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OBJECTIVES: Genome-wide association studies (GWAS) have successfully revealed numerous susceptibility loci for obesity.
However, identifying the causal genes, pathways, and tissues/cell types responsible for these associations remains a challenge, and
standardized analysis workflows are lacking. Additionally, due to limited treatment options for obesity, there is a need for the
development of new pharmacological therapies. This study aimed to address these issues by performing step-wise utilization of
knowledgebase for gene prioritization and assessing the potential relevance of key obesity genes as therapeutic targets.
METHODS AND RESULTS: First, we generated a list of 28,787 obesity-associated SNPs from the publicly available GWAS dataset
(approximately 800,000 individuals in the GIANT meta-analysis). Then, we prioritized 1372 genes with significant in silico evidence
against genomic and transcriptomic data, including transcriptionally regulated genes in the brain from transcriptome-wide
association studies. In further narrowing down the gene list, we selected key genes, which we found to be useful for the discovery
of potential drug seeds as demonstrated in lipid GWAS separately. We thus identified 74 key genes for obesity, which are highly
interconnected and enriched in several biological processes that contribute to obesity, including energy expenditure and
homeostasis. Of 74 key genes, 37 had not been reported for the pathophysiology of obesity. Finally, by drug-gene interaction
analysis, we detected 23 (of 74) key genes that are potential targets for 78 approved and marketed drugs.
CONCLUSIONS: Our results provide valuable insights into new treatment options for obesity through a data-driven approach that
integrates multiple up-to-date knowledgebases.
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INTRODUCTION
Obesity is a multifaceted condition characterized by excessive fat
accumulation in the body, often associated with chronic condi-
tions such as heart disease, diabetes, high blood pressure, and
cancers [1]. Despite concerted efforts, the prevalence of obesity
has significantly increased, with the proportion of obese adults in
the United States rising from 30.5% to 42.4% in less than two
decades [2]. While lifestyle modifications have limited efficacy in
controlling obesity, few available drugs are serving as anti-obesity
agents [3]. Unfortunately, current research methods are insuffi-
cient for developing personalized therapies, and the traditional
drug discovery process is time-consuming, laborious, expensive,
and risky [4]. Furthermore, concerns exist regarding the long-term
effects of FDA and EMA-approved weight-loss drugs [5]. Therefore,
it is imperative to address obesity seriously, necessitates effective
strategies to identify and target associated key genes and
pathways.
Genome-wide association studies (GWAS) represent significant

advancement in sequencing technology for identifying genetic
associations with various traits and diseases. Nevertheless, GWAS
encounters several inherent limitations [6], including non-coding
variants introducing complexity and necessitating tissue-specific

exploration contexts, as well as the proximity of closely situated
genes, which complicates the determination of their significance.
Furthermore, linkage disequilibrium (LD) can result in false
positives, obscuring the identification of true causal variants.
Additionally, complex diseases often arise from disruptions in
intracellular biological network, rather than single gene
abnormalities.
Despite considerable efforts to investigate the functional

implications of obesity-related GWAS [7, 8], certain gaps persist.
Previous research has investigated the genetic regulation of blood
pressure regulatory genes using post-GWAS data [9], but similar
investigations for obesity remain limited. Although potential
causal SNPs and hub genes [10] have been identified based on
their proximity to GWAS signals, the lack of eQTL data and
investigation of relevant tissues has hindered causal inference.
Additionally, drug repositioning application in the post-GWAS
analysis of obesity have not been addressed. Nonetheless, a
recent study employed expression datasets to identify differen-
tially expressed genes and screened potential drugs targeting
important obesity hub genes [11].
Accordingly, we conducted data-driven integrative analysis by

leveraging a credible GWAS dataset [8] with updated
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bioinformatics tools and knowledgebases [12–14], prioritizing
obesity-associated genes with significant in silico evidence.
Expanding upon previous research [7], our study incorporated a
larger study population, allowing us to identify and update the
most plausible causal genes and evaluate their clinical relevance
as potential therapeutic targets. Protein-protein interaction [15]
and network centrality analysis [16] pinpointed key genes, while
gene-set enrichment analysis [17] shed light on underlying
biological processes and pathways. Drug-gene interactions [18]
analysis, as well as adverse drug reactions [19], unveiled promising
opportunities for drug repurposing. Our study informs future
obesity research and guides future experimental assays to
investigate mechanisms and targeted therapies. An overview of
this study is illustrated in Fig. 1.

