Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome

Abstract

The recent introduction of genome sequencing in genetic analysis has led to the identification of pathogenic variants located in deep introns. Recently, several new tools have emerged to predict the impact of variants on splicing. Here, we present a Japanese boy of Joubert syndrome with biallelic TCTN2 variants. Exome sequencing identified only a heterozygous maternal nonsense TCTN2 variant (NM_024809.5:c.916C >T, p.(Gln306Ter)). Subsequent genome sequencing identified a deep intronic variant (c.1033+423G>A) inherited from his father. The machine learning algorithms SpliceAI, Squirls, and Pangolin were unable to predict alterations in splicing by the c.1033+423G>A variant. SpliceRover, a tool for splice site prediction using FASTA sequence, was able to detect a cryptic exon which was 85-bp away from the variant and within the inverted Alu sequence while SpliceRover scores for these splice sites showed slight increase (donor) or decrease (acceptor) between the reference and mutant sequences. RNA sequencing and RT-PCR using urinary cells confirmed inclusion of the cryptic exon. The patient showed major symptoms of TCTN2-related disorders such as developmental delay, dysmorphic facial features and polydactyly. He also showed uncommon features such as retinal dystrophy, exotropia, abnormal pattern of respiration, and periventricular heterotopia, confirming these as one of features of TCTN2-related disorders. Our study highlights usefulness of genome sequencing and RNA sequencing using urinary cells for molecular diagnosis of genetic disorders and suggests that database of cryptic splice sites predicted in introns by SpliceRover using the reference sequences can be helpful in extracting candidate variants from large numbers of intronic variants in genome sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20:435–43.

    Article  CAS  PubMed  Google Scholar 

  2. Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136:1093–111.

    Article  CAS  PubMed  Google Scholar 

  3. Lee H, Huang AY, Wang LK, Yoon AJ, Renteria G, Eskin A, et al. Diagnostic utility of transcriptome sequencing for rare Mendelian diseases. Genet Med. 2020;22:490–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hiraide T, Shimizu K, Miyamoto S, Aoto K, Nakashima M, Yamaguchi T, et al. Genome sequencing and RNA sequencing of urinary cells reveal an intronic FBN1 variant causing aberrant splicing. J Hum Genet. 2022;67:387–92.

    Article  CAS  PubMed  Google Scholar 

  5. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535.e24.

    Article  CAS  PubMed  Google Scholar 

  6. Riepe TV, Khan M, Roosing S, Cremers FPM, Hoen PAC‘t. Benchmarking deep learning splice prediction tools using functional splice assays. Hum Mutat. 2021;42:799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15:7155–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuallaert J, Godin F, Kim M, Soete A, Saeys Y, De Neve W. SpliceRover: interpretable convolutional neural networks for improved splice site prediction. Bioinformatics. 2018;34:4180–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng J, Nguyen TYD, Cygan KJ, Çelik MH, Fairbrother WG, Avsec Ž, et al. MMSplice: modular modeling improves the predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zeng T, Li YI. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022;23:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Danis D, Jacobsen JOB, Carmody LC, Gargano MA, McMurry JA, Hegde A, et al. Interpretable prioritization of splice variants in diagnostic next-generation sequencing. Am J Hum Genet. 2021;108:1564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet. 2011;43:776–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 2011;145:513–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huppke P, Wegener E, Böhrer-Rabel H, Bolz HJ, Zoll B, Gärtner J, et al. Tectonic gene mutations in patients with Joubert syndrome. Eur J Hum Genet. 2015;23:616–20.

    Article  CAS  PubMed  Google Scholar 

  15. Shaheen R, Faqeih E, Seidahmed MZ, Sunker A, Alali FE, AlQahtani K, et al. A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum Mutat. 2011;32:573–8.

    Article  CAS  PubMed  Google Scholar 

  16. Radha Rama Devi A, Naushad SM, Lingappa L. Clinical and molecular diagnosis of joubert syndrome and related disorders. Pediatr Neurol. 2020;106:43–9.

    Article  PubMed  Google Scholar 

  17. Van De Weghe JC, Gomez A, Doherty D. The Joubert-Meckel-nephronophthisis spectrum of ciliopathies. Annu Rev Genom Hum Genet. 2022;23:301–29.

    Article  Google Scholar 

  18. Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K, et al. Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet. 2021;66:1193–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tadaka S, Hishinuma E, Komaki S, Motoike IN, Kawashima J, Saigusa D, et al. jMorp updates in 2020: large enhancement of multi-omics data resources on the general Japanese population. Nucleic Acids Res. 2021;49:D536–44.

