Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical genetics of Charcot–Marie–Tooth disease

Abstract

Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot–Marie–Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saporta MA, Shy ME. Inherited peripheral neuropathies. Neurol Clin. 2013;31:597–619.

    Article  Google Scholar 

  2. Braathen GJ. Genetic epidemiology of Charcot-Marie-Tooth disease. Acta Neurol Scand. 2012;126(Suppl. 193):1–22.

    Article  Google Scholar 

  3. Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin Genet. 1974;6:98–118.

    Article  CAS  Google Scholar 

  4. Park HJ, Choi YC, Oh JW, Yi SW. Prevalence, mortality, and cause of death in Charcot-Marie-Tooth disease in Korea: a nationwide, population-based study. Neuroepidemiology. 2020;54:313–9.

    Article  Google Scholar 

  5. Mladenovic J, Milic Rasic V, Keckarevic Markovic M, Romac S, Todorovic S, Rakocevic Stojanovic V, et al. Epidemiology of Charcot-Marie-Tooth disease in the population of Belgrade, Serbia. Neuroepidemiology. 2011;36:177–82.

    Article  CAS  Google Scholar 

  6. Braathen GJ, Sand JC, Lobato A, Hoyer H, Russell MB. Genetic epidemiology of Charcot-Marie-Tooth in the general population. Eur J Neurol. 2011;18:39–48.

    Article  CAS  Google Scholar 

  7. Lousa M, Vazquez-Huarte-Mendicoa C, Gutierrez AJ, Saavedra P, Navarro B, Tugores A. Genetic epidemiology, demographic, and clinical characteristics of Charcot-Marie-tooth disease in the Island of Gran Canaria (Spain). J Peripheral Nerv Syst. 2019;24:131–8.

    Article  CAS  Google Scholar 

  8. Theadom A, Roxburgh R, MacAulay E, O’Grady G, Burns J, Parmar P, et al. Prevalence of Charcot-Marie-Tooth disease across the lifespan: a population-based epidemiological study. BMJ Open. 2019;9:e029240.

    Article  Google Scholar 

  9. Barreto LC, Oliveira FS, Nunes PS, de Franca Costa IM, Garcez CA, Goes GM, et al. Epidemiologic study of Charcot-Marie-Tooth disease: a systematic review. Neuroepidemiology. 2016;46:157–65.

    Article  Google Scholar 

  10. Kurihara S, Adachi Y, Wada K, Awaki E, Harada H, Nakashima K. An epidemiological genetic study of Charcot-Marie-Tooth disease in Western Japan. Neuroepidemiology. 2002;21:246–50.

    Article  Google Scholar 

  11. Murphy SM, Laura M, Fawcett K, Pandraud A, Liu YT, Davidson GL, et al. Charcot-Marie-Tooth disease: frequency of genetic subtypes and guidelines for genetic testing. J Neurol Neurosurg Psychiatry. 2012;83:706–10.

    Article  Google Scholar 

  12. Gess B, Schirmacher A, Boentert M, Young P. Charcot-Marie-Tooth disease: frequency of genetic subtypes in a German neuromuscular center population. Neuromuscul Disord. 2013;23:647–51.

    Article  Google Scholar 

  13. Sivera R, Sevilla T, Vilchez JJ, Martinez-Rubio D, Chumillas MJ, Vazquez JF, et al. Charcot-Marie-Tooth disease: genetic and clinical spectrum in a Spanish clinical series. Neurology. 2013;81:1617–25.

    Article  Google Scholar 

  14. Manganelli F, Tozza S, Pisciotta C, Bellone E, Iodice R, Nolano M, et al. Charcot-Marie-Tooth disease: frequency of genetic subtypes in a Southern Italy population. J Peripheral Nerv Syst. 2014;19:292–8.

    Article  CAS  Google Scholar 

  15. Ostern R, Fagerheim T, Hjellnes H, Nygard B, Mellgren SI, Nilssen O. Diagnostic laboratory testing for Charcot Marie Tooth disease (CMT): the spectrum of gene defects in Norwegian patients with CMT and its implications for future genetic test strategies. BMC Med Genet. 2013;14:94.

    Article  Google Scholar 

  16. Vaeth S, Christensen R, Duno M, Lildballe DL, Thorsen K, Vissing J, et al. Genetic analysis of Charcot-Marie-Tooth disease in Denmark and the implementation of a next generation sequencing platform. Eur J Med Genet. 2019;62:1–8.

    Article  Google Scholar 

  17. Nam SH, Hong YB, Hyun YS, Nam da E, Kwak G, Hwang SH, et al. Identification of genetic causes of inherited peripheral neuropathies by targeted gene panel sequencing. Mol Cells. 2016;39:382–8.

    Article  CAS  Google Scholar 

  18. Xie Y, Lin Z, Liu L, Li X, Huang S, Zhao H, et al. Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth disease from central south China. Eur J Neurol. 2021;28:3774–83.

    Article  Google Scholar 

  19. DiVincenzo C, Elzinga CD, Medeiros AC, Karbassi I, Jones JR, Evans MC, et al. The allelic spectrum of Charcot-Marie-Tooth disease in over 17,000 individuals with neuropathy. Mol Genet Genom Med. 2014;2:522–9.

    Article  CAS  Google Scholar 

  20. Abe A, Numakura C, Kijima K, Hayashi M, Hashimoto T, Hayasaka K. Molecular diagnosis and clinical onset of Charcot-Marie-Tooth disease in Japan. J Hum Genet. 2011;56:364–8.

    Article  CAS  Google Scholar 

  21. Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, et al. Genetic profile and onset features of 1005 patients with Charcot-Marie-Tooth disease in Japan. J Neurol Neurosurg Psychiatry. 2019;90:195–202.

    Article  Google Scholar 

  22. Nagarajan R, Svaren J, Le N, Araki T, Watson M, Milbrandt J. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron. 2001;30:355–68.

