Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Personalized medicine for cardiovascular diseases

Abstract

Personalized medicine is an emerging concept involving managing the health of patients based on their individual characteristics, including particular genotypes. Cardiovascular diseases are heritable traits, and family history information is useful for risk prediction. As such, determining genetic information (germline genetic mutations) may also be applied to risk prediction. Furthermore, accumulating evidence suggests that genetic background can provide guidance for selecting effective treatments and preventive strategies in individuals with particular genotypes. These concepts may be applicable both to rare Mendelian diseases and to common complex traits. In this review, we define the concept and provide examples of personalized medicine based on human genetics for cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. We also provide a particular focus on Mendelian randomization studies, especially those examining loss-of function genetic variations, for identifying high-risk individuals, as well as signaling pathways that may be useful targets for improving healthy living without cardiovascular events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–28.

    PubMed  Google Scholar 

  2. Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, et al. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J. 2020;41:12–85.

    PubMed  Google Scholar 

  3. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mabuchi H. Half a century tales of familial hypercholesterolemia (FH) in Japan. J Atheroscler Thromb. 2017;24:189–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381:1547–56.

    CAS  PubMed  Google Scholar 

  6. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tada H, Kawashiri MA, Nohara A, Inazu A, Mabuchi H, Yamagishi M. Impact of clinical signs and genetic diagnosis of familial hypercholesterolaemia on the prevalence of coronary artery disease in patients with severe hypercholesterolaemia. Eur Heart J. 2017;38:1573–9.

    CAS  PubMed  Google Scholar 

  8. Fatkin D, Huttner IG, Kovacic JC, Seidman JG, Seidman CE. Precision medicine in the management of dilated cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74:2921–38.

    PubMed  Google Scholar 

  9. Choi SH, Weng LC, Roselli C, Lin H, Haggerty CM, Shoemaker MB, et al. Association between titin loss-of-function variants and early-onset atrial fibrillation. JAMA. 2018;320:2354–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J. 2016;37:561–7.

    CAS  PubMed  Google Scholar 

  11. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50:1219–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019;139:1593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mabuchi H, Nohara A, Noguchi T, Kobayashi J, Kawashiri MA, Tada H, et al. Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Atherosclerosis. 2011;214:404–7.

    CAS  PubMed  Google Scholar 

  14. Louter L, Defesche J, Roeters van Lennep J. Cascade screening for familial hypercholesterolemia: practical consequences. Atheroscler Suppl. 2017;30:77–85.

    PubMed  Google Scholar 

  15. Nomura A, Tada H, Okada H, Nohara A, Ishikawa H, Yoshimura K, et al. Impact of genetic testing on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia (GenTLe-FH): a randomised waiting list controlled open-label study protocol. BMJ Open. 2018;8:e023636.

    PubMed  PubMed Central  Google Scholar 

  16. Tada H, Okada H, Nomura A, Yashiro S, Nohara A, Ishigaki Y, et al. Rare and deleterious mutations in ABCG5/ABCG8 genes contribute to mimicking and worsening of familial hypercholesterolemia phenotype. Circ J. 2019;83:1917–24.

    CAS  PubMed  Google Scholar 

  17. Tada H, Nohara A, Inazu A, Sakuma N, Mabuchi H, Kawashiri MA. Sitosterolemia, hypercholesterolemia, and coronary artery disease. J Atheroscler Thromb. 2018;25:783–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tada H, Okada H, Nomura A, Takamura M, Kawashiri MA. Beneficial effect of ezetimibe-atorvastatin combination therapy in patients with a mutation in ABCG5 or ABCG8 gene. Lipids Health Dis. 2020;19:3.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128:2113–20.

    CAS  PubMed  Google Scholar 

  20. Raal FJ, Hovingh GK, Blom D, Santos RD, Harada-Shiba M, Bruckert E, et al. Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study. Lancet Diabetes Endocrinol. 2017;5:280–90.

    CAS  PubMed  Google Scholar 

  21. Tada H, Kawashiri MA, Nomura A, Teramoto R, Hosomichi K, Nohara A, et al. Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease. J Clin Lipidol. 2018;12:1436–44.

