Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics of autosomal mosaic chromosomal alteration (mCA)

Subjects

Abstract

Mosaic chromosomal alterations (mCAs) are frequently observed in cancer cells and are regarded as one of the common features of cancers. Strikingly, accumulating studies demonstrated that mCAs are also prevalent in elderly individuals without cancer, implying mCA could be a feature of aging and not necessarily a cancerous state. However, the genetic basis of mCA has been mostly unknown. Recent studies of autosomal mCA based on biobank-scale datasets, including UK Biobank and Biobank Japan, provided a glimpse into the underlying genetic mechanism. In this concise review, we briefly introduced mCA, its link with cancer and aging, and the emerging genetic mechanisms of this phenomenon. We highlighted the following aspects: (1) the interplay between somatic and inherited germline mutations in generating mosaicism; (2) monogenic and polygenic architectures of mCA; and (3) population-specific profiles of mCA. We provided a future perspective emphasizing the need to understand the connection between mCA and other characteristics of aging, in particular, the epigenetic and immunologic features.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustration of different types of mCA.
Fig. 2: Frequency of detectable mCA in Biobank Japan (BBJ) dataset, stratified by age and sex.
Fig. 3: Frequencies of mCAs detected in autosomes.
Fig. 4: The monogenic and polygenic models underlying positive clone selection.

References

  1. 1.

    Campbell CD, Eichler EE. Properties and rates of germline mutations in humans. Trends Genet. 2013;29:575–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Nakatochi M, Kushima I, Ozaki N. Implications of germline copy-number variations in psychiatric disorders: review of large-scale genetic studies. J Hum Genet. 2021;66:25–37.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Liu X, Takata S, Ashikawa K, Aoi T, Kosugi S, Terao C, et al. Prevalence and spectrum of pathogenic germline variants in Japanese patients with early-onset colorectal, breast, and prostate cancer. JCO Precis Oncol. 2020;4:183–91. https://doi.org/10.1200/PO.19.00224.

  4. 4.

    Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease—clones picking up speed. Nat Rev Genet. 2017;18:128–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006;24:541–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018;21:1504–14.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  7. 7.

    Van Horebeek L, Dubois B, Goris A. Somatic variants: new kids on the block in human immunogenetics. Trends Genet. 2019;35:935–47.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Serra EG, Schwerd T, Moutsianas L, Cavounidis A, Fachal L, Pandey S. et al. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nat Commun. 2020;11:995

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118:4798–807.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121:1–84. Suppl 1

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Koretzky GA. The legacy of the Philadelphia chromosome. J Clin Invest. 2007;117:2030–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34:369–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Kou F, Wu L, Ren X, Yang L. Chromosome abnormalities: new insights into their clinical significance in cancer. Mol Ther Oncolytics. 2020;17:562–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93.

    Article  CAS  Google Scholar 

  16. 16.

    Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578:122–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44:651–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Loh P-R, Genovese G, Handsaker RE, Finucane HK, Reshef YA, Palamara PF, et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature. 2018;559:350–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, et al. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun. 2016;7:11843.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Terao C, Momozawa Y, Ishigaki K, Kawakami E, Akiyama M, Loh PR, et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nat Commun. 2019;10:4719.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Thompson DJ, Genovese G, Halvardson J, Ulirsch JC, Wright DJ, Terao C. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature. 2019;575:652–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Guo X, Dai X, Zhou T, Wang H, Ni J, Xue J, et al. Mosaic loss of human Y chromosome: what, how and why. Hum Genet. 2020;139:421–46.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Terao C, Suzuki A, Momozawa Y, Akiyama M, Ishigaki K, Yamamoto K, et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature. 2020;584:130–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Loh P-R, Genovese G, McCarroll SA. Monogenic and polygenic inheritance become instruments for clonal selection. Nature. 2020;584:136–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC, et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res. 2014;24:733–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    van den Akker EB, Makrodimitris S, Hulsman M, Brugman MH, Nikolic T, Bradley T, et al. Dynamic clonal hematopoiesis and functional T-cell immunity in a supercentenarian. Leukemia. 2021;35:2125–9.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018;131:479–87.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. 29.

    Al Zouabi L, Bardin AJ. Stem cell DNA damage and genome mutation in the context of aging and cancer initiation. Cold Spring Harb Perspect Biol. 2021;13:12.

  30. 30.

    Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Takahashi K, Wang F, Kantarjian H, Song X, Patel K, Neelapu S, et al. Copy number alterations detected as clonal hematopoiesis of indeterminate potential. Blood Adv. 2017;1:1031–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science. 2019;366:eaan4673.

  33. 33.

    Busque L, Buscarlet M, Mollica L, Levine RL. Concise review: age-related clonal hematopoiesis: stem cells tempting the devil. Stem Cells. 2018;36:1287–94.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet. 2018;14:e1007108.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Machiela MJ. Mosaicism, aging and cancer. Curr Opin Oncol. 2019;31:108–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S, Saleheen D, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation. 2020;141:124–31.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR, Mukamel RE, et al. Large mosaic copy number variations confer autism risk. Nat Neurosci. 2021;24:197–203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Zekavat SM, Lin SH, Bick AG, Liu A, Paruchuri K, Wang C, et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat Med. 2021;27:1012–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Arendt T, Brückner MK, Mosch B, Lösche A. Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol. 2010;177:15–20.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, et al. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain. 2018;141:2419–31.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol. 2020;21:384–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Schuyler SC, Wu Y-F, Kuan VJ-W. The Mad1-Mad2 balancing act-a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci. 2012;125:4197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    ’Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci USA. 2012;109:18018–23.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Jakubek YA, Chang K, Sivakumar S, Yu Y, Giordano MR, Fowler J, et al. Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat Biotechnol. 2020;38:90–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Yokoyama A, Kakiuchi N, Yoshizato T, Nannya Y, Suzuki H, Takeuchi Y, et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 2019;565:312–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, et al. Mosaic copy number variation in human neurons. Science. 2013;342:632–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, Smith A, et al. Neurons with complex karyotypes are rare in aged human neocortex. Cell Rep. 2019;26:825–35. e7

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Van Egeren D, Escabi J, Nguyen M, Liu S, Reilly CR, Patel S, et al. Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell. 2021;28:514–23. e9

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Akiyama M. Multi-omics study for interpretation of genome-wide association study. J Hum Genet. 2021;66:3–10.

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14:491–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Santaguida S, Richardson A, Iyer DR, M'Saad O, Zasadil L, Knouse KA, et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Developmental Cell. 2017;41:638–51. e5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H, et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci USA. 2019;116:24242–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Rando TA, Wyss-Coray T. Asynchronous, contagious and digital aging. Nat Aging. 2021;1:29–35.

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Yuki Ishikawa (RIKEN, IMS) for his critical reading and editing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chikashi Terao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Kamatani, Y. & Terao, C. Genetics of autosomal mosaic chromosomal alteration (mCA). J Hum Genet 66, 879–885 (2021). https://doi.org/10.1038/s10038-021-00964-4

Download citation

Search

Quick links