    Article  CAS  Google Scholar 

  23. Dutta S, Bhattacharyya M, Sengupta K. Changes in the nuclear envelope in laminopathies. Adv Exp Med Biol. 2018;1112:31–8.

    Article  CAS  Google Scholar 

  24. Roessler BJ, Bell G, Heidler S, Seino S, Becker M, Palella TD. Cloning of two distinct copies of human phosphoribosylpyrophosphate synthetase cDNA. Nucleic Acids Res. 1990;18:193.

    Article  CAS  Google Scholar 

  25. Takashima H, Boerkoel CF, John J, Saifi GM, Salih MA, Armstrong D, et al. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet. 2002;32:267–72.

    Article  CAS  Google Scholar 

  26. Li DQ, Nair SS, Ohshiro K, Kumar A, Nair VS, Pakala SB, et al. MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Cell Rep. 2012;2:1657–69.

    Article  CAS  Google Scholar 

  27. Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550–8.

    Article  CAS  Google Scholar 

  28. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.

    Article  Google Scholar 

  29. Sevilla T, Cuesta A, Chumillas MJ, Mayordomo F, Pedrola L, Palau F, et al. Clinical, electrophysiological and morphological findings of Charcot-Marie-Tooth neuropathy with vocal cord palsy and mutations in the GDAP1 gene. Brain. 2003;126:2023–33.

    Article  Google Scholar 

  30. Fadic R, Russell JA, Vedanarayanan VV, Lehar M, Kuncl RW, Johns DR. Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology. 1997;49:239–45.

    Article  CAS  Google Scholar 

  31. Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, et al. A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. Am J Hum Genet. 2014;95:294–300.

    Article  CAS  Google Scholar 

  32. Echaniz-Laguna A, Ghezzi D, Chassagne M, Mayencon M, Padet S, Melchionda L, et al. SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease. Neurology. 2013;81:1523–30.

    Article  CAS  Google Scholar 

  33. Hantke J, Chandler D, King R, Wanders RJ, Angelicheva D, Tournev I, et al. A mutation in an alternative untranslated exon of hexokinase 1 associated with hereditary motor and sensory neuropathy—Russe (HMSNR). Eur J Hum Genet. 2009;17:1606–14.

    Article  CAS  Google Scholar 

  34. Xu WY, Gu MM, Sun LH, Guo WT, Zhu HB, Ma JF, et al. A nonsense mutation in DHTKD1 causes Charcot-Marie-Tooth disease type 2 in a large Chinese pedigree. Am J Hum Genet. 2012;91:1088–94.

    Article  CAS  Google Scholar 

  35. Pitceathly RD, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, et al. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology. 2012;79:1145–54.

    Article  CAS  Google Scholar 

  36. Kennerson ML, Yiu EM, Chuang DT, Kidambi A, Tso SC, Ly C, et al. A new locus for X-linked dominant Charcot-Marie-Tooth disease (CMTX6) is caused by mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. Hum Mol Genet. 2013;22:1404–16.

    Article  CAS  Google Scholar 

  37. Rinaldi C, Grunseich C, Sevrioukova IF, Schindler A, Horkayne-Szakaly I, Lamperti C, et al. Cowchock syndrome is associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2012;91:1095–102.

    Article  CAS  Google Scholar 

  38. Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, et al. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Brain. 2018;141:1622–36.

    Article  Google Scholar 

  39. Rebelo AP, Saade D, Pereira CV, Farooq A, Huff TC, Abreu L, et al. SCO2 mutations cause early-onset axonal Charcot-Marie-Tooth disease associated with cellular copper deficiency. Brain. 2018;141:662–72.

    Article  Google Scholar 

  40. Brownlees J, Ackerley S, Grierson AJ, Jacobsen NJ, Shea K, Anderton BH, et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet. 2002;11:2837–44.

    Article  CAS  Google Scholar 

  41. Riviere JB, Ramalingam S, Lavastre V, Shekarabi M, Holbert S, Lafontaine J, et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. Am J Hum Genet. 2011;89:219–30.

    Article  CAS  Google Scholar 

  42. Nam DE, Yoo DH, Choi SS, Choi BO, Chung KW. Wide phenotypic spectrum in axonal Charcot-Marie-Tooth neuropathy type 2 patients with KIF5A mutations. Genes Genomics. 2018;40:77–84.

    Article  CAS  Google Scholar 

  43. Ylikallio E, Kim D, Isohanni P, Auranen M, Kim E, Lonnqvist T, et al. Dominant transmission of de novo KIF1A motor domain variant underlying pure spastic paraplegia. Eur J Hum Genet. 2015;23:1427–30.

    Article  CAS  Google Scholar 

  44. Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, et al. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet. 2002;71:1189–94.

    Article  CAS  Google Scholar 

  45. Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, et al. DCTN1 mutations in Perry syndrome. Nat Genet. 2009;41:163–5.

    Article  CAS  Google Scholar 

  46. Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, et al. Mutant dynactin in motor neuron disease. Nat Genet. 2003;33:455–6.

    Article  CAS  Google Scholar 

  47. Neveling K, Martinez-Carrera LA, Holker I, Heister A, Verrips A, Hosseini-Barkooie SM, et al. Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet. 2013;92:946–54.

    Article  CAS  Google Scholar 

  48. Oates EC, Rossor AM, Hafezparast M, Gonzalez M, Speziani F, MacArthur DG, et al. Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet. 2013;92:965–73.

    Article  CAS  Google Scholar 

  49. Unger A, Dekomien G, Guttsches A, Dreps T, Kley R, Tegenthoff M, et al. Expanding the phenotype of BICD2 mutations toward skeletal muscle involvement. Neurology. 2016;87:2235–43.

    Article  CAS  Google Scholar 

  50. Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: a gain or a loss? J Neurochem. 2021;157:351–69.

    Article  CAS  Google Scholar 

  51. Latour P, Thauvin-Robinet C, Baudelet-Mery C, Soichot P, Cusin V, Faivre L, et al. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease. Am J Hum Genet. 2010;86:77–82.

