Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening of PCSK9 and LDLR genetic variants in Familial Hypercholesterolemia (FH) patients in India

Abstract

Familial Hypercholesterolemia (FH) is an autosomal, dominant, inherited disorder characterized by severely elevated LDL-cholesterol (LDL-C) levels with high risk for Coronary Artery Disease (CAD). There are limited genetic studies especially on genes other than Low Density Lipoprotein receptor (LDLR) conducted in Indian population. Thus, our aim was to screen the entire Proprotein Convertase Subtilisin/Kexin type 9 gene (PCSK9) gene & hotspot exons 3, 4 and 9 of LDLR gene in FH cases and controls. 50 FH cases were categorized into definite, probable and possible cases according to Dutch Lipid Network Criteria (DLNC) who were gender matched with 50 healthy controls. All 12 exons of PCSK9, and hotspot exons 3, 4 & 9 of LDLR gene were screened through High Resolution Melt (HRM) curve analysis. Enzyme linked immunosorbent assay was performed to measure circulating PCSK9 levels. Total cholesterol and LDL-C were significantly high in all three groups of cases. Total 8 nonpathogenic variants in exon 1, 5, 7 and 9 of the PCSK9 gene were detected. In LDLR gene, 3 known pathogenic and 1 benign variant were found in exon 3 & 4. In FH cases, PCSK9 levels were significantly high compared to controls (P = 0.0001), and were directly correlated to LDL-C (P = 0.0001) and Total Cholesterol (P = 0.0001). Our study is first to screen the entire PCSK9 gene in western part of India. Since no pathogenic variants were identified, it is possible that PCSK9 variants are clinically less relevant. However, 3 known pathogenic variants were found in the LDLR gene. These findings support our understanding of the genetic spectrum of FH in India.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hobbs H, Brown M, Goldstein J. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–66.

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein J, Brown M. The LDL Receptor. Arteriosclerosis, Thrombosis, Vasc Biol. 2009;29:431–8.

    Article  CAS  Google Scholar 

  3. Stock J. Familial hypercholesterolemia: an urgent public health priority. Atherosclerosis. 2020;308:48–49.

    Article  CAS  PubMed  Google Scholar 

  4. Austin M. Familial Hypercholesterolemia and Coronary Heart Disease: a HuGE Association Review. Am J Epidemiol. 2004;160:421–9.

    Article  PubMed  Google Scholar 

  5. Tibolla G, Norata G, Artali R, Meneghetti F, Catapano A. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure–function relation to therapeutic inhibition. Nutr, Metab Cardiovasc Dis. 2011;21:835–43.

    Article  CAS  Google Scholar 

  6. Chiou K, Charng M. Detection of Mutations and Large Rearrangements of the Low-Density Lipoprotein Receptor Gene in Taiwanese Patients With Familial Hypercholesterolemia. Am J Cardiol. 2010;105:1752–8.

    Article  CAS  PubMed  Google Scholar 

  7. Youngblom E, Pariani M, Knowles J. Familial Hypercholesterolemia [Internet]. Ncbi.nlm.nih.gov. 2020. https://www.ncbi.nlm.nih.gov/books/NBK174884/.

  8. Sawhney J, Prasad S, Sharma M, et al. Prevalence of familial hypercholesterolemia in premature coronary artery disease patients admitted to a tertiary care hospital in North India. Indian Heart J. 2019;71:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rangarajan N. Knowledge and awareness of familial hypercholesterolaemia among registered medical practitioners in tamil nadu: are they suboptimal? J Clin Diagnostic Res. 2016;10:OC52–6.

    CAS  Google Scholar 

  10. Ashavaid T, Reddy LL. Familial Hypercholesterolemia (FH) Awareness Amongst Physicians in Mumbai, India. J Assoc Phys India. 2018;66:66–9.

    Google Scholar 

  11. Ashavaid T, Kondkar A, Nair K. Identification of two LDL receptor mutations causing familial hypercholesterolemia in Indian subjects. J Clin Lab Anal. 2000;14:293–8.

