Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of bipolar disorder: insights into its complex architecture and biology from common and rare variants

Abstract

Bipolar disorder (BD) is a common mental disorder characterized by recurrent mood episodes, which causes major socioeconomic burdens globally. Though its disease pathogenesis is largely unknown, the high heritability of BD indicates strong contributions from genetic factors. In this review, we summarize the recent achievements in the genetics of BD, particularly those from genome-wide association study (GWAS) of common variants and next-generation sequencing analysis of rare variants. These include the identification of dozens of robust disease-associated loci, deepening of our understanding of the biology of BD, objective description of correlations with other psychiatric disorders and behavioral traits, formulation of methods for predicting disease risk and drug response, and the discovery of a single gene associated with bipolar disorder and schizophrenia spectrum with a large effect size. On the other hand, the findings to date have not yet made a clear contribution to the improvement of clinical psychiatry of BD. We overview the remaining challenges as well as possible paths to resolve them, referring to studies of other major neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: .

Similar content being viewed by others

References

  1. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.

    Article  Google Scholar 

  2. Angst J, Sellaro R. Historical perspectives and natural history of bipolar disorder. Biol Psychiatry. 2000;48:445–57.

    Article  CAS  Google Scholar 

  3. Michalak EE, Yatham LN, Lam RW. Quality of life in bipolar disorder: A review of the literature. Health Qual Life Outcomes. 2005;3:72.

    Article  Google Scholar 

  4. Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–50.

    Article  Google Scholar 

  5. Perlis RH, Miyahara S, Marangell LB, Wisniewski SR, Ostacher M, DelBello MP, et al. Long-Term implications of early onset in bipolar disorder: data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biol Psychiatry. 2004;55:875–81.

    Article  Google Scholar 

  6. Lin P-I, McInnis MG, Potash JB, Willour V, MacKinnon DF, DePaulo JR, et al. Clinical correlates and familial aggregation of age at onset in bipolar disorder. Am J Psychiatry. 2006;163:240–6.

    Article  Google Scholar 

  7. Nishioka M, Kazuno A-A, Nakamura T, Sakai N, Hayama T, Fujii K, et al. Systematic analysis of exonic germline and postzygotic de novo mutations in bipolar disorder. Nat Commun. 2021;12:3750.

    Article  CAS  Google Scholar 

  8. Administration SAMHS. CBHSQ Methodology Report. In: Impact of the DSM-IV to DSM-5 Changes on the National Survey on Drug Use and Health. Rockville (MD): Substance Abuse and Mental Health Services Administration (US); 2016.

  9. Diagnostic and statistical manual of mental disorders: DSM-5â„¢. 5th edition. ed. American Psychiatric Publishing, a division of American Psychiatric Association: Washington, DC, 2013.

  10. Clemente AS, Diniz BS, Nicolato R, Kapczinski FP, Soares JC, Firmo JO, et al. Bipolar disorder prevalence: a systematic review and meta-analysis of the literature. Rev Brasileira de Psiquiatria (Sao Paulo, Braz: 1999). 2015;37:155–61.

    Article  Google Scholar 

  11. Craddock N, Jones I. Genetics of bipolar disorder. J Med Genet. 1999;36:585–94.

    Article  CAS  Google Scholar 

  12. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article  Google Scholar 

  13. Kato T, Baba K, Guo W, Chen Y, Nosaka T. Impact of bipolar disorder on health-related quality of life and work productivity: Estimates from the national health and wellness survey in Japan. J Affect Disord. 2021;295:203–14.

    Article  Google Scholar 

  14. Nishi D, Ishikawa H, Kawakami N. Prevalence of mental disorders and mental health service use in Japan. Psychiatry Clin Neurosci. 2019;73:458–65. https://doi.org/10.1111/pcn.12894.

    Article  Google Scholar 

  15. Kieseppä T, Partonen T, Haukka J, Kaprio J, Lönnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry. 2004;161:1814–21.

    Article  Google Scholar 

  16. Khalilisamani N, Thomson PC, Raadsma HW, Khatkar MS. Estimating heritability using family-pooled phenotypic and genotypic data: a simulation study applied to aquaculture. Heredity. 2022;128:178–86.

  17. Barnett JH, Smoller JW. The genetics of bipolar disorder. Neuroscience. 2009;164:331–43.

    Article  CAS  Google Scholar 

  18. Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet Part C, Semin Med Genet. 2003;123c:48–58.