    Article  CAS  Google Scholar 

  52. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003;72:1293–9.

    Article  CAS  Google Scholar 

  53. Vester A, Velez-Ruiz G, McLaughlin HM, Program NCS, Lupski JR, Talbot K, et al. A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mutat. 2013;34:191–9.

    Article  CAS  Google Scholar 

  54. Gonzalez M, McLaughlin H, Houlden H, Guo M, Yo-Tsen L, Hadjivassilious M, et al. Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J Neurol Neurosurg Psychiatry. 2013;84:1247–9.

    Article  Google Scholar 

  55. Manole A, Efthymiou S, O’Connor E, Mendes MI, Jennings M, Maroofian R, et al. De novo and bi-allelic pathogenic variants in NARS1 cause neurodevelopmental delay due to toxic gain-of-function and partial loss-of-function effects. Am J Hum Genet. 2020;107:311–24.

    Article  CAS  Google Scholar 

  56. Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, et al. Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat Genet. 2006;38:197–202.

    Article  CAS  Google Scholar 

  57. Tsai PC, Soong BW, Mademan I, Huang YH, Liu CR, Hsiao CT, et al. A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy. Brain. 2017;140:1252–66.

    Article  Google Scholar 

  58. Molnar GM, Crozat A, Kraeft SK, Dou QP, Chen LB, Pardee AB. Association of the mammalian helicase MAH with the pre-mRNA splicing complex. Proc Natl Acad Sci USA. 1997;94:7831–6.

    Article  CAS  Google Scholar 

  59. Grohmann K, Schuelke M, Diers A, Hoffmann K, Lucke B, Adams C, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.

    Article  CAS  Google Scholar 

  60. Cottenie E, Kochanski A, Jordanova A, Bansagi B, Zimon M, Horga A, et al. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am J Hum Genet. 2014;95:590–601.

    Article  CAS  Google Scholar 

  61. Moreira MC, Klur S, Watanabe M, Nemeth AH, Le Ber I, Moniz JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:225–7.

    Article  CAS  Google Scholar 

  62. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004;74:1128–35.

    Article  CAS  Google Scholar 

  63. Fleury P, Hageman G. A dominantly inherited lower motor neuron disorder presenting at birth with associated arthrogryposis. J Neurol Neurosurg Psychiatry. 1985;48:1037–48.

    Article  CAS  Google Scholar 

  64. DeLong R, Siddique T. A large New England kindred with autosomal dominant neurogenic scapuloperoneal amyotrophy with unique features. Arch Neurol. 1992;49:905–8.

    Article  CAS  Google Scholar 

  65. Dyck PJ, Litchy WJ, Minnerath S, Bird TD, Chance PF, Schaid DJ, et al. Hereditary motor and sensory neuropathy with diaphragm and vocal cord paresis. Ann Neurol. 1994;35:608–15.

    Article  CAS  Google Scholar 

  66. Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T, Nozuma S, et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology. 2013;80:1641–9.

    Article  CAS  Google Scholar 

  67. Shekarabi M, Girard N, Riviere JB, Dion P, Houle M, Toulouse A, et al. Mutations in the nervous system-specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II. J Clin Invest. 2008;118:2496–505.

    CAS  Google Scholar 

  68. Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, et al. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet. 2010;86:343–52.

    Article  CAS  Google Scholar 

  69. Cortese A, Zhu Y, Rebelo AP, Negri S, Courel S, Abreu L, et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020;52:473–81.

    Article  CAS  Google Scholar 

  70. Bernard E, Pegat A, Vallet AE, Leblanc P, Lumbroso S, Mouzat K, et al. Juvenile amyotrophic lateral sclerosis associated with biallelic c.757delG mutation of sorbitol dehydrogenase gene. Amyotroph Lateral Scler Frontotemporal Degener. 2021:1–3. Online ahead of print.

  71. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet. 2019;51:1215–21.

    Article  CAS  Google Scholar 

  72. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet. 2019;51:1222–32.

    Article  CAS  Google Scholar 

  73. Wang H, Yu J, Yu M, Deng J, Zhang W, Lv H, et al. GGC repeat expansion in the NOTCH2NLC gene is associated with a phenotype of predominant motor-sensory and autonomic neuropathy. Front Genet. 2021;12:694790.

    Article  CAS  Google Scholar 

  74. Liao YC, Chang FP, Huang HW, Chen TB, Chou YT, Hsu SL, et al. GGC Repeat expansion of NOTCH2NLC in Taiwanese patients with inherited neuropathies. Neurology. 2021;98:e199−e206.

    Article  Google Scholar 

  75. Tagliapietra M, Cardellini D, Ferrarini M, Testi S, Ferrari S, Monaco S, et al. RFC1 AAGGG repeat expansion masquerading as chronic idiopathic axonal polyneuropathy. J Neurol. 2021;268:4280–90.

    Article  CAS  Google Scholar 

  76. Curro R, Salvalaggio A, Tozza S, Gemelli C, Dominik N, Galassi Deforie V, et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain. 2021;144:1542–50.

    Article  Google Scholar 

  77. Nelis E, Van Broeckhoven C, De Jonghe P, Lofgren A, Vandenberghe A, Latour P, et al. Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur J Hum Genet. 1996;4:25–33.

    Article  CAS  Google Scholar 

  78. Saporta AS, Sottile SL, Miller LJ, Feely SM, Siskind CE, Shy ME. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol. 2011;69:22–33.

    Article  Google Scholar 

  79. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell. 1991;66:219–32.

    Article  CAS  Google Scholar 

  80. Hattori N, Yamamoto M, Yoshihara T, Koike H, Nakagawa M, Yoshikawa H, et al. Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. Brain. 2003;126:134–51.

    Article  Google Scholar 

  81. Koike H, Hirayama M, Yamamoto M, Ito H, Hattori N, Umehara F, et al. Age associated axonal features in HNPP with 17p11.2 deletion in Japan. J Neurol Neurosurg Psychiatry. 2005;76:1109–14.