MATERIALS AND METHODS
GWAS SNPs analysis
Associations identified through GWAS provide a foundation for investigat-
ing the biological underpinning of obesity. Given this, we compiled a
credible catalog of 941 near-independent genome-wide significant SNPs
(COJO P < 1E-08), which captured meaningful association in the GWAS
while minimizing potential false positives [20], identified from the Genetic
Investigation of Anthropometric Traits (GIANT) consortium, the largest
centralized BMI GWAS dataset derived from ~800,000 individuals [8]. To
identify additional SNPs that equally contribute to obesity, we calculated
linkage disequilibrium (LD) using genotype data from the 1000 Genomes
Phase 3 Project, focusing on the European ancestry (CEU) population
reference panel. Our search criteria included a distance range of ± 500 kb
from the query significant SNPs and r2 > 0.9 from pairwise LD calculation.
These LD SNPs were consolidated together with the genome-wide
significant SNPs to create a list of obesity-associated SNPs.

eQTL analysis
Integrating expression Quantitative Trait Loci (eQTL) data with GWAS offers
insights into the genetic variance associated with changes in gene
expression of disease phenotypes [21]. To prioritize eQTL-genes and
explore their potential regulatory roles, we utilized RegulomeDB [12], a
comprehensive knowledgebase that provides functional interpretation of
SNPs based on curated references, where these SNPs were scored based
on their combinatorial existence of functional categories. We focused
specifically on category 1 variants (1a–1f), also known as eQTL-SNPs which
demonstrate strong evidence of influencing the expression of eQTL-genes
associated with obesity.

Tissue expression analysis
Tissue expression analysis revealed specific tissues where particular genes
are expressed, highlighting their potential involvement in disease
pathogenesis [22]. To determine specific tissues associated with obesity,
we performed tissue expression analysis using FUMA, a web platform
capable of performing functional mapping and annotation of genetic
variations identified in GWAS studies. Within FUMA, we utilized Multi-
marker Analysis of GenoMic Annotation (MAGMA) [23] to evaluate the
enrichment of genes in specific tissues and prioritized differentially
upregulated genes for further functional analysis of their potential roles
in the pathophysiology of obesity.

TWAS analysis
Transcriptome-wide association studies (TWAS) integrate genotype and
phenotype data from GWAS with reference expression panels, providing
insights into potential causal genes in diseases [24]. TWAS complements
GWAS findings by uncovering genes that are missed by GWAS, providing
additional regulatory evidence. Using TWAS Hub [14] with searchable
access to TWAS results of complex traits and expression studies, we
identified gene expression associated with obesity-related phenotypes,
including BMI, fat mass, waist circumference, and weight. Considering the

Fig. 1 Overview of the data-driven integrative approach. We extract 28,787 obesity-associated SNPs from publicly available GWAS results (top
panel) and systematically prioritize 74 plausible key obesity genes, by utilizing a series of bioinformatics tools and genomic and transcriptomic
evidence (middle panel). We then explore major biological mechanisms of obesity from the key obesity genes, highlighting 23 potential
candidates that are useful for the development of obesity therapeutics (low panel)
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emerging role of the brain in weight regulation [25], we focused on
transcriptionally regulated genes associated with the brain, such as
caudate basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal
cortex BA9, hippocampus, hypothalamus, nucleus accumbens basal
ganglia and putamen basal ganglia. These genes were prioritized for
further investigation.

Protein-protein interactions and network centrality analysis
Protein-protein interactions (PPI) play a crucial role in regulating biological
processes and provide valuable insights into the functions and interactions
of proteins within the cells [26]. To better understand the network involved
in obesity-associated genes, we used STRING [15] to reconstruct networks by
integrating associations between proteins derived from computational
approaches and assigning confidence scores (0-1) to quantify the strength of
supporting evidence. We chose the default medium confidence score of 0.4
to interpret the interactions between the obesity-associated genes. Given
the significance of network centrality analysis in identifying important hub
genes [27], we employed cytoHubba [16] to perform a topological analysis of
the network structure using centrality algorithms such as betweenness,
closeness, and degree to assess the importance of individual proteins within
the network. We ranked the top 100 hub genes using these algorithms and
identified key genes by finding overlaps in the resulting lists.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) integrates knowledge about the
function of a group of genes, taking into account their involvement in specific
biological pathways or co-expression under certain conditions [28]. Gene
ontology (GO) is commonly used for gene functional annotation covering
biological processes, molecular functions, and cellular components. Similarly,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) increases the
explanatory power of specific gene sets to gain insights into underlying
biology pathways. To identify significantly enriched GO and KEGG terms of
the key obesity genes, we utilized Enrichr [17], an integrative web-based
application. Enriched GO and KEGG pathways terms with adjusted p-value <
0.05 and involving > 3 genes were considered statistically significant.