    Article  Google Scholar 

  19. Wender PH, Kety SS, Rosenthal D, Schulsinger F, Ortmann J, Lunde I. Psychiatric disorders in the biological and adoptive families of adopted individuals with affective disorders. Arch Gen Psychiatry. 1986;43:923–29.

    Article  CAS  Google Scholar 

  20. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70:677–85.

    Article  Google Scholar 

  21. Talati A, Bao Y, Kaufman J, Shen L, Schaefer CA, Brown AS. Maternal smoking during pregnancy and bipolar disorder in offspring. Am J Psychiatry. 2013;170:1178–85.

    Article  Google Scholar 

  22. Aas M, Henry C, Andreassen OA, Bellivier F, Melle I, Etain B. The role of childhood trauma in bipolar disorders. Int J Bipolar Disord. 2016;4:2–2.

    Article  Google Scholar 

  23. Pulst SM. Genetic linkage analysis. Arch Neurol. 1999;56:667–72.

    Article  CAS  Google Scholar 

  24. Jones I, Craddock N. Candidate gene studies of bipolar disorder. Ann Med. 2001;33:248–56.

    Article  CAS  Google Scholar 

  25. Heiden A, Schüssler P, Itzlinger U, Leisch F, Scharfetter J, Gebhardt C, et al. Association studies of candidate genes in bipolar disorders. Neuropsychobiology. 2000;42:18–21.

    Article  CAS  Google Scholar 

  26. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J. et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  Google Scholar 

  27. Consortium IH. The international HapMap project. Nature. 2003;426:789–96.

    Article  Google Scholar 

  28. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32:381–5.

    Article  Google Scholar 

  29. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43:977–83.

    Article  Google Scholar 

  30. Baum A, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry. 2008;13:197–207.

    Article  CAS  Google Scholar 

  31. Charney A, Ruderfer D, Stahl E, Moran J, Chambert K, Belliveau R, et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry. 2017;7:e993–e93.

    Article  CAS  Google Scholar 

  32. Chen D, Jiang X, Akula N, Shugart Y, Wendland J, Steele C, et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013;18:195–205.

    Article  CAS  Google Scholar 

  33. Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry. 2018;23:639–47.

    Article  CAS  Google Scholar 

  34. Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landén M, et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet. 2016;25:3383–94.

    Article  CAS  Google Scholar 

  35. Mühleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:1–8.

    Article  Google Scholar 

  36. Green EK, Grozeva D, Forty L, Gordon-Smith K, Russell E, Farmer A, et al. Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol Psychiatry. 2013;18:614–17.

    Article  CAS  Google Scholar 

  37. Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, et al. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Mol Psychiatry. 2013;18:1302–07.

    Article  CAS  Google Scholar 

  38. Cichon S, Mühleisen TW, Degenhardt FA, Mattheisen M, Miró X, Strohmaier J, et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88:372–81.

    Article  CAS  Google Scholar 

  39. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40:1056–8.

    Article  CAS  Google Scholar 

  40. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci. 2009;106:7501–06.

    Article  CAS  Google Scholar 

  41. Sklar P, Smoller JW, Fan J, Ferreira MAR, Perlis RH, Chambert K, et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13:558–69.

    Article  CAS  Google Scholar 

  42. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  43. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009;14:755–63.

    Article  CAS  Google Scholar 

  44. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  Google Scholar 

  45. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  Google Scholar 

  46. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–08.

    Article  CAS  Google Scholar 

  47. Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51:1670–78.

    Article  CAS  Google Scholar 

  48. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  CAS  Google Scholar 

  49. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45:1150–59.

    Article  CAS  Google Scholar 

  50. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011;43:969–76.

    Article  CAS  Google Scholar 

  51. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    Article  CAS  Google Scholar 

  52. Jia X, Goes FS, Locke AE, Palmer D, Wang W, Cohen-Woods S, et al. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Mol Psychiatry. 2021;26:5239–50.

  53. Palmer DS, Howrigan DP, Chapman SB, Adolfsson R, Bass N, Blackwood D, et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat Genet. 2022;54:541–7.

  54. Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S, et al. Exome sequencing of familial bipolar disorder. JAMA Psychiatry. 2016;73:590–97.