    Article  CAS  Google Scholar 

  82. Mostacciuolo ML, Rampoldi L, Righetti E, Vazza G, Schiavon F, Angelini C. Hereditary spastic paraplegia associated with peripheral neuropathy: a distinct clinical and genetic entity. Neuromuscul Disord. 2000;10:497–502.

    Article  CAS  Google Scholar 

  83. Zuchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V, Cherninkova S, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006;59:276–81.

    Article  CAS  Google Scholar 

  84. Chung KW, Cho SY, Hwang SJ, Kim KH, Yoo JH, Kwon O, et al. Early-onset stroke associated with a mutation in mitofusin 2. Neurology. 2008;70:2010–1.

    Article  CAS  Google Scholar 

  85. Polke JM, Laura M, Pareyson D, Taroni F, Milani M, Bergamin G, et al. Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations. Neurology. 2011;77:168–73.

    Article  CAS  Google Scholar 

  86. Calvo J, Funalot B, Ouvrier RA, Lazaro L, Toutain A, De Mas P, et al. Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations. Arch Neurol. 2009;66:1511–6.

    Article  Google Scholar 

  87. Casasnovas C, Banchs I, Cassereau J, Gueguen N, Chevrollier A, Martinez-Matos JA, et al. Phenotypic spectrum of MFN2 mutations in the Spanish population. J Med Genet. 2010;47:249–56.

    Article  CAS  Google Scholar 

  88. Choi BO, Nakhro K, Park HJ, Hyun YS, Lee JH, Kanwal S, et al. A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients. Clin Genet. 2015;87:594–8.

    Article  CAS  Google Scholar 

  89. Xie Y, Li X, Liu L, Hu Z, Huang S, Zhan Y, et al. MFN2-related genetic and clinical features in a cohort of Chinese CMT2 patients. J Peripheral Nerv Syst. 2016;21:38–44.

    Article  CAS  Google Scholar 

  90. Kijima K, Numakura C, Izumino H, Umetsu K, Nezu A, Shiiki T, et al. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet. 2005;116:23–7.

    Article  CAS  Google Scholar 

  91. Ando M, Hashiguchi A, Okamoto Y, Yoshimura A, Hiramatsu Y, Yuan J, et al. Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study. J Peripheral Nerv Syst. 2017;22:191–9.

    Article  CAS  Google Scholar 

  92. Bergoffen J, Trofatter J, Pericak-Vance MA, Haines JL, Chance PF, Fischbeck KH. Linkage localization of X-linked Charcot-Marie-Tooth disease. Am J Hum Genet. 1993;52:312–8.

    CAS  Google Scholar 

  93. Siskind C, Feely SM, Bernes S, Shy ME, Garbern JY. Persistent CNS dysfunction in a boy with CMT1X. J Neurol Sci. 2009;279:109–13.

    Article  Google Scholar 

  94. Murphy SM, Ovens R, Polke J, Siskind CE, Laura M, Bull K, et al. X inactivation in females with X-linked Charcot-Marie-Tooth disease. Neuromuscul Disord. 2012;22:617–21.

    Article  Google Scholar 

  95. Yuan JH, Sakiyama Y, Hashiguchi A, Ando M, Okamoto Y, Yoshimura A, et al. Genetic and phenotypic profile of 112 patients with X-linked Charcot-Marie-Tooth disease type 1. Eur J Neurol. 2018;25:1454–61.

    Article  Google Scholar 

  96. Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-specific expression of connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. J Neurosci. 2001;21:1983–2000.

    Article  CAS  Google Scholar 

  97. Corrado L, Magri S, Bagarotti A, Carecchio M, Piscosquito G, Pareyson D, et al. A novel synonymous mutation in the MPZ gene causing an aberrant splicing pattern and Charcot-Marie-Tooth disease type 1b. Neuromuscul Disord. 2016;26:516–20.

    Article  CAS  Google Scholar 

  98. Nelis E, Haites N, Van Broeckhoven C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mutat. 1999;13:11–28.

    Article  CAS  Google Scholar 

  99. Mandich P, Fossa P, Capponi S, Geroldi A, Acquaviva M, Gulli R, et al. Clinical features and molecular modelling of novel MPZ mutations in demyelinating and axonal neuropathies. Eur J Hum Genet. 2009;17:1129–34.

    Article  CAS  Google Scholar 

  100. Shy ME, Jani A, Krajewski K, Grandis M, Lewis RA, Li J, et al. Phenotypic clustering in MPZ mutations. Brain. 2004;127:371–84.

    Article  Google Scholar 

  101. Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, et al. Genetic spectrum of Charcot-Marie-Tooth disease associated with myelin protein zero gene variants in Japan. Clin Genet. 2021;99:359–75.

    Article  CAS  Google Scholar 

  102. Misu K, Yoshihara T, Shikama Y, Awaki E, Yamamoto M, Hattori N, et al. An axonal form of Charcot-Marie-Tooth disease showing distinctive features in association with mutations in the peripheral myelin protein zero gene (Thr124Met or Asp75Val). J Neurol Neurosurg Psychiatry. 2000;69:806–11.

    Article  CAS  Google Scholar 

  103. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170:1067–78.

    Article  CAS  Google Scholar 

  104. Zimon M, Baets J, Fabrizi GM, Jaakkola E, Kabzinska D, Pilch J, et al. Dominant GDAP1 mutations cause predominantly mild CMT phenotypes. Neurology. 2011;77:540–8.

    Article  CAS  Google Scholar 

  105. Dierick I, Irobi J, De Jonghe P, Timmerman V. Small heat shock proteins in inherited peripheral neuropathies. Ann Med. 2005;37:413–22.