Drug-gene interaction and adverse drug reaction analysis
Drug-gene interaction (DGI) refers to the interaction between genes and
drugs that can potentially influence drug responses [29]. To identify target
genes and potential drugs that interact with key obesity genes, we queried
the Drug Gene Interaction Database (DGIdb) [18], a consolidated resource
of DGI interactions and druggable genes. We focused on FDA-approved
drugs supported by evidence from two or more databases and PubMed
sources, considering them as potential candidates for drug repurposing in
obesity. Adverse drug reaction (ADR) refers to unintended and potentially
harmful effects arising from the therapeutic use of medications [30]. To
examine the safety profile of our repurposed drug candidates, we
conducted a search using the Side Effect Resource (SIDER) database [19],
a resource containing information on potential side effects of approved
drugs. Specifically, we focused on side effects classified as “very common”
according to the Medical Dictionary for Regulatory Activities (MedDRA)
hierarchy, as they have a frequency of ≥ 10% and are likely to occur in a
significant proportion of patients using the medication.

Negative control and benchmarking analysis
Negative control and benchmarking analysis are crucial for experimental
reliability [31]. In our workflow, we first prioritized obesity-associated genes
by integrating multiple human sources. In the second part, we identified
highly interconnected hub genes in the PPI network. To validate the
effectiveness of each step, we conducted analyses with negative controls,
resulting in different sets of key genes. We then calculated the overlap of
these genes with genes from the mouse knockout database [32] and drug-
related information from the drug-gene interaction database [18].
Additionally, we performed two benchmarking analyses by reanalyzing
previous investigations of BMI GWAS study [7], utilizing GWAS summary
statistics and prioritized genes as starting materials, respectively.

RESULTS
Identification of obesity-associated SNPs
To obtain a credible list of genetic associations with obesity, we
acquired 941 near-independent genome-wide significant SNPs

from BMI GWAS of the GIANT consortium, and subsequently
examined representative signals of obesity based on LD. From the
significant SNPs, we identified 27,846 LD SNPs applying a
threshold of ± 500 kb from the query SNPs and an r2 > 0.9. After
trimming off overlapping SNPs, a non-redundant list of 28,787
obesity-associated SNPs was assembled, which were then
clustered into 640 genomic loci based on < 500 kb distances
(Supplementary Table 1).

Prioritization of obesity eQTL-SNPs and eQTL-genes
To identify SNPs located in regulatory regions of the genome, we
employed RegulomeDB to score the obesity-associated SNPs for
regulatory functions. Of the 28,787 SNPs examined, 25,776
( ~ 90%) were assigned with putative regulatory functions. From
these, we extracted 867 putative eQTL-SNPs exhibiting high
potential for regulatory function (score 1) for downstream analysis.
These SNPs were predicted to have an influence on the expression
of 243 eQTL-genes, which were prioritized based on their
potential to cause obesity through changes in gene expression
(Supplementary Table 1).

Prioritization of differentially upregulated genes in obesity
tissues
To identify the most relevant tissues associated with obesity, we
used MAGMA [23], which was incorporated in FUMA [13] for tissue
expression analysis. Our findings revealed that nearly all brain
tissues (10 out of 13) were significant at P < 0.001, with the brain
cerebellum having the strongest p-value (P= 5.45 × 10−15),
demonstrating a strong relationship between the brain and
obesity. Additionally, pituitary tissue was also significant with a
P= 6.48 × 10−5. Subsequent differential analysis identified a set of
differentially upregulated genes found in these brain tissues at
adjusted P < 0.05 (Supplementary Table 2). Notably, cortex
exhibited the strongest upregulation pattern (P= 3.25 × 10−6),
followed by frontal cortex BA9 (P= 8.04 × 10−6), and cerebellum
(P= 1.17 × 10−5), with slightly weaker but still strongly significant
upregulation observed in the cerebellar hemisphere
(P= 1.28 × 10−4) and anterior cingulate cortex BA24
(P= 3.05 × 10−4). A total of 845 differentially upregulated genes
from these brain tissues were prioritized for downstream analysis
on their potential roles in causing obesity.

