Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic analyses of GWAS summary statistics from UK Biobank identified novel susceptibility loci and genes for upper gastrointestinal diseases

Abstract

In recent decades, upper gastrointestinal (GI) diseases have been highly prevalent worldwide. Although genome-wide association studies (GWASs) have identified thousands of susceptibility loci, only a few of them were conducted for chronic upper GI disorders, and most of them were underpowered and with small sample sizes. Additionally, for the known loci, only a tiny fraction of heritability can be explained and the underlying mechanisms and related genes remain unclear. In this study, we conducted a multi-trait analysis by the MTAG software and a two-stage transcriptome-wide association study (TWAS) with UTMOST and FUSION for seven upper GI diseases (oesophagitis, gastro-oesophageal reflux disease, other diseases of oesophagus, gastric ulcer, duodenal ulcer, gastritis and duodenitis and other diseases of stomach and duodenum) based on summary GWAS statistics from UK Biobank. In the MTAG analysis, we identified 7 loci associated with these upper GI diseases, including 3 novel ones at 4p12 (rs10029980), 12q13.13 (rs4759317) and 18p11.32 (rs4797954). In the TWAS analysis, we revealed 5 susceptibility genes in known loci and identified 12 novel potential susceptibility genes, including HOXC9 at 12q13.13. Further functional annotations and colocalization analysis indicated that rs4759317 (A>G) driven the association for GWAS signals and expression quantitative trait loci (eQTL) simultaneously at 12q13.13. The identified variant acted by decreasing the expression of HOXC9 to affect the risk of gastro-oesophageal reflux disease. This study provided insights into the genetic nature of upper GI diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collaborators GBDCoD. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88.

    Article  Google Scholar 

  2. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology. 2019;156:254–72.e11.

    Article  PubMed  Google Scholar 

  3. Mucci LA, Hjelmborg JB, Harris JR, Czene K, Havelick DJ, Scheike T, et al. Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA. 2016;315:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noel RJ, Putnam PE, Rothenberg ME. Eosinophilic esophagitis. N Engl J Med. 2004;351:940–1.

    Article  CAS  PubMed  Google Scholar 

  5. Mohammed I, Cherkas LF, Riley SA, Spector TD, Trudgill NJ. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut. 2003;52:1085–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cameron AJ, Lagergren J, Henriksson C, Nyren O, Locke GR 3rd, Pedersen NL. Gastroesophageal reflux disease in monozygotic and dizygotic twins. Gastroenterology. 2002;122:55–9.

    Article  PubMed  Google Scholar 

  7. Gharahkhani P, Fitzgerald RC, Vaughan TL, Palles C, Gockel I, Tomlinson I, et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: a large-scale meta-analysis. Lancet Oncol. 2016;17:1363–73.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu N, Wang Z, Song X, Wei L, Kim BS, Freedman ND, et al. Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours. Gut. 2016;65:1611–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wu C, Wang Z, Song X, Feng XS, Abnet CC, He J, et al. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat Genet. 2014;46:1001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi Y, Hu Z, Wu C, Dai J, Li H, Dong J, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet. 2011;43:1215–8.

    Article  CAS  PubMed  Google Scholar 

  11. An J, Gharahkhani P, Law MH, Ong JS, Han X, Olsen CM, et al. Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nat Commun. 2019;10:4219.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53:1415–24.

    Article  CAS  PubMed  Google Scholar 

  13. Tanikawa C, Urabe Y, Matsuo K, Kubo M, Takahashi A, Ito H, et al. A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet. 2012;44:430–4. S1-2

    Article  CAS  PubMed  Google Scholar 

  14. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    Article  CAS  PubMed  Google Scholar 

  15. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. Am J Hum Genet. 2018;102:717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet. 2018;50:538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu L, Shi W, Long J, Guo X, Michailidou K, Beesley J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet. 2018;50:968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gusev A, Lawrenson K, Lin X, Lyra PC Jr, Kar S, Vavra KC, et al. A transcriptome-wide association study of high-grade serous epithelial ovarian cancer identifies new susceptibility genes and splice variants. Nat Genet. 2019;51:815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Finucane HK, Gusev A, Bhatia G, Gazal S, O’Connor L, et al. Functional Architectures of Local and Distal Regulation of Gene Expression in Multiple Human Tissues. Am J Hum Genet. 2017;100:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Consortium GT, Laboratory DA, Coordinating Center-Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. Genetic effects on gene expression across human tissues. Nature . 2017;550:204–13.