    Article  CAS  Google Scholar 

  106. Arrigo AP. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol. 2007;594:14–26.

    Article  Google Scholar 

  107. Capponi S, Geuens T, Geroldi A, Origone P, Verdiani S, Cichero E, et al. Molecular chaperones in the pathogenesis of amyotrophic lateral sclerosis: the role of HSPB1. Hum Mutat. 2016;37:1202–8.

    Article  CAS  Google Scholar 

  108. Capponi S, Geroldi A, Fossa P, Grandis M, Ciotti P, Gulli R, et al. HSPB1 and HSPB8 in inherited neuropathies: study of an Italian cohort of dHMN and CMT2 patients. J Peripheral Nerv Syst. 2011;16:287–94.

    Article  CAS  Google Scholar 

  109. Lin KP, Soong BW, Yang CC, Huang LW, Chang MH, Lee IH, et al. The mutational spectrum in a cohort of Charcot-Marie-Tooth disease type 2 among the Han Chinese in Taiwan. PLoS ONE. 2011;6:e29393.

    Article  CAS  Google Scholar 

  110. Lorefice L, Murru MR, Coghe G, Fenu G, Corongiu D, Frau J, et al. Charcot-Marie-Tooth disease: genetic subtypes in the Sardinian population. Neurol Sci. 2017;38:1019–25.

    Article  Google Scholar 

  111. Albulym OM, Kennerson ML, Harms MB, Drew AP, Siddell AH, Auer-Grumbach M, et al. MORC2 mutations cause axonal Charcot-Marie-Tooth disease with pyramidal signs. Ann Neurol. 2016;79:419–27.

    Article  CAS  Google Scholar 

  112. Schottmann G, Wagner C, Seifert F, Stenzel W, Schuelke M. MORC2 mutation causes severe spinal muscular atrophy-phenotype, cerebellar atrophy, and diaphragmatic paralysis. Brain. 2016;139:e70.

    Article  Google Scholar 

  113. Zanni G, Nardella M, Barresi S, Bellacchio E, Niceta M, Ciolfi A, et al. De novo p.T362R mutation in MORC2 causes early onset cerebellar ataxia, axonal polyneuropathy and nocturnal hypoventilation. Brain. 2017;140:e34.

    Article  Google Scholar 

  114. Yamamoto D, Oda R, Hisahara S, Ishikawa A, Ogi T, Shimohama S, et al. [A case of Charcot-Marie-Tooth disease type 2Z caused by MORC2 S87L mutation mimicking spinal muscular atrophy]. Rinsho shinkeigaku = Clin Neurol. 2021;61:262–4.

    Article  Google Scholar 

  115. Ando M, Okamoto Y, Yoshimura A, Yuan JH, Hiramatsu Y, Higuchi Y, et al. Clinical and mutational spectrum of Charcot-Marie-Tooth disease type 2Z caused by MORC2 variants in Japan. Eur J Neurol. 2017;24:1274–82.

    Article  CAS  Google Scholar 

  116. Magre J, Delepine M, Khallouf E, Gedde-Dahl T Jr., Van Maldergem L, Sobel E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28:365–70.

    Article  CAS  Google Scholar 

  117. Cho HJ, Sung DH, Ki CS. Identification of de novo BSCL2 Ser90Leu mutation in a Korean family with Silver syndrome and distal hereditary motor neuropathy. Muscle Nerve. 2007;36:384–6.

    Article  CAS  Google Scholar 

  118. Irobi J, Van den Bergh P, Merlini L, Verellen C, Van Maldergem L, Dierick I, et al. The phenotype of motor neuropathies associated with BSCL2 mutations is broader than Silver syndrome and distal HMN type V. Brain. 2004;127:2124–30.

    Article  Google Scholar 

  119. Rohkamm B, Reilly MM, Lochmuller H, Schlotter-Weigel B, Barisic N, Schols L, et al. Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome. J Neurol Sci. 2007;263:100–6.

    Article  CAS  Google Scholar 

  120. Chen W, Chang B, Saha P, Hartig SM, Li L, Reddy VT, et al. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation. Mol Cell Biol. 2012;32:1099–111.

    Article  CAS  Google Scholar 

  121. Ito D, Suzuki N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain. 2009;132:8–15.

    Article  Google Scholar 

  122. Ishihara S, Okamoto Y, Tanabe H, Yoshimura A, Higuchi Y, Yuan JH, et al. Clinical features of inherited neuropathy with BSCL2 mutations in Japan. J Peripheral Nerv Syst. 2020;25:125–31.

    Article  CAS  Google Scholar 

  123. Arnaud E, Zenker J, de Preux Charles AS, Stendel C, Roos A, Medard JJ, et al. SH3TC2/KIAA1985 protein is required for proper myelination and the integrity of the node of Ranvier in the peripheral nervous system. Proc Natl Acad Sci USA. 2009;106:17528–33.

    Article  CAS  Google Scholar 

  124. Senderek J, Bergmann C, Stendel C, Kirfel J, Verpoorten N, De Jonghe P, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet. 2003;73:1106–19.

    Article  CAS  Google Scholar 

  125. Lassuthova P, Mazanec R, Vondracek P, Siskova D, Haberlova J, Sabova J, et al. High frequency of SH3TC2 mutations in Czech HMSN I patients. Clin Genet. 2011;80:334–45.

    Article  CAS  Google Scholar 

  126. Yger M, Stojkovic T, Tardieu S, Maisonobe T, Brice A, Echaniz-Laguna A, et al. Characteristics of clinical and electrophysiological pattern of Charcot-Marie-Tooth 4C. J Peripheral Nerv Syst. 2012;17:112–22.

    Article  CAS  Google Scholar 

  127. Rudnik-Schoneborn S, Tolle D, Senderek J, Eggermann K, Elbracht M, Kornak U, et al. Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin Genet. 2016;89:34–43.

    Article  CAS  Google Scholar 

  128. Duan X, Ma Y, Fan D, Liu X. Characteristics of clinical and electrophysiological pattern in a large cohort of Chinese patients with Charcot-Marie-Tooth 4C. Front Neurol. 2021;12:598168.