    Article  Google Scholar 

  55. Husson T, Duboc J-B, Quenez O, Charbonnier C, Rotharmel M, Cuenca M, et al. Identification of potential genetic risk factors for bipolar disorder by whole-exome sequencing. Transl Psychiatry. 2018;8:268.

    Article  Google Scholar 

  56. Kataoka M, Matoba N, Sawada T, Kazuno AA, Ishiwata M, Fujii K, et al. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol Psychiatry. 2016;21:885–93.

    Article  CAS  Google Scholar 

  57. Lescai F, Als TD, Li Q, Nyegaard M, Andorsdottir G, Biskopstø M, et al. Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder. Transl Psychiatry. 2017;7:e1034–e34.

    Article  CAS  Google Scholar 

  58. Ament Seth A, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci. 2015;112:3576–81.

    Article  CAS  Google Scholar 

  59. Charney AW, Stahl EA, Green EK, Chen C-Y, Moran JL, Chambert K, et al. Contribution of rare copy number variants to bipolar disorder risk is limited to schizoaffective cases. Biol Psychiatry. 2019;86:110–19.

    Article  CAS  Google Scholar 

  60. Green EK, Rees E, Walters JTR, Smith KG, Forty L, Grozeva D, et al. Copy number variation in bipolar disorder. Mol Psychiatry. 2016;21:89–93.

    Article  CAS  Google Scholar 

  61. Grozeva D, Kirov G, Ivanov D, Jones IR, Jones L, Green EK, et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry. 2010;67:318–27.

    Article  Google Scholar 

  62. Calle Sánchez X, Helenius D, Bybjerg-Grauholm J, Pedersen C, Hougaard DM, Børglum AD, et al. Comparing copy number variations in a danish case cohort of individuals with psychiatric disorders. JAMA Psychiatry. 2022;79:59–69.

    Article  Google Scholar 

  63. Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, Greenwood T, et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry. 2009;14:376–80.

    Article  CAS  Google Scholar 

  64. Noor A, Lionel AC, Cohen-Woods S, Moghimi N, Rucker J, Fennell A, et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am J Med Genet Part B: Neuropsychiatr Genet. 2014;165:303–13. https://doi.org/10.1002/ajmg.b.32232.

    Article  CAS  Google Scholar 

  65. Priebe L, Degenhardt F, Strohmaier J, Breuer R, Herms S, Witt SH, et al. Copy number variants in german patients with schizophrenia. PLOS ONE. 2013;8:e64035.

    Article  CAS  Google Scholar 

  66. Bergen SE, O’Dushlaine CT, Ripke S, Lee PH, Ruderfer DM, Akterin S, et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry. 2012;17:880–6.

    Article  CAS  Google Scholar 

  67. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72:951–63.

    Article  CAS  Google Scholar 

  68. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  Google Scholar 

  69. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLOS Computational Biol. 2015;11:e1004219.

    Article  Google Scholar 

  70. Brainstorm C, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360:eaap8757.

  71. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article  CAS  Google Scholar 

  72. Bipolar D.Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address drve, Bipolar D, Schizophrenia Working Group of the Psychiatric Genomics C. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–15.e16.

    Article  Google Scholar 

  73. Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Communications 2018;9:224.

    Article  Google Scholar 

  74. Kishi T, Ikuta T, Matsuda Y, Sakuma K, Okuya M, Mishima K, et al. Mood stabilizers and/or antipsychotics for bipolar disorder in the maintenance phase: a systematic review and network meta-analysis of randomized controlled trials. Mol Psychiatry. 2021;26:4146–57.

    Article  CAS  Google Scholar 

  75. Yildiz A, Vieta E, Leucht S, Baldessarini RJ. Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials. Neuropsychopharmacology. 2011;36:375–89.

    Article  CAS  Google Scholar 

  76. Thase ME, Macfadden W, Weisler RH, Chang W, Paulsson B, Khan A, et al. Efficacy of quetiapine monotherapy in bipolar I and II depression: a double-blind, placebo-controlled study (the BOLDER II study). J Clin Psychopharmacol. 2006;26:600–9.

    Article  CAS  Google Scholar 

  77. Young AH, McElroy SL, Olausson B, Paulsson B. A randomised, placebo-controlled 52-week trial of continued quetiapine treatment in recently depressed patients with bipolar I and bipolar II disorder. World J Biol Psychiatry. 2014;15:96–112.