  24. Lu Y, Beeghly-Fadiel A, Wu L, Guo X, Li B, Schildkraut JM, et al. A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res. 2018;78:5419–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu L, Wang J, Cai Q, Cavazos TB, Emami NC, Long J, et al. Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Res. 2019;79:3192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, et al. A statistical framework for cross-tissue transcriptome-wide association analysis. Nat Genet. 2019;51:568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet. 2018;50:1593–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bosse Y, Li Z, Xia J, Manem V, Carreras-Torres R, Gabriel A, et al. Transcriptome-wide association study reveals candidate causal genes for lung cancer. Int J Cancer. 2020;146:1862–78.

    Article  CAS  PubMed  Google Scholar 

  32. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  Google Scholar 

  33. Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet. 2016;48:374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morrow JD, Glass K, Cho MH, Hersh CP, Pinto-Plata V, Celli B, et al. Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. Am J Respir Crit Care Med. 2018;197:1275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pirinen M, Donnelly P, Spencer CCA. Efficient Computation with a Linear Mixed Model on Large-Scale Data Sets with Applications to Genetic Studies. Ann Appl Stat. 2013;7:369–90.

    Article  Google Scholar 

  37. Wu Y, Murray GK, Byrne EM, Sidorenko J, Visscher PM, Wray NR. GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nat Commun. 2021;12:1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ong JS, An J, Han X, Law MH, Nandakumar P, 23andMe Research team, et al. Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett’s oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut. 2022;71:1053–61.

  39. Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51:592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hur H, Lee JY, Yang S, Kim JM, Park AE, Kim MH. HOXC9 Induces Phenotypic Switching between Proliferation and Invasion in Breast Cancer Cells. J Cancer. 2016;7:768–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang L, Zha Y, Ding J, Ye B, Liu M, Yan C, et al. Histone demethylase KDM6B has an anti-tumorigenic function in neuroblastoma by promoting differentiation. Oncogenesis. 2019;8:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng X, Kang Q, Wan R, Wang Z. miR-26a/HOXC9 Dysregulation Promotes Metastasis and Stem Cell-Like Phenotype of Gastric Cancer. Cell Physiol Biochem. 2018;49:1659–76.

    Article  CAS  PubMed  Google Scholar 

  43. Wei B, Zhou Y, Xu Z, Ruan J, Cheng H, Zhu M, et al. GSTP1 Ile105Val polymorphism and prostate cancer risk: evidence from a meta-analysis. PLoS ONE. 2013;8:e71640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Norskov MS, Dahl M, Tybjaerg-Hansen A. Genetic Variation in GSTP1, Lung Function, Risk of Lung Cancer, and Mortality. J Thorac Oncol. 2017;12:1664–72.

    Article  PubMed  Google Scholar 

  45. Akhtar S, Mahjabeen I, Akram Z, Kayani MA. CYP1A1 and GSTP1 gene variations in breast cancer: a systematic review and case-control study. Fam Cancer. 2016;15:201–14.

    Article  CAS  PubMed  Google Scholar 

  46. Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin Chem Lab Med. 2018;56:702–17.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao X, Hu J, Li J, Gu L, Chen J, Othmane B, et al. THEM6: A Novel Molecular Biomarker Predicts Tumor Microenvironment, Molecular Subtype, and Prognosis in Bladder Cancer. Dis Markers. 2022;2022:7147279.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, et al. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med. 2022;14:e14764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Jin T, Zhang J, Lou H, Yang B, Li Y, et al. Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer Epidemiol. 2012;36:283–7.

    Article  CAS  PubMed  Google Scholar 

  50. Yang B, Heng L, Du S, Yang H, Jin T, Lang H, et al. Association between RTEL1, PHLDB1, and TREH Polymorphisms and Glioblastoma Risk: A Case-Control Study. Med Sci Monit. 2015;21:1983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants and research staff who participated in UK Biobank. This work was funded by Natural Science Foundation of the Jiangsu Provincial Science and Technology (BK20220258) and Science and Technology Development Project of Nanjing Medical University (NMUB20210273, NMUC2021021A, GSKY20220405 and GSKY20220503).

Author information

Authors and Affiliations

Authors

Contributions

RH analyzed the data. JH collected the data. NZ, FX and YW helped to analyze the data. JF designed the study and drafted the paper. YW revised the paper. All the authors read and approved the final paper.

Corresponding authors

Correspondence to Yun Wang or Jingyi Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Affiliated Suzhou Hospital of Nanjing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, R., Huang, J., Zeng, N. et al. Systematic analyses of GWAS summary statistics from UK Biobank identified novel susceptibility loci and genes for upper gastrointestinal diseases. J Hum Genet 68, 599–606 (2023). https://doi.org/10.1038/s10038-023-01151-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01151-3

Search

Quick links