Prioritization of TWAS genes associated with obesity
TWAS enabled the identification of genes whose expression is
associated with obesity. We analyzed TWAS experiments from
TWAS Hub [14], specifically targeting 4 phenotypes capable of
defining obesity. Given the enrichment of brain tissues in our
tissue enrichment analysis, we expanded our analysis to include
TWAS experiments to uncover additional genes involved in
transcriptional activity related to obesity. We prioritized 396 genes
exhibiting transcriptional activity in the brain, which are listed in
Supplementary Table 3. A total of 63 genes are shared between
both TWAS Hub and FUMA. In addition, 31 genes were found to
be common between TWAS Hub and RegulomeDB, with a total of
14 genes identified in all three targeted knowledge resources.

Identification of key obesity genes
We aimed to explore the interconnectedness of genes implicated
in obesity, deducing their significance in important biological
pathways associated with obesity by being closely integrated
within a protein network. To achieve this, we merged the genes
prioritized based on in silico evidence from targeted knowledge
resources, namely RegulomeDB (243 genes), FUMA (845 genes),
and TWAS Hub (396 genes), resulting in a gene set of 1,372 genes
associated with obesity.
To identify potential physical and functional associations

among these genes, we utilized STRING [15] and applied a
minimum interaction score > 0.4. Subsequently, we employed
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cytoHubba [16] to evaluate the nodes in the PPI network using
three centrality parameters, namely betweenness, closeness, and
degree, and ranked the top 100 hub genes from each algorithm
respectively. By selecting genes that overlapped in all three
network centrality analyses, we identified 74 key obesity genes
highly integrated within a protein network (Fig. 2A). Through
extensive literature review, which included assessing single gene
knock-out experiments conducted by the International Mouse
Phenotyping Consortium (IMPC), we classified these key genes
into predicted novel (n= 37) and functionally validated (n= 37).
For the functionally validated known genes, we further categor-
ized them to their association with obesity, based on their
regulation of appetite, fat, size, lipid, and glucose (Fig. 2B).

Identification of major biological pathways associated with
obesity
To further investigate the biological significance of the key obesity
genes, we performed gene set enrichment analysis using Enrichr. To
indicate strong enrichment, stringent parameters such as adjusted
p-value < 0.05 and the presence of more than 3 genes in a gene set
were employed (Fig. 3). Our analysis indicated that the key obesity
genes were significantly enriched in a total of 119 GO terms, with 91
terms (~76%) associated with biological processes, 12 terms (~11%)
associated with molecular functions, and 16 terms (~13%)
associated with cellular components (Supplementary Table 5). In

addition, 104 KEGG pathway terms were significantly enriched
(Supplementary Table 6).

Identification of repurposed drug candidates and adverse
drug reactions
Key genes are essential in maintaining the structure and function
of PPI networks, making them attractive candidates for novel
therapeutics. In search of potential therapeutic targets, we utilized
DGIdb to analyze drug-gene interactions among the key obesity
genes. We focused on reliable interactions supported by at least
two resources and PubMed references while excluding cancer-
specific resources and limiting our search to FDA-approved drugs
or drugs in clinical trials (Fig. 4). Among the 74 key obesity genes,
we identified 23 drug-related genes (Supplementary Table 7), as
well as 51 genes not previously noted. Further analysis of the
genes not previously noted showed 37 druggable and 14 non-
druggable (Supplementary Table 8). The 23 drug-related genes
were found interacting with 78 drugs, where of these drugs, 47
drugs can lead to weight loss, another 19 were associated with
weight gain, while 12 had unknown effects based on prior reports.
To evaluate the safety profile, we searched the SIDER database

for side effect data of the 78 drug candidates, focusing on side
effects classified as “very common” to identify the most frequent
occurrences. Among the 78 drug candidates, 19 had reported side
effects (Supplementary Fig. 1). These findings could inform future