    Article  Google Scholar 

  78. Tohen M, McDonnell DP, Case M, Kanba S, Ha K, Fang YR, et al. Randomised, double-blind, placebo-controlled study of olanzapine in patients with bipolar I depression. Br J Psychiatry. 2012;201:376–82.

    Article  Google Scholar 

  79. Tohen M, Calabrese JR, Sachs GS, Banov MD, Detke HC, Risser R, et al. Randomized, placebo-controlled trial of olanzapine as maintenance therapy in patients with bipolar I disorder responding to acute treatment with olanzapine. Am J Psychiatry. 2006;163:247–56.

    Article  Google Scholar 

  80. Vieta E, Montgomery S, Sulaiman AH, Cordoba R, Huberlant B, Martinez L, et al. A randomized, double-blind, placebo-controlled trial to assess prevention of mood episodes with risperidone long-acting injectable in patients with bipolar I disorder. Eur Neuropsychopharmacol. 2012;22:825–35.

    Article  CAS  Google Scholar 

  81. National Institute of Health and Care Excellence N. Bipolar disorder: assessment and management (2014, updated 2020), 2020.

  82. Garnham J, Munro A, Slaney C, MacDougall M, Passmore M, Duffy A, et al. Prophylactic treatment response in bipolar disorder: Results of a naturalistic observation study. J Affect Disord. 2007;104:185–90.

    Article  Google Scholar 

  83. Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, et al. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet. 2016;387:1085–93.

    Article  CAS  Google Scholar 

  84. International Consortium on Lithium G. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA Psychiatry. 2018;75:65–74.

    Google Scholar 

  85. Chung W-H, Hung S-I, Hong H-S, Hsih M-S, Yang L-C, Ho H-C, et al. A marker for Stevens–Johnson syndrome. Nature. 2004;428:486–86.

    Article  CAS  Google Scholar 

  86. Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. Relationship between the HLA-B*1502 allele and carbamazepine-induced stevens-johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149:1025–32.

    Article  CAS  Google Scholar 

  87. Dean L. Carbamazepine Therapy and HLA Genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kane MS, Kattman BL, et al. eds. Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

    Google Scholar 

  88. Nicoletti P, Barrett S, McEvoy L, Daly AK, Aithal G, Lucena MI, et al. Shared genetic risk factors across carbamazepine-induced hypersensitivity reactions. Clin Pharmacol Therapeutics. 2019;106:1028–36.

    Article  CAS  Google Scholar 

  89. Jang HW, Kim SW, Cho Y-J, Heo K, Lee BI, Lee SK, et al. GWAS identifies two susceptibility loci for lamotrigine-induced skin rash in patients with epilepsy. Epilepsy Res. 2015;115:88–94.

    Article  CAS  Google Scholar 

  90. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47:1114–20.

    Article  CAS  Google Scholar 

  91. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  Google Scholar 

  92. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  Google Scholar 

  93. Liu D, Meyer D, Fennessy B, Feng C, Cheng E, Johnson JS, et al. Rare schizophrenia risk variant burden is conserved in diverse human populations. medRxiv. 2022:2022.01.03.22268662.

  94. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  Google Scholar 

  95. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017;100:267–80.

    Article  CAS  Google Scholar 

  96. Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Article  Google Scholar 

  97. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    Article  CAS  Google Scholar 

  98. Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet. 2015;47:582–8.

    Article  CAS  Google Scholar 

  99. Koemans TS, Kleefstra T, Chubak MC, Stone MH, Reijnders MRF, de Munnik S, et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLOS Genet. 2017;13:e1006864.

    Article  Google Scholar 

  100. Hood Rebecca L, Lines Matthew A, Nikkel Sarah M, Schwartzentruber J, Beaulieu C, Nowaczyk Małgorzata JM, et al. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause floating-harbor syndrome. Am J Hum Genet. 2012;90:308–13.

    Article  CAS  Google Scholar 

  101. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Sci (N. Y, NY). 2007;316:445–9.

    Article  CAS  Google Scholar 

  102. Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, et al. Insights into clonal haematopoiesis from 8342 mosaic chromosomal alterations. Nature. 2018;559:350–5.

