Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population

Abstract

Next-generation sequencing (NGS) has identified variations in cytochrome P450 (CYP) 2D6 associated with drug responses. However, determination of novel haplotypes is difficult because of the short reads generated by NGS. We aimed to identify novel CYP2D6 variants in the Japanese population and predict the CYP2D6 phenotype based on in vitro metabolic studies. Using a targeted NGS panel (PKSeq), 990 Japanese genomes were sequenced, and then novel CYP2D6 haplotypes were determined. Km, Vmax, and intrinsic clearance (Vmax/Km) of N-desmethyl-tamoxifen 4-hydroxylation were calculated by in vitro metabolic studies using cDNA-expressed CYP2D6 proteins. After determination of the CYP2D6 diplotypes, phenotypes of the individuals were predicted based on the in vitro metabolic activities. Targeted NGS identified 14 CYP2D6 variants not registered in the Pharmacogene Variation Consortium (PharmVar) database. Ten novel haplotypes were registered as CYP2D6*128 to *137 alleles in the PharmVar database. Based on the Vmax/Km value of each allele, *128, *129, *130, *131, *132, and *133 were predicted to be nonfunctional alleles. According to the results of the present study, six normal metabolizers (NM) and one intermediate (IM) metabolizers were designated as IM and poor metabolizers (PM), respectively. Our findings provide important insights into novel haplotypes and haplotypes of CYP2D6 and the effects on in vitro metabolic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Nofziger C, Turner AJ, Sangkuhl K, Whirl-Carrillo M, Agundez JAG, Black JL, et al. PharmVar GeneFocus: CYP2D6. Clin Pharm Ther. 2020;107:154–70.

    CAS  Google Scholar 

  2. Gaedigk A, Ingelman-Sundberg M, Miller NA, Leeder JS, Whirl-Carrillo M, Klein TE, et al. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharm Ther. 2018;103:399–401.

    CAS  Google Scholar 

  3. Twist GP, Gaedigk A, Miller NA, Farrow EG, Willig LK, Dinwiddie DL, et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genom Med. 2016;1:15007.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gordon AS, Tabor HK, Johnson AD, Snively BM, Assimes TL, Auer PL, et al. Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset. Hum Mol Genet. 2014;23:1957–63.

    CAS  PubMed  Google Scholar 

  5. Yang Y, Botton MR, Scott ER, Scott SA. Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics. 2017;18:673–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshihama T, Fukunaga K, Hirasawa A, Nomura H, Akahane T, Kataoka F, et al. GSTP1 rs1695 is associated with both hematological toxicity and prognosis of ovarian cancer treated with paclitaxel plus carboplatin combination chemotherapy: a comprehensive analysis using targeted resequencing of 100 pharmacogenes. Oncotarget. 2018;9:29789–800.

    PubMed  PubMed Central  Google Scholar 

  7. Gaedigk A. Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry. 2013;25:534–53.

    PubMed  Google Scholar 

  8. Nofziger C, Paulmichl M. Accurately genotyping CYP2D6: not for the faint of heart. Pharmacogenomics. 2018;19:999–1002.

    CAS  PubMed  Google Scholar 

  9. Gaedigk A, Riffel AK, Leeder JS. CYP2D6 haplotype determination using long range allele-specific amplification: resolution of a complex genotype and a discordant genotype involving the CYP2D6*59 allele. J Mol Diagn. 2015;17:740–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19:69–76.

    PubMed  Google Scholar 

  11. Hosono N, Kato M, Kiyotani K, Mushiroda T, Takata S, Sato H, et al. CYP2D6 genotyping for functional-gene dosage analysis by allele copy number detection. Clin Chem. 2009;55:1546–54.

    CAS  PubMed  Google Scholar 

  12. Buermans HP, Vossen RH, Anvar SY, Allard WG, Guchelaar HJ, White SJ, et al. Flexible and scalable full-length CYP2D6 long amplicon PacBio sequencing. Hum Mutat. 2017;38:310–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiao W, Yang Y, Sebra R, Mendiratta G, Gaedigk A, Desnick RJ, et al. Long-read single molecule real-time full gene sequencing of cytochrome P450-2D6. Hum Mutat. 2016;37:315–23.

    CAS  PubMed  Google Scholar 

  14. Fang P, Zheng X, He J, Ge H, Tang P, Cai J, et al. Functional characterization of wild-type and 24 CYP2D6 allelic variants on gefitinib metabolism in vitro. Drug Des Devel Ther. 2017;11:1283–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Muroi Y, Saito T, Takahashi M, Sakuyama K, Niinuma Y, Ito M, et al. Functional characterization of wild-type and 49 CYP2D6 allelic variants for N-desmethyltamoxifen 4-hydroxylation activity. Drug Metab Pharmacokinet. 2014;29:360–6.

