Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo variants in CUL3 are associated with global developmental delays with or without infantile spasms

Abstract

The ubiquitin–proteasome system is the principal system for protein degradation mediated by ubiquitination and is involved in various cellular processes. Cullin-RING ligases (CRL) are one class of E3 ubiquitin ligases that mediate polyubiquitination of specific target proteins, leading to decomposition of the substrate. Cullin 3 (CUL3) is a member of the Cullin family proteins, which act as scaffolds of CRL. Here we describe three cases of global developmental delays, with or without epilepsy, who had de novo CUL3 variants. One missense variant c.854T>C, p.(Val285Ala) and two frameshift variants c.137delG, p.(Arg46Leufs*32) and c.1239del, p.(Asp413Glufs*42) were identified by whole-exome sequencing. The Val285 residue located in the Cullin N-terminal domain and p.Val285Ala CUL3 mutant showed significantly weaker interactions to the BTB domain proteins than wild-type CUL3. Our findings suggest that de novo CUL3 variants may cause structural instability of the CRL complex and impairment of the ubiquitin–proteasome system, leading to diverse neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of de novo variants in CUL3 and protein interaction with KEAP1 of wild-type and mutant CUL3.

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–64.

    CAS  PubMed  Google Scholar 

  2. Ciechanover A, Orian A, Schwartz AL. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 2000;22:442–51.

    CAS  PubMed  Google Scholar 

  3. Segref A, Hoppe T. Think locally: control of ubiquitin-dependent protein degradation in neurons. EMBO Rep. 2009;10:44–50.

    CAS  PubMed  Google Scholar 

  4. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.

    CAS  PubMed  Google Scholar 

  5. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12:220.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Huber C, Dias-Santagata D, Glaser A, O’Sullivan J, Brauner R, Wu K, et al. Identification of mutations in CUL7 in 3-M syndrome. Nat Genet. 2005;37:1119–24.

    CAS  PubMed  Google Scholar 

  7. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012;482:98–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. RK CY, Merico D, Bookman M, J LH, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–11.

    Google Scholar 

  11. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    PubMed  PubMed Central  Google Scholar 

  12. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, TY, Guo, H, Xiong, B, Stessman, HAF, Wu, HD, Coe, BP et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    PubMed  PubMed Central  Google Scholar 

  16. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Google Scholar 

  18. Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19:1194–6.

    CAS  PubMed  Google Scholar 

  19. Agbor LN, Ibeawuchi SC, Hu C, Wu J, Davis DR, Keen HL, et al. Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight. 2016;1:e91015.

    PubMed  PubMed Central  Google Scholar 

  20. Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:8018.

    CAS  PubMed  Google Scholar 

  21. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36:928–30.

    PubMed  PubMed Central  Google Scholar 

  25. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    PubMed  PubMed Central  Google Scholar 

  26. Krek W. BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nat Cell Biol. 2003;5:950–1.

    CAS  PubMed  Google Scholar 

  27. Cullinan SB, Gordan JD, Jin JO, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jonsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature. 2017;549:519–22.

    PubMed  Google Scholar 

  29. Casas-Alba D, Vila Cots J, Monfort Carretero L, Martorell Sampol L, Zennaro MC, Jeunemaitre X, et al. Pseudohypoaldosteronism types I and II: little more than a name in common. J Pediatr Endocrinol Metab. 2017;30:597–601.

    CAS  PubMed  Google Scholar 

  30. Glover M, Ware JS, Henry A, Wolley M, Walsh R, Wain LV, et al. Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon’s syndrome). Clin Sci (Lond). 2014;126:721–6.

    CAS  Google Scholar 

  31. Mori T, Hosomichi K, Chiga M, Mandai S, Nakaoka H, Sohara E, et al. Comprehensive genetic testing approach for major inherited kidney diseases, using next-generation sequencing with a custom panel. Clin Exp Nephrol. 2017;21:63–75.

    CAS  PubMed  Google Scholar 

  32. Osawa M, Ogura Y, Isobe K, Uchida S, Nonoyama S, Kawaguchi H. CUL3 gene analysis enables early intervention for pediatric pseudohypoaldosteronism type II in infancy. Pediatr Nephrol. 2013;28:1881–4.

