Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study of age at menarche in the Taiwan Biobank suggests NOL4 as a novel associated gene

Abstract

Sexual maturation is a complex physiological process that involves multiple variables, such as genetic and environmental factors. Among females, age at menarche (AM) is a critical milestone for sexual maturation. This study aimed to identify genetic markers of AM using nationwide population cohort data in Taiwan. Females with self-reported AM between 10 and 16 years (N = 39,827) were eligible for the final analysis. To identify genetic signals related to AM, we conducted a genome-wide association study using a linear regression model and split-half meta-analysis method to verify our findings. The Functional Mapping and Annotation web-based platform was used for positional mapping and gene-based and gene-set analyses. The meta-analysis identified four significant loci, i.e., LIN28B (pooled P = 1.39 × 10−21), NOL4 (pooled P = 8.94 × 10−9), GPR45 (pooled P = 4.19 × 10−11), and LOC105373831 (pooled P = 4.37 × 10−8), that were associated with AM. MAGMA gene-based analysis revealed that LIN28B (P = 1.13 × 108), NOL4 (P = 2.27 × 107), RXRG (P = 4.34 × 10−7), ETV5 (P = 1.75 × 10−6), and HACE1 (P = 1.82 × 106) were significantly associated with AM, while the gene-set analysis identified a significantly enriched pathway involving mTOR signaling complex (FDR corrected P = 1.28 × 102). The results replicated evidence for several genetic markers associated with AM in the Taiwanese female population. Our analysis identified a novel locus (rs7239368) in NOL4 associated with AM (β = 0.051 ± 0.009 years, pooled P = 8.94 × 10−9), whereas additional research is needed to validate its molecular role in sexual maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. de Muinich Keizer SM, Mul D. Trends in pubertal development in Europe. Hum Reprod Update. 2001;7:287–91. https://doi.org/10.1093/humupd/7.3.287.

    Article  PubMed  Google Scholar 

  2. Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L. Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care. J Clin Endocrinol Metab. 2008;93:723–8. https://doi.org/10.1210/jc.2007-1786.

    Article  CAS  PubMed  Google Scholar 

  3. Harden KP, Mendle J. Gene-environment interplay in the association between pubertal timing and delinquency in adolescent girls. J Abnorm Psychol. 2012;121:73–87. https://doi.org/10.1037/a0024160.

    Article  PubMed  Google Scholar 

  4. Gajdos ZK, Hirschhorn JN, Palmert MR. What controls the timing of puberty? An update on progress from genetic investigation. Curr Opin Endocrinol Diabetes Obes. 2009;16:16–24. https://doi.org/10.1097/MED.0b013e328320253c.

    Article  PubMed  Google Scholar 

  5. Delemarre-van de Waal HA. Secular trend of timing of puberty. Endocr Dev. 2005;8:1–14. https://doi.org/10.1159/000084082.

    Article  PubMed  Google Scholar 

  6. Euling SY, Herman-Giddens ME, Lee PA, Selevan SG, Juul A, SØrensen TIA. et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics. 2008;121:S172–S191. https://doi.org/10.1542/peds.2.

    Article  PubMed  Google Scholar 

  7. Toppari J, Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010;324:39–44. https://doi.org/10.1016/j.mce.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  8. Chang SR, Chen KH. Age at menarche of three-generation families in Taiwan. Ann Hum Biol. 2008;35:394–405. https://doi.org/10.1080/03014460802154777.

    Article  PubMed  Google Scholar 

  9. Ramnitz MS, Lodish MB. Racial disparities in pubertal development. Semin Reprod Med. 2013;31:333–9. https://doi.org/10.1055/s-0033-1348891.

    Article  PubMed  Google Scholar 

  10. Marceau K, Ram N, Houts RM, Grimm KJ, Susman EJ. Individual differences in boys’ and girls’ timing and tempo of puberty: modeling development with nonlinear growth models. Dev Psychol. 2011;47:1389–409. https://doi.org/10.1037/a0023838.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Waylen A, Wolke D. Sex ‘n’ drugs ‘n’ rock ‘n’ roll: the meaning and social consequences of pubertal timing. Eur J Endocrinol. 2004;151:U151–U159. https://doi.org/10.1530/eje.0.151u151.

    Article  CAS  PubMed  Google Scholar 

  12. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA.2003;100:10972–6. https://doi.org/10.1073/pnas.1834399100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bedecarrats GY, Linher KD, Janovick JA, Beranova M, Kada F, Seminara SB. et al. Four naturally occurring mutations in the human GnRH receptor affect ligand binding and receptor function. Mol Cell Endocrinol. 2003;205:51–64. https://doi.org/10.1016/s0303-7207(03)00201-6.

    Article  CAS  PubMed  Google Scholar 

  14. Karges B, Karges W, Mine M, Ludwig L, Kuhne R, Milgrom E. et al. Mutation Ala(171)Thr stabilizes the gonadotropin-releasing hormone receptor in its inactive conformation, causing familial hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2003;88:1873–9. https://doi.org/10.1210/jc.2002-020005.

    Article  CAS  PubMed  Google Scholar 

  15. Jeong HR, Lee HS, Hwang JS. LHCGR Gene Analysis in Girls with Non-Classic Central Precocious Puberty. Exp Clin Endocrinol Diabetes. 2019;127:234–9. https://doi.org/10.1055/s-0043-125067.