Fig. 2 Relationship and classification of key obesity genes identified through network analyses. A Schematic illustration of a protein-protein
interaction (PPI) subset involving 74 key obesity genes, where thicker edges indicate stronger data support. Of these, 37 red nodes represent
newly reported genes that have not been functionally validated for obesity. B For the 37 functionally validated known genes, the heatmap
shows their involvement in five phenotypic groups i.e., appetite, fat, size, lipid, and glucose, reported in the literature; presence by dark blue
and absence by light blue
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Fig. 3 Representative results for enrichment analyses of key obesity genes. A Lists of the top 10 significantly enriched GO terms from
biological processes (top), molecular functions (middle), and cellular components (low), respectively. B Schematic illustration of pairwise
relationships between top 20 significantly enriched KEGG pathways, where darker and larger nodes indicate more significantly enriched and
larger gene sets and thicker edges represent more overlapped genes
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Fig. 4 Schematic illustration of 23 key obesity genes and 78 FDA-approved drugs. Genes highlighted in blue are validated, while those in red
are not for functional relevance to obesity. These drugs are further classified into two groups based on their experimental evidence;
promotion of weight gain (pink) and weight loss (light green) in case of over-expression of the corresponding gene product
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research on the safety and potential use of these drugs for obesity
management in clinical settings (Supplementary Table 9).

Validation of workflow through negative control and
benchmarking analyses
Our workflow underwent rigorous validation tests to ensure its
reliability. It involved two steps: (1) prioritizing 1372 obesity-
associated genes by integrating multiple human data sources, and
(2) narrowing down the list to 74 key hub genes in the PPI
network. The mice knockout database [32] and drug-gene
interaction database [18] both revealed 21 genes (~28%) with
reported mice knockout abnormalities and 23 drug-related genes
(~31%).
To evaluate the effectiveness of the first step, we randomly

selected 1372 genes from a pool of 14,937 well-annotated human
genes (obtained from Enrichr’s GO Biological Process library) and
performed hub genes identification analysis using our workflow
ten times (Fig. 5). Our workflow detected a significantly greater
percentage of genes with mice knockout abnormalities compared
to the negative analyses, indicating effective enrichment of true
obesity genes (t-test P < 0.00001). Additionally, the percentage of
genes with drug-related information was also significantly greater
at P= 0.035517. To evaluate the second step, we randomly
selected two groups of 74 genes from the 1372 prioritized obesity-
associated gene set to serve as substitutes for hub genes and
repeated the analysis ten times. The first set comprised genes with
limited connections in the PPI network (node degree < 2), while

the second set consisted of genes without considering their
interconnectivity information. Our analysis revealed a significantly
greater percentage of genes with drug information in our
workflow than the negative analyses (t-test P < 0.00001), indicat-
ing effective enrichment of true drug target genes. Moreover,
genes with lower node degree had a lower likelihood of having
drug-related information compared to genes with higher node
degree.
Lastly, leveraging the GWAS summary statistics and 195

significant genes prioritized from a previous investigation of BMI
GWAS [7], we conducted two benchmarking analyses. Our
workflow outperformed both benchmarking analyses in identify-
ing a higher percentage of genes associated with mice knockout
abnormalities and drug information. This improvement can be
attributed to the utilization of a larger GWAS size (Benchmarking
analysis A) and updated bioinformatics tools (Benchmarking
analysis B) as demonstrated in Supplementary Table 10. Our
findings showed the importance of incorporating larger sample
sizes and employing up-to-date bioinformatics tools are crucial for
identifying key genes and druggable targets.

DISCUSSIONS
In this study, we prioritized obesity genes with potential causal
roles utilizing targeted knowledgebases and identified relevant
biological processes and pathways for clinical translation in
obesity drug applications. Leveraging GWAS with a larger sample

Fig. 5 Effectiveness of workflow against negative-control and benchmarking analyses. We evaluate the effectiveness of our workflow by
comparison with negative control and benchmarking analyses. Genes overlapping between the mice knockout database and the drug-gene
interaction database are counted. The thick border represents our method, with 10 trials conducted for negative control analyses. The number
and percentage of genes that overlapped in negative control analyses are shown as median and standard deviation
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size, we conducted a series of integrative analyses using the latest
bioinformatics tools and knowledgebases. Exploring the relation-
ship between SNPs and gene expression, we prioritized 243 eQTL-
genes. We then examined tissue expression and prioritized 845
differentially upregulated genes from the brain and another 396
transcriptionally regulated genes from TWAS experiments, high-
lighting expression patterns of the brain in obesity. Establishing
a ~1400 prioritized obesity-associated gene set, we performed
protein-protein interaction analysis and identified 74 key genes
enriched in biological pathways regulating feeding behavior,
energy expenditure, metabolic homeostasis, and insulin secretion.
Lastly, our drug-gene interaction analysis identified 23 genes
targeted by 78 existing drugs in repurposing applications, as well
as additional 37 druggable genes with potential for drug
development, offering valuable insights for new obesity ther-
apeutics. Our workflow was inspected through negative and
benchmarking analyses, where a greater percentage of genes
associated with mice knockout abnormalities and drug-related
information were identified, indicating its effectiveness.
Our study presents two novel findings that contribute to the