    PubMed  Google Scholar 

  33. Shao L, Cui L, Lu J, Lang Y, Bottillo I, Zhao X. A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type II. FEBS Open Bio. 2018;8:461–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellison DH. Pseudohypoaldosteronism Type II. 2011 Nov 10 [Updated 2017 Feb 16]. In Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020.

  35. Healy JK. Pseudohypoaldosteronism type II: history, arguments, answers, and still some questions. Hypertension. 2014;63:648–54.

    CAS  PubMed  Google Scholar 

  36. Anderica-Romero AC, Gonzalez-Herrera IG, Santamaria A, Pedraza-Chaverri J. Cullin 3 as a novel target in diverse pathologies. Redox Biol. 2013;1:366–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schumacher FR, Siew K, Zhang J, Johnson C, Wood N, Cleary SE, et al. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015;7:1285–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferdaus, MZ, Miller, LN, Agbor, LN, Saritas, T, Singer, JD, Sigmund, CD et al. Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects. JCI Insight. 2017;2. pii: 96700. https://doi.org/10.1172/jci.insight.96700.

  39. Ibeawuchi SR, Agbor LN, Quelle FW, Sigmund CD. Hypertension-causing mutations in Cullin3 protein impair RhoA protein ubiquitination and augment the association with substrate adaptors. J Biol Chem. 2015;290:19208–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986;8:93–102.

    CAS  PubMed  Google Scholar 

  41. Guo H, Wang T, Wu H, Long M, Coe BP, Li H, et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism. 2018;9:64.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Codina-Sola M, Rodriguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Lain G, et al. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism. 2015;6:21.

    PubMed  PubMed Central  Google Scholar 

  43. McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, et al. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest. 2014;124:4723–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Agbor, LN, Nair, AR, Wu, J, Lu, KT, Davis, DR, Keen, HL et al. Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight. 2019;5. pii: 129793. https://doi.org/10.1172/jci.insight.129793.

  45. Rapanelli M, Tan T, Wang W, Wang X, Zhong P, Wang ZJ, et al. Behavioral, circuitry and molecular aberrations by region-specific deficiency of the high-risk autism gene CUL3. J Neurochem. 2019;150:187–187.

    Google Scholar 

  46. Dong Z, Chen W, Chen C, Wang H, Cui W, Tan Z, et al. CUL3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of cap-dependent translation. Neuron. 2020;105:475–90 e476.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all patients and their families for participating in this study. We would also like to thank Ms. M. Sato, N. Watanabe, M Tsujimura, K Shibasaki and A. Kitamoto for their technical assistance. This work was supported by AMED under the grant numbers JP19ek0109280, JP19dm0107090, JP19ek0109301, JP19ek0109348, JP18kk020501 (to NM); JSPS KAKENHI under the grant numbers JP16H05160 (to HS), JP16K09975 (to MK), JP17H01539 (to NM) and JP19K07977 (to SM); grants from the Ministry of Health, Labor, and Welfare (to NM and MK); and the Takeda Science Foundation (to MN, HS and NM); HUSM Grant-in-Aid from Hamamatsu University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitsuko Nakashima or Naomichi Matsumoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

URLs. 3.5KJPN (https://ijgvd.megabank.tohoku.ac.jp/). gnomAD (http://exac.broadinstitute.org). SIFT (http://provean.jcvi.org/index.php). Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/). CADD (http://gnomad.broadinstitute.org/). MutationTaster (http://www.mutationtaster.org/). GERP (http://mendel.stanford.edu/SidowLab/downloads/GERP/index.html). PhastCons (http://compgen.cshl.edu/phast/)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, M., Kato, M., Matsukura, M. et al. De novo variants in CUL3 are associated with global developmental delays with or without infantile spasms. J Hum Genet 65, 727–734 (2020). https://doi.org/10.1038/s10038-020-0758-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0758-2

This article is cited by

Search

Quick links