    PubMed  Google Scholar 

  22. Roden DM. Personalized medicine to treat arrhythmias. Curr Opin Pharmacol. 2014;15:61–7.

    CAS  PubMed  Google Scholar 

  23. James CA, Calkins H. Arrhythmogenic right ventricular cardiomyopathy: progress toward personalized management. Annu Rev Med. 2019;70:1–18.

    CAS  PubMed  Google Scholar 

  24. Goldenberg I, Moss AJ, Peterson DR, McNitt S, Zareba W, Andrews ML, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 2008;117:2184–91.

    PubMed  PubMed Central  Google Scholar 

  25. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47:764–8.

    PubMed  Google Scholar 

  26. Hayashi K, Konno T, Fujino N, Itoh H, Fujii Y, Imi-Hashida Y, et al. Impact of updated diagnostic criteria for long QT syndrome on clinical detection of diseased patients: results from a study of patients carrying gene mutations. JACC Clin Electrophysiol. 2016;2:279–87.

    PubMed  Google Scholar 

  27. Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37:1456–64.

    PubMed  Google Scholar 

  28. Schwartz PJ, Ackerman MJ, George AL Jr., Wilde AAM. Impact of genetics on the clinical management of channelopathies. J Am Coll Cardiol. 2013;62:169–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gussak I, Antzelevitch C, Wilde AAM, Powell BD, Ackerman MJ, Shen W. Congenital long QT syndrome. London: Springer; 2013.

  30. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.

    PubMed  Google Scholar 

  31. Shimizu W, Makimoto H, Yamagata K, Kamakura T, Wada M, Miyamoto K, et al. Association of genetic and clinical aspects of congenital long QT syndrome with life-threatening arrhythmias in japanese patients. JAMA Cardiol. 2019;4:246–54.

    PubMed  PubMed Central  Google Scholar 

  32. Japanese Circulation Society. Guidelines for diagnosis and management of inherited arrhythmias. Tokyo: JCS; 2017. http://www.j-circ.or.jp/guideline/pdf/JCS2017_aonuma_h.pdf. Last accessed on 14 Apr 2020.

  33. Barsheshet A, Dotsenko O, Goldenberg I. Genotype-specific risk stratification and management of patients with long QT syndrome. Ann Noninvasive Electrocardiol. 2013;18:499–509.

    PubMed  PubMed Central  Google Scholar 

  34. Neira V, Enriquez A, Simpson C, Baranchuk A. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019;30:3068–78.

    PubMed  Google Scholar 

  35. Ahn J, Kim HJ, Choi JI, Lee KN, Shim J, Ahn HS, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: a meta-analysis. PLoS ONE. 2017;12:e0185680.

    PubMed  PubMed Central  Google Scholar 

  36. Wu JC, Garg P, Yoshida Y, Yamanaka S, Gepstein L, Hulot JS, et al. Towards precision medicine with human iPSCs for cardiac channelopathies. Circ Res. 2019;125:653–8.

    CAS  PubMed  Google Scholar 

  37. Tanaka Y, Hayashi K, Fujino N, Konno T, Tada H, Nakanishi C, et al. Functional analysis of KCNH2 gene mutations of type 2 long QT syndrome in larval zebrafish using microscopy and electrocardiography. Heart Vessels. 2019;34:159–66.

    PubMed  Google Scholar 

  38. Hayashi K, Teramoto R, Nomura A, Asano Y, Beerens M, Kurata Y, et al. Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases. Cardiovasc Res. 2020. In press.

  39. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44:672–3.

  40. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.

    CAS  PubMed  Google Scholar 

  41. Konno T, Chang S, Seidman JG, Seidman CE. Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2020;25:205–9.

    Google Scholar 

  42. Konno T, Shimizu M, Ino H, Matsuyama T, Yamaguchi M, Terai H, et al. A novel missense mutation in the myosin binding protein-C gene is responsible for hypertrophic cardiomyopathy with left ventricular dysfunction and dilation in elderly patients. J Am Coll Cardiol. 2003;41:781–6.

    CAS  PubMed  Google Scholar 

  43. Wang L, Seidman JG, Seidman CE. Narrative review: harnessing molecular genetics for the diagnosis and management of hypertrophic cardiomyopathy. Ann Intern Med. 2010;152:513–20.

    PubMed  PubMed Central  Google Scholar 

  44. Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 2018;379:655–68.

    PubMed  Google Scholar 

  45. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121:749–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    PubMed  Google Scholar 

  47. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68:2871–86.