current understanding of genetic regulation and therapeutic
options for obesity. The first finding addresses the lack of
knowledge regarding regulatory genes involved in obesity
pathogenesis. While comprehensive integrative analysis with
updated bioinformatics tools and knowledgebases on post-
GWAS data of blood pressure [9], the field of obesity has lagged
behind in achieving similar advancements, despite recent
computational analysis of obesity-associated GWAS SNPs [10] that
focused on genes closest to the GWAS signals. To fill this gap, we
implemented a data-driven annotation strategy that employed
three-layer evidence from targeted knowledgebases to prioritize
regulatory genes associated with obesity. Our analysis prioritized
74 key genes associated with obesity, half of which were predicted
novel genes that lacked functional validation in relation to obesity.
The second novel finding concerns drug repurposing for obesity
treatment. While previous studies [11] have identified drugs using
expression datasets, no attempt has been made using post-GWAS
obesity data. Our approach identified 23 drug-related genes and
78 drugs supported by evidence from human and animal
experiments suitable for repurposing as novel therapeutic options
for obesity. On the remaining 51 genes not previously noted, 37
were found to be druggable, providing opportunities for future
drug development. To ensure the validity of our findings, negative
analyses were performed at every major step of our analysis and
demonstrated the significant improvement of our prediction
workflow compared to previous reports, predicting and identify-
ing truly enriched key obesity genes, and potential drug target
genes for obesity.
In contrast to a previous study [10] that focused on the nearest

genes to obesity-associated SNPs, our study instead highlights the
relevance of studying eQTL-genes in explaining the regulatory
mechanisms of obesity. To investigate this, we gathered significant
GWAS SNPs from BMI GWAS of the GIANT consortium and
calculated LD to find SNPs contributing equally to obesity. We
identified 867 eQTL-SNPs with a RegulomeDB score of ≤ 1, capable
of regulating a total of 243 eQTL-genes associated with obesity.
Among these, 63 of them were genome-wide significant eQTL-SNPs
capable of regulating 76 eQTL-genes. Tissue expression analysis
enables the identification of genes expressed in particular tissues,
providing insights into their contribution to the various cell types
and organs. To supplement the prioritized eQTL-genes that lack
tissue-specific information, we conducted tissue expression analysis
and prioritized 845 differentially upregulated genes present in the
brain tissues, consistent with previous studies from other groups
proposing that brain tissues play a crucial role in the regulation of
body weight and the development of obesity [7, 33].
Emerging evidence suggests that vulnerability to obesity

extends across multiple brain regions, receiving signals from

internal and external sources to collectively regulate feeding
habits and energy storage [34, 35]. Also, a previous study [36]
reported the enrichment of neuronal cells in the brain, providing
valuable evidence of the neurological consequences of obesity.
The brain is extensively reviewed as a critical regulator of
metabolic traits and physiological processes, including energy
metabolism and glucose regulation in the central nervous system
[37]. Moreover, another study showed that the dysregulation of
neuronal pathways in the brain disrupts energy balance, resulting
in excessive food intake and reduced energy expenditure in mice
[38]. Enrichment in brain tissues prompted us to expand our
investigation by integrating TWAS experiments to identify and
prioritize an additional 396 transcriptionally regulated genes
associated with the brain, 63 of which were previously identified
in our tissue expression analysis.
PPI provides valuable insights into the organization and