    Article  CAS  PubMed  Google Scholar 

  12. ArulJothi K, Whitthall R, Futema M, et al. Molecular analysis of the LDLR gene in coronary artery disease patients from the Indian population. Clin Biochem. 2016;49:669–74.

    Article  CAS  PubMed  Google Scholar 

  13. Setia N, Saxena R, Arora A, Verma I. Spectrum of mutations in homozygous familial hypercholesterolemia in India, with four novel mutations. Atherosclerosis. 2016;255:31–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni S, Basavraj S, Kadakol GTV, et al. Mutation Analysis of the LDL Receptor Gene in Indian Families with Familial Hypercholesterolemia. Asian J Med Sci. 2011;2:82–6.

    Article  CAS  Google Scholar 

  15. Setia N, Movva S, Balakrishnan P, et al. Genetic analysis of familial hypercholesterolemia in Asian Indians: A single-center study. J Clin Lipidol. 2020;14:35–45.

    Article  PubMed  Google Scholar 

  16. Seidah N. Proprotein Convertase Subtilisin Kexin 9 (PCSK9) Inhibitors in the Treatment of Hypercholesterolemia and other Pathologies. Curr Pharm Des. 2013;19:3161–72.

    Article  CAS  PubMed  Google Scholar 

  17. Hachem A, Hariri E, Saoud P, Lteif C, Lteif L, Welty F. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Cardiovascular Homeostasis: a Non-Systematic Literature Review. Curr Cardiol Rev. 2017;13:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol. 2017;9:76.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burnett J, Hooper A. Common and Rare Gene Variants Affecting Plasma LDL Cholesterol. Clin Biochem Rev. 2008;29:11–26.

    PubMed  PubMed Central  Google Scholar 

  20. Fruchart J. PCSK9: The functional relevance of fenofibrate–statin combination therapy to reduce residual cardiovascular risk. Int J Diabetes Mellit. 2015;3:4–10.

    Article  Google Scholar 

  21. Hopkins P, Toth P, Ballantyne C, Rader D. Familial Hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S9–17.

    Article  PubMed  Google Scholar 

  22. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abifadel M, Rabès J, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30:520–9.

    Article  CAS  PubMed  Google Scholar 

  24. Huijgen R, Sjouke B, Vis K, et al. Genetic variation in APOB, PCSK9 and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-C Levels. Hum Mutat. 2011;33:448–55.

    Article  PubMed  CAS  Google Scholar 

  25. Ding K, Kullo IJ. Molecular population genetics of PCSK9: a signature of recent positive selection. Pharmacogenet Genom. 2008;18:169–79.

    Article  CAS  Google Scholar 

  26. Mayne J, Ooi TC, Raymond A, et al. Differential effects of PCSK9 loss of function variants on serum lipid and PCSK9 levels in Caucasian and African Canadian populations. Lipids Health Dis. 2013;12:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chuan J, Qian Z, Zhang Y, Tong R, Peng M. The association of the PCSK9 rs562556 polymorphism with serum lipids level: a meta-analysis. Lipids Health Dis. 2019;18:105.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cohen J, Pertsemlidis A, Kotowski I, Graham R, Garcia C, Hobbs H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.

    Article  CAS  PubMed  Google Scholar 

  29. Futema M, Whittall R, Kiley A, et al. Analysis of the frequency and spectrum of mutations recognized to cause familial hypercholesterolemia in routine clinical practice in a UK specialist hospital lipid clinic. Atherosclerosis. 2013;229:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dubuc G, Chamberland A, Wassef H, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24:1454–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nozue T. Lipid Lowering Therapy and Circulating PCSK9 Concentration. J Atherosclerosis Thrombosis. 2017;24:895–907.

    Article  CAS  Google Scholar 

  32. Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D, Park SW. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49:399–409.

    Article  CAS  PubMed  Google Scholar 

  33. Lambert G, Charlton F, Rye KA, Piper DE. Molecular basis of PCSK9 function. Atherosclerosis. 2009;203:1–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kadam P, Ashavaid T, Ponde C, Rajani R. Genetic determinants of lipid-lowering response to atorvastatin therapy in an Indian population. J Clin Pharm Ther. 2016;41:329–33.