    PubMed  Google Scholar 

  16. Kim J, Lim YR, Han S, Han JS, Chun YJ, Yun CH, et al. Functional influence of human CYP2D6 allelic variations: P34S, E418K, S486T, and R296C. Arch Pharm Res. 2013;36:1500–6.

    CAS  PubMed  Google Scholar 

  17. Kiyotani K, Shimizu M, Kumai T, Kamataki T, Kobayashi S, Yamazaki H. Limited effects of frequent CYP2D6*36-*10 tandem duplication allele on in vivo dextromethorphan metabolism in a Japanese population. Eur J Clin Pharm. 2010;66:1065–8.

    CAS  Google Scholar 

  18. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin Transl Sci. 2020;13:116–24.

    PubMed  Google Scholar 

  19. Momozawa Y, Akiyama M, Kamatani Y, Arakawa S, Yasuda M, Yoshida S, et al. Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related macular degeneration in the Japanese population. Hum Mol Genet. 2016;25:5027–34.

    CAS  PubMed  Google Scholar 

  20. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    PubMed  PubMed Central  Google Scholar 

  21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep. 2015;5:17875.

    PubMed  PubMed Central  Google Scholar 

  23. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    PubMed  PubMed Central  Google Scholar 

  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe T, Saito T, Rico EMG, Hishinuma E, Kumondai M, Maekawa M, et al. Functional characterization of 40 CYP2B6 allelic variants by assessing efavirenz 8-hydroxylation. Biochem Pharmacol. 2018;156:420–30.

    CAS  PubMed  Google Scholar 

  29. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–8.

    CAS  PubMed  Google Scholar 

  31. Kikura-Hanajiri R, Kawamura M, Miyajima A, Sunouchi M, Goda Y. Chiral analyses of dextromethorphan/levomethorphan and their metabolites in rat and human samples using LC-MS/MS. Anal Bioanal Chem. 2011;400:165–74.

    CAS  PubMed  Google Scholar 

  32. Dahmane E, Mercier T, Zanolari B, Cruchon S, Guignard N, Buclin T, et al. An ultra performance liquid chromatography-tandem MS assay for tamoxifen metabolites profiling in plasma: first evidence of 4’-hydroxylated metabolites in breast cancer patients. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:3402–14.

    CAS  Google Scholar 

  33. Soyama A, Saito Y, Kubo T, Miyajima A, Ohno Y, Komamura K, et al. Sequence-based analysis of the CYP2D6*36-CYP2D6*10 tandem-type arrangement, a major CYP2D6*10 haplotype in the Japanese population. Drug Metab Pharmacokinet. 2006;21:208–16.

    CAS  PubMed  Google Scholar 

  34. Soyama A, Kubo T, Miyajima A, Saito Y, Shiseki K, Komamura K, et al. Novel nonsynonymous single nucleotide polymorphisms in the CYP2D6 gene. Drug Metab Pharmacokinet. 2004;19:313–9.

    PubMed  Google Scholar 

  35. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tadaka S, Katsuoka F, Ueki M, Kojima K, Makino S, Saito S, et al. 3.5KJPNv2: an allele frequency panel of 3552 Japanese individuals including the X chromosome. Hum Genome Var. 2019;6:28.

    PubMed  PubMed Central  Google Scholar 

  37. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19:192–203.

    PubMed  Google Scholar 

  38. Liau Y, Maggo S, Miller AL, Pearson JF, Kennedy MA, Cree SL. Nanopore sequencing of the pharmacogene CYP2D6 allows simultaneous haplotyping and detection of duplications. Pharmacogenomics. 2019;20:1033–47.

    CAS  PubMed  Google Scholar 

  39. Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ammar R, Paton TA, Torti D, Shlien A, Bader GD. Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes. F1000Res. 2015;4:17.

    PubMed  PubMed Central  Google Scholar 

  41. Lee SH, Kang S, Dong MS, Park JD, Park J, Rhee S, et al. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression. Toxicol Appl Pharm. 2015;285:159–69.

    CAS  Google Scholar 

  42. Matsunaga M, Yamazaki H, Kiyotani K, Iwano S, Saruwatari J, Nakagawa K, et al. Two novel CYP2D6*10 haplotypes as possible causes of a poor metabolic phenotype in Japanese. Drug Metab Dispos. 2009;37:699–701.

    CAS  PubMed  Google Scholar 

  43. Aka I, Bernal CJ, Carroll R, Maxwell-Horn A, Oshikoya KA, Van Driest SL. Clinical pharmacogenetics of cytochrome P450-associated drugs in children. J Pers Med. 2017;7:14.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing. This study was supported by the Japan Agency for Medical Research and Development (AMED) under Grant Number JP19km0405201 and JP19kk0305009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisei Mushiroda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukunaga, K., Hishinuma, E., Hiratsuka, M. et al. Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population. J Hum Genet 66, 139–149 (2021). https://doi.org/10.1038/s10038-020-0815-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0815-x

This article is cited by

Search

Quick links