coordination of biological processes underlying diseases. Specifi-
cally, our analysis identified 74 key genes, of which 37 were
predicted novel and have not been functionally validated in
relation to obesity. We further examined the potential association
of these novel genes to shed light on their underlying mechanism.
ANXA5 is known for anticoagulation and is involved in triglyceride
biosynthesis [39]. Additionally, AXIN1 and BTRC regulate adipose
tissue lipogenesis through the Wnt signaling pathway [40].
CACNA1D affects insulin secretion and has been linked to various
conditions [41]. Other genes, such as CTNNA1 and CTNNA2 are
involved in the Hippo signaling pathway, regulating adipogenesis
[42]. Impairment of DNM1 causes insulin secretion failure and
hyperglycemia in mice [43] while inhibiting the expression of
EP300 reduces adiposity in larval zebrafish [44]. FAIM2 is linked to
obesity and dyslipidemia in the Chinese population [45], while
GNAI3 is associated with non-alcoholic fatty liver disease (NAFLD)
[46]. Furthermore, GRIA1 influences appetite in T2D patients [47].
GSK3B regulates inflammation in diabetes patients [48]. MAP2K5 is
known to activate ERK5, a critical regulator of adipogenesis
through the PKA signaling pathway [49], while inhibiting MTOR
signaling resulting in reduced food intake and body weight in
mice [50]. The homolog of NUDT3 in Drosophila, Aps, is involved in
insulin signaling [51], while defects in PACSIN1 have been
associated with schizophrenia-like behavior in mice, another
condition linked to obesity [52]. PRKCB deficiency reduces the
obesity syndrome of mice [53], while RAB3A is involved in the
regulation of insulin secretion [54]. Moreover, RBFOX1 regulates
BDNF, crucial for neuronal development and energy metabolism in
mice [55]. TFAP2B is linked to insulin resistance and adiposity [56].
These predicted novel genes are involved in various biological
pathways, such as lipid and energy metabolism, insulin secretion,
adipogenesis, and neural development. Further investigation is
required to evaluate the potential link between BSN, GRIN2A,
H2AFX, LEO1, NCOR1, NRXN3, PLCB1, POC5, PRRT2, SCN2A, SPI1,
STX1B, UBXN7, VCL, YWHAZ, and obesity.
Subsequently, we examined the 74 key obesity genes to

determine their presence in prior analysis by Locke’s GWAS
dataset [7], as reported by DEPICT software [57]. Among these 74
genes, DEPICT identified 36 genes, while the remaining 38 genes
were not reported. Notably, within this group of unreported
genes, we observed that 12 genes were situated close to the
sentinel SNPs of Yengo’s GWAS dataset [8] (dataset used in this
analysis), with distances ranging from 0 (closest) to 18,724 base
pairs (farthest). Interestingly, only one gene among these 12 genes
was also found to be situated near the sentinel SNPs of Locke’s
GWAS datasets [7]. Conversely, the remaining 26 unreported
genes were not found to be the nearest genes to the GWAS SNPs.
These findings highlight the importance of larger GWAS datasets
and updated bioinformatics tools in achieving greater precision in
research outcomes.
GO terms and KEGG pathways enrichment analysis offers

valuable conclusions about gene sets. Our GO analysis indicated
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that key obesity genes are enriched in biological processes related
to the brain and nervous system, such as myeloid cell differentia-
tion, NMDA receptor activity, and neuron projection development.
Deficiencies in myeloid cells protect mice from diet-induced
obesity and insulin resistance [58], while NMDA receptor signaling
is involved in appetite regulation [59]. Furthermore, these key
obesity genes were involved in regulating cation channel activity,
synapse maturation, and neurotransmitter receptor activity, which
could impact food intake, energy expenditure, and glucose
metabolism [60]. Meanwhile, KEGG pathway enrichment analysis
revealed that key obesity genes were enriched in signaling
pathways in the brain, specifically neurotransmitter signaling,
involving dopaminergic, glutamatergic, and cholinergic synapses.
Brain scans of humans indicated dopamine-regulated brain
circuits were involved in obesity [61], while obese mice on a
high-fat diet displayed reduced levels of multiple enzymes
involved in dopamine production when switching to the low-fat
diet [62]. Changes in glutamate transmission in obese animals
showed increased dopamine transmission and altered synaptic
functions [63]. Basal forebrain cholinergic signaling was reported
to regulate feeding behavior in rats [64], while the frontal cortex
and hippocampus displayed functional impairments in cholinergic
and synaptic activity, leading to weight gain, hypertension, and
dysmetabolism [65]. Moreover, a decrease in growth hormone
secretion has been associated with obesity [66] and the
suppression of insulin secretion led to weight and fat mass
reduction [67]. Our enrichment analysis offers evidence of the
complex interplay between key obesity genes and the brain,
impacting feeding behavior, energy expenditure, metabolic
homeostasis, and insulin secretion.
Hub genes have shown promise as targets for drug develop-