    Article  Google Scholar 

  129. Hayashi M, Abe A, Murakami T, Yamao S, Arai H, Hattori H, et al. Molecular analysis of the genes causing recessive demyelinating Charcot-Marie-Tooth disease in Japan. J Hum Genet. 2013;58:273–8.

    Article  CAS  Google Scholar 

  130. Yuan JH, Hashiguchi A, Okamoto Y, Yoshimura A, Ando M, Shiomi K, et al. Clinical and mutational spectrum of Japanese patients with recessive variants in SH3TC2. J Hum Genet. 2018;63:281–7.

    Article  CAS  Google Scholar 

  131. Guenther UP, Handoko L, Laggerbauer B, Jablonka S, Chari A, Alzheimer M, et al. IGHMBP2 is a ribosome-associated helicase inactive in the neuromuscular disorder distal SMA type 1 (DSMA1). Hum Mol Genet. 2009;18:1288–300.

    Article  CAS  Google Scholar 

  132. de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery. Hum Mol Genet. 2009;18:2115–26.

    Article  Google Scholar 

  133. Schottmann G, Jungbluth H, Schara U, Knierim E, Morales Gonzalez S, Gill E, et al. Recessive truncating IGHMBP2 mutations presenting as axonal sensorimotor neuropathy. Neurology. 2015;84:523–31.

    Article  CAS  Google Scholar 

  134. Yuan JH, Hashiguchi A, Yoshimura A, Yaguchi H, Tsuzaki K, Ikeda A, et al. Clinical diversity caused by novel IGHMBP2 variants. J Hum Genet. 2017;62:599–604.

    Article  CAS  Google Scholar 

  135. Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, et al. Elderly patients with suspected Charcot-Marie-Tooth disease should be tested for the TTR gene for effective treatments. J Hum Genet. 2022. https://doi.org/10.1038/s10038-021-01005-w. Online ahead of print.

  136. Agrawal PB, Joshi M, Marinakis NS, Schmitz-Abe K, Ciarlini PD, Sargent JC, et al. Expanding the phenotype associated with the NEFL mutation: neuromuscular disease in a family with overlapping myopathic and neurogenic findings. JAMA Neurol. 2014;71:1413–20.

    Article  Google Scholar 

  137. Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet. 2000;67:37–46.

    Article  CAS  Google Scholar 

  138. Jordanova A, De Jonghe P, Boerkoel CF, Takashima H, De Vriendt E, Ceuterick C, et al. Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain. 2003;126:590–7.

    Article  CAS  Google Scholar 

  139. Zuchner S, Vorgerd M, Sindern E, Schroder JM. The novel neurofilament light (NEFL) mutation Glu397Lys is associated with a clinically and morphologically heterogeneous type of Charcot-Marie-Tooth neuropathy. Neuromuscul Disord. 2004;14:147–57.

    Article  Google Scholar 

  140. Hashiguchi A, Higuchi Y, Nomura M, Nakamura T, Arata H, Yuan J, et al. Neurofilament light mutation causes hereditary motor and sensory neuropathy with pyramidal signs. J Peripheral Nerv Syst. 2014;19:311–6.

    Article  CAS  Google Scholar 

  141. Takashima H, Nakagawa M, Nakahara K, Suehara M, Matsuzaki T, Higuchi I, et al. A new type of hereditary motor and sensory neuropathy linked to chromosome 3. Ann Neurol. 1997;41:771–80.

    Article  CAS  Google Scholar 

  142. Ishiura H, Sako W, Yoshida M, Kawarai T, Tanabe O, Goto J, et al. The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement. Am J Hum Genet. 2012;91:320–9.

    Article  CAS  Google Scholar 

  143. Beetz C, Johnson A, Schuh AL, Thakur S, Varga RE, Fothergill T, et al. Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci USA. 2013;110:5091–6.

    Article  CAS  Google Scholar 

  144. Tsai PC, Huang YH, Guo YC, Wu HT, Lin KP, Tsai YS, et al. A novel TFG mutation causes Charcot-Marie-Tooth disease type 2 and impairs TFG function. Neurology. 2014;83:903–12.

    Article  CAS  Google Scholar 

  145. Fujisaki N, Suwazono S, Suehara M, Nakachi R, Kido M, Fujiwara Y, et al. The natural history of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) in 97 Japanese patients. Intractable Rare Dis Res. 2018;7:7–12.

    Article  Google Scholar 

  146. Murakami N, Imamura K, Izumi Y, Egawa N, Tsukita K, Enami T, et al. Proteasome impairment in neural cells derived from HMSN-P patient iPSCs. Mol Brain. 2017;10:7.

    Article  Google Scholar 

  147. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.

    Article  CAS  Google Scholar 

  148. Ku CS, Cooper DN, Polychronakos C, Naidoo N, Wu M, Soong R. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012;71:5–14.

    Article  CAS  Google Scholar 

  149. Gilissen C, Hoischen A, Brunner HG, Veltman JA. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012;20:490–7.

    Article  CAS  Google Scholar 

  150. Zhang X. Exome sequencing greatly expedites the progressive research of Mendelian diseases. Front Med. 2014;8:42–57.

    Article  CAS  Google Scholar 

  151. Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, et al. Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol. 2016;79:659–72.

    Article  CAS  Google Scholar 

  152. Fujisawa M, Sano Y, Omoto M, Ogasawara JI, Koga M, Takashima H, et al. Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation superimposed by chronic inflammatory demyelinating polyneuropathy. Rinsho Shinkeigaku = Clin Neurol. 2017;57:515–20.

    Article  Google Scholar 

  153. Hong D, Fang P, Yao S, Chen J, Zhang X, Chen S, et al. Variants in MME are associated with autosomal-recessive distal hereditary motor neuropathy. Ann Clin Transl Neurol. 2019;6:1728–38.

    Article  CAS  Google Scholar 

  154. Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2:e94.