    Article  CAS  PubMed  Google Scholar 

  35. Mayne J, Dewpura T, Raymond A, et al. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis. 2008;7:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guo YL, Liu J, Xu RX, et al. Short-term impact of low-dose atorvastatin on serum proprotein convertase subtilisin/kexin type 9. Clin Drug Investig. 2013;33:877–83.

    Article  CAS  PubMed  Google Scholar 

  37. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51:2714–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laurie A, Spain R, Reid N, George P. Investigation of the Origin of Common LDLR Mutation Alleles in New Zealand Familial Hypercholesterolemia Patients. J Genetic Disord Genetic Rep. 2018;7:1.

    Google Scholar 

  39. Wang J, Huff E, Janecka L, Hegele R. Low density lipoprotein receptor (LDLR) gene mutations in Canadian subjects with familial hypercholesterolemia, but not of French descent. Hum Mutat. 2001;18:359.

    Article  CAS  PubMed  Google Scholar 

  40. Mozas P, Castillo S, Tejedor D, et al. Molecular characterization of familial hypercholesterolemia in Spain: identification of 39 novel and 77 recurrent mutations in LDLR. Hum Mutat. 2004;24:187.

    Article  PubMed  CAS  Google Scholar 

  41. Humphries S, Whittall R, Hubbart C, et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet. 2006;43:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Webb J, Sun X, Knight B, Soutar A. Identification of new mutations in the low density lipoprotein genes of english patients with familial hypercholesterolemia. Atherosclerosis. 1993;98:120.

    Article  Google Scholar 

  43. Al-Khateeb A, Zahri M, Mohamed M, et al. Analysis of sequence variations in low-density lipoprotein receptor gene among Malaysian patients with familial hypercholesterolemia. BMC Med Genet. 2011;12:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jensen H, Jensen L, Hansen P, Færgeman O, Gregersen N. Two point mutations (313 + 1G→A and 313 + 1G→T) in the splice donor site of intron 3 of the low-density lipoprotein receptor gene are associated with familial hypercholesterolemia. Hum Mutat. 1996;7:269–71.

    Article  CAS  PubMed  Google Scholar 

  45. Pek S, Dissanayake S, Fong J, et al. Spectrum of mutations in index patients with familial hypercholesterolemia in Singapore: Single center study. Atherosclerosis. 2018;269:106–16.

    Article  CAS  PubMed  Google Scholar 

  46. Hooper A, Nguyen L, Burnett J, et al. Genetic analysis of familial hypercholesterolaemia in Western Australia. Atherosclerosis. 2012;224:430–4.

    Article  CAS  PubMed  Google Scholar 

  47. Sun X, Patel D, Bhatnagar D, Knight B, Soutar A. Characterization of a Splice-Site Mutation in the Gene for the LDL Receptor Associated With an Unpredictably Severe Clinical Phenotype in English Patients With Heterozygous FH. Arteriosclerosis, Thrombosis, Vasc Biol. 1995;15:219–27.

    Article  CAS  Google Scholar 

  48. Chmara M, Kubalska J, Bednarska-Makaruk M, et al. Molecular characterization of polish patients with familial hypercholesterolemia: novel and recurrent LDLR gene mutations. Atherosclerosis Suppl. 2008;9:111.

    Article  Google Scholar 

  49. Lek M, Karczewski K, Minikel E, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tatishcheva A, Mandelshtam M, GoluBkov V, Lipovetskii B. Four New Mutations and Polymorphic Variants of the Low Density Lipoprotein Receptor in Patients with Familial Hypercholesterolemia in Saint Petersburg. Russ J Genet. 2001;39:1290–5.

    Google Scholar 

Download references

Acknowledgements

National Health Education Society (NHES), P. D Hinduja Hospital and Medical Research Centre and European Atherosclerosis Society – Familial Hypercholesterolemia Studies Collaboration (EAS-FHSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tester F. Ashavaid.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, L.L., Shah, S.A.V., Ponde, C.K. et al. Screening of PCSK9 and LDLR genetic variants in Familial Hypercholesterolemia (FH) patients in India. J Hum Genet 66, 983–993 (2021). https://doi.org/10.1038/s10038-021-00924-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00924-y

Search

Quick links