    PubMed  PubMed Central  Google Scholar 

  48. Anan R, Niimura H, Takenaka T, Hamasaki S, Tei C. Mutations in the genes for sarcomeric proteins in Japanese patients with onset sporadic hypertrophic cardiomyopathy after age 40 years. Am J Cardiol. 2007;99:1750–4.

    CAS  PubMed  Google Scholar 

  49. Fujino N, Konno T, Hayashi K, Hodatsu A, Fujita T, Tsuda T, et al. Impact of systolic dysfunction in genotyped hypertrophic cardiomyopathy. Clin Cardiol. 2013;36:160–5.

    PubMed  Google Scholar 

  50. Hodatsu A, Konno T, Hayashi K, Funada A, Fujita T, Nagata Y, et al. Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. Am J Physiol Heart Circ Physiol. 2014;307:H1594–604.

    CAS  PubMed  Google Scholar 

  51. Fujita T, Fujino N, Anan R, Tei C, Kubo T, Doi Y, et al. Sarcomere gene mutations are associated with increased cardiovascular events in left ventricular hypertrophy: results from multicenter registration in Japan. JACC Heart Fail. 2013;1:459–66.

    PubMed  Google Scholar 

  52. Nomura S. Genetic and non-genetic determinants of clinical phenotypes in cardiomyopathy. J Cardiol. 2019;73:187–90.

    PubMed  Google Scholar 

  53. Tada H, Kawashiri MA, Yamagishi M. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants. J Hum Genet. 2017;62:453–8.

    CAS  PubMed  Google Scholar 

  54. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield M, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114:1241–57.

    CAS  PubMed  Google Scholar 

  57. Nelson CP, Goel AA-Ohoo, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385–91.

    CAS  PubMed  Google Scholar 

  58. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118:564–78.

    CAS  PubMed  Google Scholar 

  59. Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA. 2012;109:1193–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA. 2014;111:E455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6.

    CAS  PubMed  Google Scholar 

  62. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    PubMed  PubMed Central  Google Scholar 

  63. Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017;544:235–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    CAS  PubMed  Google Scholar 

  66. Myocardial Infarction Genetics Consortium I, Stitziel NO, Won HH, Morrison AC, Peloso GM, Do R, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N Engl J Med. 2014;371:2072–82.

    Google Scholar 

  67. Nomura A, Won HH, Khera AV, Takeuchi F, Ito K, McCarthy S, et al. Protein-truncating variants at the cholesteryl ester transfer protein gene and risk for coronary heart disease. Circ Res. 2017;121:81–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Peloso GM, Nomura A, Khera AV, Chaffin M, Won HH, Ardissino D, et al. Rare protein-truncating variants in APOB, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med. 2019;12:e002376.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Emdin CA, Khera AV, Natarajan P, Klarin D, Won HH, Peloso GM, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68:2761–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tg, Hdl Working Group of the Exome Sequencing Project NHL, Blood I, Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.

    Google Scholar 

  71. Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dewey FE, Gusarova V, O’Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016;374:1123–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374:2131–41.

    CAS  PubMed  Google Scholar 

  74. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    CAS  PubMed  Google Scholar 

  75. Schwartz GG, Steg PG, Szarek M, Bhatt DA-O, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    CAS  PubMed  Google Scholar 

  76. Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132–45.

    CAS  PubMed  Google Scholar 

  77. Cai T, Zhang Y, Ho YL, Link N, Sun J, Huang J, et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol. 2018;3:849–57.

    PubMed  PubMed Central  Google Scholar 

  78. Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ Genom Precis Med. 2018;11:e002162.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Trinder M, DeCastro ML, Azizi H, Cermakova L, Jackson LM, Frohlich J, et al. Ascertainment bias in the association between elevated lipoprotein(a) and familial hypercholesterolemia. J Am Coll Cardiol. 2020;75:2682–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Edanz Group (https://en-author-services.edanzgroup.com/) for editing a draft of this paper.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP17K09082, JP20H03927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Tada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, H., Fujino, N., Nomura, A. et al. Personalized medicine for cardiovascular diseases. J Hum Genet 66, 67–74 (2021). https://doi.org/10.1038/s10038-020-0818-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0818-7

This article is cited by

Search

Quick links