ment [68]. To validate this hypothesis, we analyzed a recent lipid
GWAS [69] and identified hub genes associated with LDL
cholesterol from the reported genes. Notably, our analysis
revealed the inclusion of HMGCR and PCSK9 as hub genes. These
genes have been extensively studied and play crucial roles in
hypercholesterolemia treatment. HMGCR is a major target of
statins, regulating cholesterol levels by inhibiting its expression
[70]. Furthermore, PCSK9 has been linked to blood cholesterol
levels, and inhibitors of PCSK9 have proven effective in lowering
LDL cholesterol [71]. These findings further support the potential
utilities of hub genes, making them attractive targets for drug
development and repurposing.
We examined our key genes with DGI analysis and identified 23

drug-related genes that serve as targets for 78 FDA-approved
drugs that showed potential in regulating body weight based on
previous studies involving human and animal experiments
(Supplementary Table 7). Among these genes, four were targeted
by five or more drugs, with KIT being the focus of seven weight
loss drugs. Among the 47 weight loss-associated drugs, fluoxetine
[72] and citalopram [73] are commonly prescribed antidepressants
for treating binge eating disorder linked to obesity. Conversely,
topiramate [74] and zonisamide [75] are antiepileptic medications
capable of suppressing appetite and increase energy expenditure,
leading to weight loss. Additionally, metformin [76] has shown
effectiveness in promoting weight loss by reducing glucose
production in the liver and improving insulin sensitivity. Mesala-
mine [77] reduces fasting glucose levels and BMI while increasing
HDL-cholesterol. Of the 78 candidate drugs listed, SIDER reported
19 drugs with common side effects including asthenia, headache,
nausea, fatigue, dermatitis, musculoskeletal discomfort, vomiting,
decreased appetite, and diarrhea (Supplementary Fig. 1). While
not life-threatening, they can considerably affect the health and
well-being of patients, leading to discontinuation of treatment or
additional medical attention. We proposed that drugs with high
reported side effects (e.g., ribavirin, n= 52), may not be suitable
for repurposing. Conversely, drugs with low reported side effects,
(e.g., duloxetine and paliperidone, n= 1; quetiapine, n= 2;

amisulpride, n= 7; oxcarbazepine, n= 8), targeting genes with
obesity-related knockout abnormalities in mice could be con-
sidered for repurposing. However, it is important to note that drug
repurposing is a complex process and requires careful evaluation.
Our study has strengths and weaknesses. We translated

biological data into functional knowledge and treatment inter-
ventions, suggesting promising key obesity genes as targets for
new obesity therapeutics. However, the specificity of computa-
tional tools and inadequate specific information on biological
processes and pathways remained challenging to establish
causality. To address this, the integration of multiple credible
biological resources and statistical tools could compensate for the
specificity limitation of each resource, further enhancing the
prioritization of candidate genes and markers [78]. Additionally,
our approach explored anti-obesity therapy and uncovered novel
repurposed applications and adverse drug reaction information
for the key obesity genes. However, we lack knowledge of the
interactions between these drugs and the genes in the context of
obesity. Furthermore, adverse drug reactions may differ among
diverse populations [79]. As a follow-up to our study, we proposed
the integration of genome editing techniques, such as CRISPR-
Cas9 [80], to validate our prioritized key obesity genes in animal
experiments. Supplementing our findings with empirical experi-
ments would improve our comprehension of regulatory gene
interactions and their role in obesity, bringing us closer to
effective obesity treatment.

CONCLUSIONS
In conclusion, our study provides valuable contributions to the
obesity research field by utilizing a systematic data-driven in silico
approach to identify and predict novel regulatory genes and
potential therapeutic targets for obesity through the translation of
GWAS results. Firstly, we prioritized key obesity genes from
multiple knowledgebases and identified novel genes which had
not been functionally validated in regard to obesity. These genes
were involved in various biological pathways, such as lipid and
energy metabolism, insulin secretion, adipogenesis, and neural
development, adding insights into the underlying mechanism of
obesity. Secondly, we identified promising drug-related genes and
repurposing drug candidates for novel obesity management.
These drugs are capable of regulating energy metabolism and
expenditure, appetite control, glucose homeostasis, and insulin
sensitivity, offering promising avenues for the development of
effective treatments.

CODE AVAILABILITY
The codes used in this analysis are available on our GitHub page at https://
github.com/angmiayang/integrative_obesity_analysis.git. These codes are freely
available, enabling reproducibility and further exploration of our findings.
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