Abstract
The widespread use of genomic copy number analysis has revealed many previously unknown genomic structural variations, including some which are more complex. In this study, three consecutive microdeletions were identified in the same chromosome by microarray-based comparative genomic hybridization (aCGH) analysis for a patient with a neurodevelopmental disorder. Subsequent fluorescence in situ hybridization (FISH) analyses unexpectedly suggested complicated translocations and inversions. For better understanding of the mechanism, breakpoint junctions were analyzed by nanopore sequencing, as a new long-read whole-genome sequencing (WGS) tool. The results revealed a new chromosomal disruption, giving rise to four junctions in chromosome 7. According the sequencing results of breakpoint junctions, all junctions were considered as the consequence of multiple double-strand breaks and the reassembly of DNA fragments by nonhomologous end-joining, indicating chromothripsis. KMT2E, located within the deletion region, was considered as the gene responsible for the clinical features of the patient. Combinatory usage of aCGH and FISH analyses would be recommended for interpretation of structural variations analyzed through WGS.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Identification and characterisation of de novo germline structural variants in two commercial pig lines using trio-based whole genome sequencing
BMC Genomics Open Access 18 April 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Sanchis-Juan A, Stephens J, French CE, Gleadall N, Megy K, Penkett C, et al. Complex structural variants in Mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018;10:95.
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15:461–8.
Plaisancie J, Kleinfinger P, Cances C, Bazin A, Julia S, Trost D, et al. Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient. Eur J Med Genet. 2014;57:567–70.
Suzuki E, Shima H, Toki M, Hanew K, Matsubara K, Kurahashi H, et al. Complex X-chromosomal rearrangements in two women with ovarian dysfunction: implications of chromothripsis/chromoanasynthesis-dependent and -independent origins of complex genomic alterations. Cytogenet Genome Res. 2016;150:86–92.
Shimojima K, Mano T, Kashiwagi M, Tanabe T, Sugawara M, Okamoto N, et al. Pelizaeus-Merzbacher disease caused by a duplication-inverted triplication-duplication in chromosomal segments including the PLP1 region. Eur J Med Genet. 2012;55:400–3.
Suzuki T, Tsurusaki Y, Nakashima M, Miyake N, Saitsu H, Takeda S, et al. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing. J Hum Genet. 2014;59:649–54.
Gong L, Wong CH, Cheng WC, Tjong H, Menghi F, Ngan CY, et al. Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat Methods. 2018;15:455–60.
Yamamoto T, Wilsdon A, Joss S, Isidor B, Erlandsson A, Suri M, et al. An emerging phenotype of Xq22 microdeletions in females with severe intellectual disability, hypotonia and behavioral abnormalities. J Hum Genet. 2014;59:300–6.
Shimojima K, Sugiura C, Takahashi H, Ikegami M, Takahashi Y, Ohno K, et al. Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res. 2010;89:303–9.
Shimojima K, Komoike Y, Tohyama J, Takahashi S, Paez MT, Nakagawa E, et al. TULIP1 (RALGAPA1) haploinsufficiency with brain development delay. Genomics. 2009;94:414–22.
Tanaka M, Mino S, Ogura Y, Hayashi T, Sawabe T. Availability of Nanopore sequences in the genome taxonomy for Vibrionaceae systematics: rumoiensis clade species as a test case. PeerJ. 2018;6:e5018.
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–9.
Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun. 2017;8:14061.
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.
Inoue K, Osaka H, Sugiyama N, Kawanishi C, Onishi H, Nezu A, et al. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR. Am J Hum Genet. 1996;59:32–9.
Inoue K, Osaka H, Imaizumi K, Nezu A, Takanashi J, Arii J, et al. Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: molecular mechanism and phenotypic manifestations. Ann Neurol. 1999;45:624–32.
Lee JA, Carvalho CM, Lupski JRA. DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131:1235–47.
Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41:849–53.
Kato T, Ouchi Y, Inagaki H, Makita Y, Mizuno S, Kajita M, et al. Genomic characterization of chromosomal insertions: insights into the mechanisms underlying chromothripsis. Cytogenet Genome Res. 2017;153:1–9.
Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther. 2016;17:246–53.
Chatron N, Schluth-Bolard C, Fretigny M, Labalme A, Vilchez G, Castet SM, et al. Severe hemophilia A caused by an unbalanced chromosomal rearrangement identified using nanopore sequencing. J Thromb Haemost. 2019;17:1097–103.
McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, et al. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res. 2017;27:2072–82.
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet. 2019;12:6.
Maher CA, Wilson RK. Chromothripsis and human disease: piecing together the shattering process. Cell. 2012;148:29–32.
Dazzo E, Fanciulli M, Serioli E, Minervini G, Pulitano P, Binelli S, et al. Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy. Am J Hum Genet. 2015;96:992–1000.
Shen E, Shulha H, Weng Z, Akbarian S. Regulation of histone H3K4 methylation in brain development and disease. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130514.
O’Donnell-Luria AH, Pais LS, Faundes V, Wood JC, Sveden A, Luria V, et al. Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy. Am J Hum Genet. 2019;104:1210–22.
Acknowledgements
We would like to express our gratitude to the patient and her family for their cooperation. This work was supported by the Practical Research Project for Rare/Intractable Diseases (18ek0109270) and the Acceleration Program for Intractable Diseases Research utilizing Disease-specific iPS cells from Japan Agency for Medical Research and development (AMED), a Grant-in-Aid for Scientific Research from Health Labor Sciences Research Grants from the Ministry of Health, Labor and Welfare, Japan, and JSPS KAKENHI (TY). This work was also supported by a Grant-in-Aid for Young Scientists (B) (17K18133) and a Restart Postdoctoral Fellowship (17J40108) from the Japan Society for the Promotion of Science (JSPS) (KY-S). We are also thankful for the support from the Initiative on Rare and Undiagnosed Diseases (IRUD) via AMED.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Imaizumi, T., Yamamoto-Shimojima, K., Yanagishita, T. et al. Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing. J Hum Genet 65, 735–741 (2020). https://doi.org/10.1038/s10038-020-0762-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s10038-020-0762-6
This article is cited by
-
Identification and characterisation of de novo germline structural variants in two commercial pig lines using trio-based whole genome sequencing
BMC Genomics (2023)
-
Identification of small-sized intrachromosomal segments at the ends of INV–DUP–DEL patterns
Journal of Human Genetics (2023)
-
Combining cytogenetic and genomic technologies for deciphering challenging complex chromosomal rearrangements
Molecular Genetics and Genomics (2022)
-
Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome
Human Genetics (2020)