    Article  CAS  PubMed  Google Scholar 

  16. He C, Kraft P, Chen C, Buring JE, Pare G, Hankinson SE. et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet. 2009;41:724–8. https://doi.org/10.1038/ng.385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet. 2009;41:729–33. https://doi.org/10.1038/ng.382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perry JRB, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF. et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet. 2009;41:648–50. https://doi.org/10.1038/ng.386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perry JRB, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature. 2014;514:92–97. https://doi.org/10.1038/nature13545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elks CE, Perry JRB, Sulem P, Chasman DI, Franceschini N, He C. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet. 2010;42:1077–85. https://doi.org/10.1038/ng.714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu YZ, Guo YF, Wang L, Tan LJ, Liu XG, Pei YF. et al. Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet. 2009;5:e1000420. https://doi.org/10.1371/journal.pgen.1000420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Rhodes L, Malinowski JR, Wang Y, Tao R, Pankratz N, Jeff JM. et al. The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic meta-analysis. PLoS One. 2018;13:e0200486. https://doi.org/10.1371/journal.pone.0200486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spencer KL, Malinowski J, Carty CL, Franceschini N, Fernandez-Rhodes L, Young A. et al. Genetic variation and reproductive timing: African American women from the Population Architecture using Genomics and Epidemiology (PAGE) Study. PLoS One. 2013;8:e55258. https://doi.org/10.1371/journal.pone.0055258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarnowski C, Cousminer DL, Franceschini N, Raffield LM, Jia G, Fernandez-Rhodes L. et al. Large trans-ethnic meta-analysis identifies AKR1C4 as a novel gene associated with age at menarche. Hum Reprod. 2021;36:1999–2010. https://doi.org/10.1093/humrep/deab086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanikawa C, Okada Y, Takahashi A, Oda K, Kamatani N, Kubo M. et al. Genome wide association study of age at menarche in the Japanese population. PLoS One. 2013;8:e63821. https://doi.org/10.1371/journal.pone.0063821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Horikoshi M, Day FR, Akiyama M, Hirata M, Kamatani Y, Matsuda K. et al. Elucidating the genetic architecture of reproductive ageing in the Japanese population. Nat Commun. 2018;9:1977. https://doi.org/10.1038/s41467-018-04398-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Zhang B, Choi JY, Gao YT, Li H, Lu W. et al. Age at menarche and age at natural menopause in East Asian women: a genome-wide association study. Age. 2016;38:513–23. https://doi.org/10.1007/s11357-016-9939-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC. et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25:5321–31. https://doi.org/10.1093/hmg/ddw346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan CT, Hung TH, Yeh CK. Taiwan Regulation of Biobanks. J Law Med Ethics. 2015;43:816–26. https://doi.org/10.1111/jlme.12322.

    Article  PubMed  Google Scholar 

  30. Feng YCA, Chen CY, Chen TT, Kuo PH, Hsu YH, Yang HI. et al. Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell Genomics. 2022;2:100197. https://doi.org/10.1016/j.xgen.2022.100197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan CT, Lin JC, Lee CH. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics. 2008;9:235–46. https://doi.org/10.2217/14622416.9.2.235.

    Article  PubMed  Google Scholar 

  32. Lin WY, Chan CC, Liu YL, Yang AC, Tsai SJ, Kuo PH. Performing different kinds of physical exercise differentially attenuates the genetic effects on obesity measures: Evidence from 18,424 Taiwan Biobank participants. PLoS Genet. 2019;15:e1008277. https://doi.org/10.1371/journal.pgen.1008277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. https://doi.org/10.1086/519795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barsh GS, Copenhaver GP, Gibson G, Williams SM. Guidelines for genome-wide association studies. PLoS Genet. 2012;8:e1002812. https://doi.org/10.1371/journal.pgen.1002812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthropometric Traits (GIANT) C., DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) C. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44:369–75. https://doi.org/10.1038/ng.2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H. et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020;52:669–79. https://doi.org/10.1038/s41588-020-0640-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41. https://doi.org/10.1038/ng.3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017;49:834–41. https://doi.org/10.1038/ng.3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826. https://doi.org/10.1038/s41467-017-01261-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219. https://doi.org/10.1371/journal.pcbi.1004219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH. et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet. 2009;41:734–8. https://doi.org/10.1038/ng.383.

    Article  CAS  PubMed  Google Scholar 

  42. Corre C, Shinoda G, Zhu H, Cousminer DL, Crossman C, Bellissimo C. et al. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. J Endocrinol. 2016;228:179–91. https://doi.org/10.1530/JOE-15-0360.

    Article  CAS  PubMed  Google Scholar 

  43. Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK. et al. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet. 2019;104:65–75. https://doi.org/10.1016/j.ajhg.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  44. Takayanagi-Kiya S, Kiya T, Kunieda T, Kubo T. Mblk-1 Transcription Factor Family: Its Roles in Various Animals and Regulation by NOL4 Splice Variants in Mammals. Int J Mol Sci. 2017;18:246. https://doi.org/10.3390/ijms18020246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–17. https://doi.org/10.1038/ng.3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant awarded to MCT from the National Cheng Kung University Hospital (NCKUH-10902012).

Author information

Authors and Affiliations

Authors

Contributions

MCT obtained the funding, conceived and designed the study, drafted the analytical plan, interpreted the data, and drafted and revised the manuscript. CHH managed the data and conducted the statistical analysis. SKC conducted the statistical analysis, interpreted the results, and critically reviewed the manuscript. MHRG provided advice on the statistical analysis and revised the manuscript. SHL supervised the study, guided the statistical analysis, critically reviewed, and revised the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Sheng-Hsiang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This research project was approved by the Institutional Review Boards of the National Cheng Kung University and the Taiwan Biobank. Subjects were informed and they consented to participate in the Taiwan Biobank. This secondary analysis was conducted on the de-identified database.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, MC., Hsu, CH., Chu, SK. et al. Genome-wide association study of age at menarche in the Taiwan Biobank suggests NOL4 as a novel associated gene. J Hum Genet 68, 339–345 (2023). https://doi.org/10.1038/s10038-023-01124-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01124-6

Search

Quick links