    Article  CAS  PubMed  Google Scholar 

  20. “GEM Japan Whole Genome Aggregation (GEM-J WGA) Panel”. Japan: GEnome Medical alliance Japan Project (GEM-J). Available from: https://togovar.biosciencedbc.jp/doc/datasets/gem_j_wga.

  21. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, et al. Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med. 2020;22:1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strauch Y, Lord J, Niranjan M, Baralle D. CI-SpliceAI-Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites. PLoS One. 2022;17:e0269159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jang W, Park J, Chae H, Kim M. Comparison of in silico tools for splice-altering variant prediction using established spliceogenic variants: an end-user’s point of view. Int J Genomics. 2022;2022:5265686.

  27. Lee J, Jeong H, Won D, Shin S, Lee ST, Choi JR, et al. Noncanonical splice site and deep intronic FRMD7 variants activate cryptic exons in X-linked infantile nystagmus. Transl Vis Sci Technol. 2022;11:25.

    PubMed  PubMed Central  Google Scholar 

  28. Ram O, Schwartz S, Ast G. Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol. 2008;28:3513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hiraide T, Nakashima M, Ikeda T, Tanaka D, Osaka H, Saitsu H. Identification of a deep intronic POLR3A variant causing inclusion of a pseudoexon derived from an Alu element in Pol III-related leukodystrophy. J Hum Genet. 2020;65:921–5.

    Article  CAS  PubMed  Google Scholar 

  30. Aicher JK, Jewell P, Vaquero-Garcia J, Barash Y, Bhoj EJ. Mapping RNA splicing variations in clinically accessible and nonaccessible tissues to facilitate Mendelian disease diagnosis using RNA-seq. Genet Med. 2020;22:1181–90.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Juric-Sekhar G, Adkins J, Doherty D, Hevner RF. Joubert syndrome: brain and spinal cord malformations in genotyped cases and implications for neurodevelopmental functions of primary cilia. Acta Neuropathol. 2012;123:695–709.

    Article  PubMed  Google Scholar 

  32. Bachmann-Gagescu R, Dempsey JC, Phelps IG, O’Roak BJ, Knutzen DM, Rue TC, et al. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet. 2015;52:514–22.

    Article  CAS  PubMed  Google Scholar 

  33. Kars ME, Başak AN, Onat OE, Bilguvar K, Choi J, Itan Y, et al. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci USA. 2021;118:e2026076118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Al-Hamed MH, Kurdi W, Alsahan N, Alabdullah Z, Abudraz R, Tulbah M, et al. Genetic spectrum of Saudi Arabian patients with antenatal cystic kidney disease and ciliopathy phenotypes using a targeted renal gene panel. J Med Genet. 2016;53:338–47.

    Article  CAS  PubMed  Google Scholar 

  35. Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E, et al. Characterizing the morbid genome of ciliopathies. Genome Biol. 2016;17:242.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang M, Chang Z, Tian Y, Wang L, Lu Y. Two novel TCTN2 mutations cause Meckel-Gruber syndrome. J Hum Genet. 2020;65:1039–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenbaum L, Pode-Shakked B, Eisenberg-Barzilai S, Dicastro-Keidar M, Bar-Ziv A, Goldstein N, et al. Evaluation of diagnostic yield in fetal whole-exome sequencing: a report on 45 consecutive families. Front Genet. 2019;10:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Litz Philipsborn S, Hartmajer S, Shtorch Asor A, Vinovezky M, Regev M, Singer A, et al. A founder mutation in TCTN2 causes Meckel-Gruber syndrome type 8 among Jews of Ethiopian and Yemenite origin. Am J Med Genet A. 2021;185:1610–3.

    Article  CAS  PubMed  Google Scholar 

  39. Gana S, Serpieri V, Valente EM. Genotype-phenotype correlates in Joubert syndrome: a review. Am J Med Genet C Semin Med Genet. 2022;190:72–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients for participating in this work.

Funding

This work was supported by the Japan Agency for Medical Research and Development (AMED) (JP21ek0109549 to TO), Grants-in-Aid for Scientific Research (B) (JP20H03641), Grant-in-Aid for Challenging Research (Exploratory) (20K21570) from the Japan Society for the Promotion of Science, Japan Intractable Diseases (Nanbyo) Research Foundation (2020A02), and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

HS contributed to the conception and design of the study. TH, KS, SM, KA, MN, TY, TK, TO and HS contributed to the acquisition and analysis of data. TH, KS, and HS contributed to drafting the text and preparing the figure. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hirotomo Saitsu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiraide, T., Shimizu, K., Okumura, Y. et al. A deep intronic TCTN2 variant activating a cryptic exon predicted by SpliceRover in a patient with Joubert syndrome. J Hum Genet 68, 499–505 (2023). https://doi.org/10.1038/s10038-023-01143-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01143-3

This article is cited by

Search

Quick links