    Article  CAS  Google Scholar 

  103. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

  104. Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation illuminates the allelic architecture, risk genes, cellular expression patterns, and phenotypic context of autism. medRxiv. 2021:2021.12.20.21267194.

  105. Takata A. Estimating contribution of rare non-coding variants to neuropsychiatric disorders. Psychiatry Clin Neurosci. 2019;73:2–10. https://doi.org/10.1111/pcn.12774.

    Article  Google Scholar 

  106. Takata A, Ionita-Laza I, Gogos Joseph A, Xu B, Karayiorgou M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron. 2016;89:940–47.

    Article  CAS  Google Scholar 

  107. Krupp DR, Barnard RA, Duffourd Y, Evans SA, Mulqueen RM, Bernier R, et al. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am J Hum Genet. 2017;101:369–90.

    Article  CAS  Google Scholar 

  108. Short PJ, McRae JF, Gallone G, Sifrim A, Won H, Geschwind DH, et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature. 2018;555:611–16.

    Article  CAS  Google Scholar 

  109. Halvorsen M, Huh R, Oskolkov N, Wen J, Netotea S, Giusti-Rodriguez P, et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat Commun. 2020;11:1842.

    Article  CAS  Google Scholar 

  110. Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5:a012641–a41.

    Article  Google Scholar 

  111. Mitra I, Huang B, Mousavi N, Ma N, Lamkin M, Yanicky R. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature. 2021;589:246–50.

    Article  CAS  Google Scholar 

  112. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature. 2020;586:80–6.

    Article  CAS  Google Scholar 

  113. Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA, et al. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science. 2021;373:1499–505.

    Article  CAS  Google Scholar 

  114. Schaefer GB, Mendelsohn NJ, for the Professional P, Guidelines C. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15:399–407.

    Article  CAS  Google Scholar 

  115. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4:36–36.

    Article  Google Scholar 

  116. Singh T, Neale BM, Daly MJ, on behalf of the Schizophrenia Exome Meta-Analysis C. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. medRxiv. 2020:2020.09.18.20192815.

  117. Achilly NP, Wang W, Zoghbi HY. Presymptomatic training mitigates functional deficits in a mouse model of Rett syndrome. Nature. 2021;592:596–600.

    Article  CAS  Google Scholar 

  118. Mukai J, Cannavò E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, et al. Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron. 2019;104:471–87.e12.

    Article  CAS  Google Scholar 

  119. Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G. et al. Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell. 2017;169:945–55.e10.

    Article  CAS  Google Scholar 

  120. Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H. et al. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature. 2019;570:326–31.

    Article  CAS  Google Scholar 

  121. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162:375–90.

    Article  CAS  Google Scholar 

  122. Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022;602:268–73.

    Article  CAS  Google Scholar 

  123. Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons KGM, et al. Predictive accuracy of a polygenic risk score–enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA. 2020;323:636–45.

    Article  Google Scholar 

  124. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135:2091–101.

    Article  Google Scholar 

  125. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    Article  CAS  Google Scholar 

  126. Landi I, Kaji DA, Cotter L, Van Vleck T, Belbin G, Preuss M, et al. Prognostic value of polygenic risk scores for adults with psychosis. Nat Med. 2021;27:1576–81.

    Article  CAS  Google Scholar 

  127. Liebers DT, Pirooznia M, Ganna A, Goes FS. Discriminating bipolar depression from major depressive disorder with polygenic risk scores. Psychol Med. 2021;51:1451–8.

    Article  Google Scholar 

  128. Fiedorowicz JG, Endicott J, Leon AC, Solomon DA, Keller MB, Coryell WH. Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar disorder. Am J Psychiatry. 2011;168:40–8.

    Article  Google Scholar 

Download references

Funding

This work was in part supported by grants from the Japan Agency for Medical Research and Development (AMED) under Grant Number JP21km0405214 (to A.T.) and JSPS KAKENHI under Grant Numbers JP20H05777 (to A.T.), 21H02855 (to A.T.) and 20KK0225 (to Y.O). This study was also supported by the RIKEN Junior Research Associate Program (to T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Owada, Y. & Takata, A. Genetics of bipolar disorder: insights into its complex architecture and biology from common and rare variants. J Hum Genet 68, 183–191 (2023). https://doi.org/10.1038/s10038-022-01046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-022-01046-9

This article is cited by

Search

Quick links