    Article  Google Scholar 

  155. Auer-Grumbach M, Toegel S, Schabhuttl M, Weinmann D, Chiari C, Bennett DL, et al. Rare variants in MME, encoding metalloprotease neprilysin, are linked to late-onset autosomal-dominant axonal polyneuropathies. Am J Hum Genet. 2016;99:607–23.

    Article  CAS  Google Scholar 

  156. Senderek J, Lassuthova P, Kabzinska D, Abreu L, Baets J, Beetz C, et al. The genetic landscape of axonal neuropathies in the middle-aged and elderly: focus on MME. Neurology. 2020;95:e3163–79.

    Article  CAS  Google Scholar 

  157. Tsamis KI, Xiromerisiou G, Nikas IP, Giannakis A, Konitsiotis S, Sarmas I. A novel mutation of the membrane metallo-endopeptidase gene related to late-onset hereditary polyneuropathy: case report and review of the literature. Lab Med. 2021;53:210–4.

    Article  Google Scholar 

  158. Lupo V, Frasquet M, Sanchez-Monteagudo A, Pelayo-Negro AL, Garcia-Sobrino T, Sedano MJ, et al. Characterising the phenotype and mode of inheritance of patients with inherited peripheral neuropathies carrying MME mutations. J Med Genet. 2018;55:814–23.

    Article  CAS  Google Scholar 

  159. Kioussi C, Crine P, Matsas R. Endopeptidase-24.11 is suppressed in myelin-forming but not in non-myelin-forming Schwann cells during development of the rat sciatic nerve. Neuroscience. 1992;50:69–83.

    Article  CAS  Google Scholar 

  160. Kioussi C, Mamalaki A, Jessen K, Mirsky R, Hersh LB, Matsas R. Expression of endopeptidase-24.11 (common acute lymphoblastic leukaemia antigen CD10) in the sciatic nerve of the adult rat after lesion and during regeneration. Eur J Neurosci. 1995;7:951–61.

    Article  CAS  Google Scholar 

  161. Ohkushi G, Suzuki N, Kobayashi S, Chikuma T. Axonal transport of neprilysin in rat sciatic nerves. J Mol Neurosci. 2014;53:96–102.

    Article  CAS  Google Scholar 

  162. Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, et al. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep. 2013;3:1472.

    Article  Google Scholar 

  163. Li Y, Wang Y, Wang J, Chong KY, Xu J, Liu Z, et al. Expression of neprilysin in skeletal muscle by ultrasound-mediated gene transfer (sonoporation) reduces amyloid burden for AD. Mol Ther Methods Clin Dev. 2020;17:300–8.

    Article  CAS  Google Scholar 

  164. Martinez Lyons A, Ardissone A, Reyes A, Robinson AJ, Moroni I, Ghezzi D, et al. COA7 (C1orf163/RESA1) mutations associated with mitochondrial leukoencephalopathy and cytochrome c oxidase deficiency. J Med Genet. 2016;53:846–9.

  165. Ban R, Liu Z, Shimura M, Tong X, Wang J, Yang L, et al. Biallelic COA7-variants leading to developmental regression with progressive spasticity and brain atrophy in a Chinese patient. Front Genet. 2021;12:685035.

    Article  CAS  Google Scholar 

  166. Kozjak-Pavlovic V, Prell F, Thiede B, Gotz M, Wosiek D, Ott C, et al. C1orf163/RESA1 is a novel mitochondrial intermembrane space protein connected to respiratory chain assembly. J Mol Biol. 2014;426:908–20.

    Article  CAS  Google Scholar 

  167. Kremer LS, Prokisch H. Identification of disease-causing mutations by functional complementation of patient-derived fibroblast cell lines. Methods Mol Biol. 2017;1567:391–406.

    Article  CAS  Google Scholar 

  168. Mohanraj K, Wasilewski M, Beninca C, Cysewski D, Poznanski J, Sakowska P, et al. Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med. 2019;11:e9561.

  169. Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, et al. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res. 2021;227:100–11.

    Article  CAS  Google Scholar 

  170. McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from common pathogenic mechanisms to emerging treatment opportunities. Neurotherapeutics. 2021;18:2269–85.

    Article  Google Scholar 

  171. Miniou P, Fontes M. Therapeutic development in Charcot Marie Tooth type 1 disease. Int J Mol Sci. 2021;22:6755.

    Article  CAS  Google Scholar 

  172. Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, et al. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain. 2016;139:73–85.

    Article  Google Scholar 

  173. Hong YB, Kang J, Kim JH, Lee J, Kwak G, Hyun YS, et al. DGAT2 mutation in a family with autosomal-dominant early-onset axonal Charcot-Marie-Tooth disease. Hum Mutat. 2016;37:473–80.

    Article  CAS  Google Scholar 

  174. Ylikallio E, Woldegebriel R, Tumiati M, Isohanni P, Ryan MM, Stark Z, et al. MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability. Brain. 2017;140:2093–103.

    Article  Google Scholar 

  175. Lassuthova P, Rebelo AP, Ravenscroft G, Lamont PJ, Davis MR, Manganelli F, et al. Mutations in ATP1A1 cause dominant Charcot-Marie-Tooth type 2. Am J Hum Genet. 2018;102:505–14.

    Article  CAS  Google Scholar 

  176. Danhauser K, Alhaddad B, Makowski C, Piekutowska-Abramczuk D, Syrbe S, Gomez-Ospina N, et al. Bi-allelic ADPRHL2 mutations cause neurodegeneration with developmental delay, ataxia, and axonal neuropathy. Am J Hum Genet. 2018;103:817–25.

    Article  CAS  Google Scholar 

  177. Beijer D, Deconinck T, De Bleecker JL, Dotti MT, Malandrini A, Urtizberea JA, et al. Nonsense mutations in alpha-II spectrin in three families with juvenile onset hereditary motor neuropathy. Brain. 2019;142:2605–16.

