Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

ALG3-CDG: lethal phenotype and novel variants in Chinese siblings

Subjects

Abstract

Congenital disorders of glycosylation (CDG) are a group of genetic, mostly multisystem disorders, which often involve the central nervous system. ALG3-CDG is one the some 130 known CDG. Here we report two siblings with a severe phenotype and intrauterine death. Whole-exome sequencing revealed two novel variants in ALG3: NM_005787.6:c.512G>T (p.Arg171Leu) inherited from the mother and NM_005787.6:c.511C>T (p.Arg171Trp) inherited from the father.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Chang IJ, He M, Lam CT. Congenital disorders of glycosylation. Ann Transl Med. 2018;6:477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rimella-Le-Huu A, Henry H, Kern I, Hanquinet S, Roulet-Perez E, Newman CJ. et al.Congenital disorder of glycosylation type Id (CDG Id): phenotypic, biochemical and molecular characterization of a new patient. J Inherit Metab Dis. 2008;31:S381–S6.

    Article  PubMed  Google Scholar 

  3. Lepais L, Cheillan D, Frachon SC, Hays S, Matthijs G, Panagiotakaki E, et al. ALG3-CDG: report of two siblings with antenatal features carrying homozygous p.Gly96Arg mutation. Am J Med Genet A. 2015;167A:2748–54.

    Article  PubMed  Google Scholar 

  4. Kranz C, Sun L, Eklund EA, Krasnewich D, Casey JR, Freeze HH. CDG-Id in two siblings with partially different phenotypes. Am J Med Genet A. 2007;143A:1414–20.

    Article  CAS  PubMed  Google Scholar 

  5. Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, et al. Congenital disorders of glycosylation: the Saudi experience. Am J Med Genet A. 2017;173:2614–21.

    Article  CAS  PubMed  Google Scholar 

  6. Denecke J, Kranz C, von Kleist-Retzow JC, Bosse K, Herkenrath P, Debus O, et al. Congenital disorder of glycosylation type Id: clinical phenotype, molecular analysis, prenatal diagnosis, and glycosylation of fetal proteins. Pediatr Res. 2005;58:248–53.

    Article  CAS  PubMed  Google Scholar 

  7. Körner C, Knauer R, Stephani U, Marquardt T, Lehle L, von Figura K. Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. EMBO J. 1999;18:6816–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Riess S, Reddihough DS, Howell KB, Dagia C, Jaeken J, Matthijs G, et al. ALG3-CDG (CDG-Id): clinical, biochemical and molecular findings in two siblings. Mol Genet Metab. 2013;110:170–5.

    Article  CAS  PubMed  Google Scholar 

  9. Stibler H, Stephani U, Kutsch U. Carbohydrate-deficient glycoprotein syndrome–a fourth subtype. Neuropediatrics. 1995;26:235–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital disorder of glycosylation id presenting with hyperinsulinemic hypoglycemia and islet cell hyperplasia. J Clin Endocrinol Metab. 2005;90:4371–5.

    Article  CAS  PubMed  Google Scholar 

  11. Fiumara A, Barone R, Del Campo G, Striano P, Jaeken J. Electroclinical features of early-onset epileptic encephalopathies in congenital disorders of glycosylation (CDGs). JIMD Rep. 2016;27:93–9.

    Article  PubMed  Google Scholar 

  12. Himmelreich N, Dimitrov B, Geiger V, Zielonka M, Hutter A-M, Beedgen L, et al. Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum Mutat. 2019;40:938–51.

    CAS  PubMed  Google Scholar 

  13. Schollen E, Grünewald S, Keldermans L, Albrecht B, Körner C, Matthijs G. CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter). Eur J Med Genet. 2005;48:153–8.

    Article  CAS  PubMed  Google Scholar 

  14. Denecke J, Kranz C, Kemming D, Koch H-G, Marquardt T. An activated 5’ cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id). Hum Mutat. 2004;23:477–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their family for providing samples and clinical histories.

Funding

This research was supported in part by the 345 Talent Project to YL and National Natural Science Foundation of China (81701462 to YL) and National Key R&D Program of China (2018YFC1002900 to YL).

Author information

Authors and Affiliations

Authors

Contributions

YB and SGZ performed the research and analyzed and interpreted the data. YB and HQ drafted the manuscript. HL, ZTZ, and YSW helped in sample collection. CXL performed phenotyping of patients. YL and CQ helped in analysis and interpretation of ES data. HKJ provided technical support. YB, HL, ZTZ, YSW, YL, JLL, and CQ were involved in scientific discussion and offered suggestions. CQ and YL conceived and designed the study, revised the manuscript, and provided final approval of the manuscript.

Corresponding author

Correspondence to Yuan Lyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Qiao, C., Zheng, S. et al. ALG3-CDG: lethal phenotype and novel variants in Chinese siblings. J Hum Genet 65, 1129–1134 (2020). https://doi.org/10.1038/s10038-020-0798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0798-7

This article is cited by

Search

Quick links