

9. Towards personalized medicine: The culmination of these
advancements aims to customize medical interventions to
individuals. Harnessing insights from tabular-to-image con-
verters and CNNs trained on vast datasets, we approach the
realization of truly personalized medicine. Whether it
pertains to drug responses, uncovering molecular mechan-
isms, or identifying novel cellular states, these tools hold
promise in crafting treatments attuned to an individual’s
genetic blueprint.

Challenges, such as those listed above, underline the impor-
tance of interdisciplinary collaboration between ML experts,
bioinformatics professionals, biologists, medical researchers and
doctors, and patients. Such collaborations will be pivotal in
advancing the DL models, expanding the horizons of omics data
analysis.

In conclusion, as we stand on the cusp of this analytical
revolution in genomics, it is imperative to embrace these novel
methodologies. Their potential to revolutionize our comprehen-
sion of biology, combined with profound clinical implications,
cements their role as indispensable instruments in our endeavor
to decode the intricacies of life.
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