    Article  Google Scholar 

  178. Chelban V, Wilson MP, Warman Chardon J, Vandrovcova J, Zanetti MN, Zamba-Papanicolaou E, et al. PDXK mutations cause polyneuropathy responsive to pyridoxal 5’-phosphate supplementation. Ann Neurol. 2019;86:225–40.

    Article  CAS  Google Scholar 

  179. Sun SC, Ma D, Li MY, Zhang RX, Huang C, Huang HJ, et al. Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain. 2019;142:2215–29.

    Article  Google Scholar 

  180. Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649–58.

    Article  CAS  Google Scholar 

  181. Sullivan JM, Motley WW, Johnson JO, Aisenberg WH, Marshall KL, Barwick KE, et al. Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy. J Clin Invest. 2020;130:1506–12.

    Article  CAS  Google Scholar 

  182. Fay A, Garcia Y, Margeta M, Maharjan S, Jurgensen C, Briceno J, et al. A mitochondrial tRNA mutation causes axonal CMT in a large Venezuelan family. Ann Neurol. 2020;88:830–42.

    Article  CAS  Google Scholar 

  183. Chung HL, Wangler MF, Marcogliese PC, Jo J, Ravenscroft TA, Zuo Z, et al. Loss- or gain-of-function mutations in ACOX1 cause axonal loss via different mechanisms. Neuron. 2020;106:589–606 e6.

    Article  CAS  Google Scholar 

  184. Ronkko J, Molchanova S, Revah-Politi A, Pereira EM, Auranen M, Toppila J, et al. Dominant mutations in ITPR3 cause Charcot-Marie-Tooth disease. Ann Clin Transl Neurol. 2020;7:1962–72.

    Article  Google Scholar 

  185. Mendoza-Ferreira N, Karakaya M, Cengiz N, Beijer D, Brigatti KW, Gonzaga-Jauregui C, et al. De novo and inherited variants in GBF1 are associated with axonal neuropathy caused by golgi fragmentation. Am J Hum Genet. 2020;107:763–77.

    Article  CAS  Google Scholar 

  186. Lin CH, Tsai PI, Lin HY, Hattori N, Funayama M, Jeon B, et al. Mitochondrial UQCRC1 mutations cause autosomal dominant parkinsonism with polyneuropathy. Brain. 2020;143:3352–73.

    Article  Google Scholar 

  187. Martin PB, Kigoshi-Tansho Y, Sher RB, Ravenscroft G, Stauffer JE, Kumar R, et al. NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat Commun. 2020;11:4625.

    Article  CAS  Google Scholar 

  188. Deschauer M, Hengel H, Rupprich K, Kreiss M, Schlotter-Weigel B, Grimmel M, et al. Bi-allelic truncating mutations in VWA1 cause neuromyopathy. Brain. 2021;144:574–83.

    Article  Google Scholar 

  189. Kroll-Hermi A, Ebstein F, Stoetzel C, Geoffroy V, Schaefer E, Scheidecker S, et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. EMBO Mol Med. 2020;12:e11861.

    Article  Google Scholar 

  190. Longo F, Benedetti S, Zambon AA, Sora MGN, Di Resta C, De Ritis D, et al. Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation. Hum Mol Genet. 2020;29:177–88.

    Article  CAS  Google Scholar 

  191. Dong HL, Ma Y, Yu H, Wei Q, Li JQ, Liu GL, et al. Bi-allelic loss of function variants in COX20 gene cause autosomal recessive sensory neuronopathy. Brain. 2021;144:2457–70.

    Article  Google Scholar 

  192. Bonora E, Chakrabarty S, Kellaris G, Tsutsumi M, Bianco F, Bergamini C, et al. Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2021;144:1451–66.

    Article  Google Scholar 

  193. Debs S, Ferreira CR, Groden C, Kim HJ, King KA, King MC, et al. Adult diagnosis of congenital serine biosynthesis defect: a treatable cause of progressive neuropathy. Am J Med Genet A. 2021;185:2102–7.

    Article  CAS  Google Scholar 

  194. Rebelo AP, Cortese A, Abraham A, Eshed-Eisenbach Y, Shner G, Vainshtein A, et al. A CADM3 variant causes Charcot-Marie-Tooth disease with marked upper limb involvement. Brain. 2021;144:1197–213.

    Article  Google Scholar 

Download references

Acknowledgements

Akihiro Hashiguchi, Masahiro Ando, Jun-Hui Yuan, Hajime Tanabe, Yusuke Sakiyama, Yu Hiramatsu, Tomonori Nakamura, Takaki Taniguchi, Yuji Okamoto, Eiji Matsuura, and Akiko Yoshimura at Kagoshima University were involved in the study design, data analysis, and data interpretation. They critically revised the report, commented on drafts of the manuscript, and approved the final report. The authors appreciate Tomoko Ohnishi and Akiko Yoshimura at Kagoshima University, for their great technical assistance. The authors are supported by Enago (www.enago.jp) for reviewing the English in this report. We appreciate the Division of Gene Research, Research Support Centre, Kagoshima University, for the use of their facilities. This work was supported by Grants-in-Aid from the Research Committee of Ataxia, Health Labour Sciences Research Grant, the Ministry of Health, Labour and Welfare, Japan (20317603, 201610002B). This research was also supported by the Research program for conquering intractable disease from Japan agency for Medical Research and development (AMED) (201442014A, 201442071A, 17929553) and JSPS KAKENHI Grant Numbers JP18H02742, JP20K16604, JP21K15702, JP21H02842.

Author information

Authors and Affiliations

Authors

Contributions

YH and HT were responsible for conception, design, and acquisition and analysis of data for this study. YH was responsible for writing the manuscript.

Corresponding author

Correspondence to Hiroshi Takashima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, Y., Takashima, H. Clinical genetics of Charcot–Marie–Tooth disease. J Hum Genet 68, 199–214 (2023). https://doi.org/10.1038/s10038-022-01031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-022-01031-2

This article is cited by

Search

Quick links