Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Three-dimensional genome: developmental technologies and applications in precision medicine

Abstract

In the 20th century, our familiar structure of DNA was the double helix. Due to technical limitations, we do not have a good way to understand the finer structure of the genome, let alone its transcriptional regulation. Until the advent of 3C technologies, we were no longer blind to this one. Three-dimensional (3D) genomics is a new subject, which mainly studies the 3D structure and transcriptional regulation of eukaryotic genomes. Now, this field mainly has Hi-C series and CHIA-PET series technologies. Through 3D genomics, we can understand the basic structure of DNA, understand the growth and development of organisms and the occurrence of diseases, so as to promote human medical and health undertakings. The review introduces the main research techniques of 3D genomics and their characteristics, the latest development of 3D genome structure, the relationship between diseases and 3D genome structure, the applications of 3D genome in precision medicine, and the development of the 4D nucleome project.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

    Google Scholar 

  2. Consortium EP. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004;306:636–40.

    Google Scholar 

  3. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295:1306–11.

    CAS  PubMed  Google Scholar 

  4. Gozzetti A, Le Beau MM. Fluorescence in situ hybridization: uses and limitations. Semin Hematol. 2000;37:320–33.

    CAS  PubMed  Google Scholar 

  5. Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 2017;357. pii: eaag0025. https://doi.org/10.1126/science.aag0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006;38:1348–54.

    CAS  PubMed  Google Scholar 

  7. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006;16:1299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin D, Hong P, Zhang S, Xu W, Jamal M, Yan K, et al. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet. 2018;50:754–63.

    CAS  PubMed  Google Scholar 

  11. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502:59–64.

    CAS  PubMed  Google Scholar 

  12. Nagano T, Lubling Y, Varnai C, Dudley C, Leung W, Baran Y, et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017;547:61–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, et al. Massively multiplex single-cell Hi-C. Nat Methods. 2017;14:263–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Zhou X. Applications of Single-Cell Sequencing for Multiomics. Methods Mol Biol. 2018;1754:327–74.

    CAS  PubMed  Google Scholar 

  15. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature. 2017;544:59–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang X, Huang Y, Lei J, Luo H, Zhu X. The single-cell sequencing: new developments and medical applications. Cell Biosci. 2019;9:53.

    PubMed  PubMed Central  Google Scholar 

  17. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348:aaa6090.

    PubMed  PubMed Central  Google Scholar 

  18. Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science. 2016;353:598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362. pii: eaau1783. https://doi.org/10.1126/science.aau1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature. 2019;568:49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kolovos P, van de Werken HJ, Kepper N, Zuin J, Brouwer RW, Kockx CE, et al. Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin. 2014;7:10.

    PubMed  PubMed Central  Google Scholar 

  22. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet. 2014;46:205–12.

    CAS  PubMed  Google Scholar 

  23. Li X, Luo OJ, Wang P, Zheng M, Wang D, Piecuch E, et al. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions. Nat Protoc. 2017;12:899–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, et al. The 4D nucleome project. Nature. 2017;549:219–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods. 2018;15:928–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Djekidel MN, Chen Y, Zhang MQ. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process. Genome Res. 2018;28:412–22.

    CAS  PubMed Central  Google Scholar 

  27. Naumova N, Dekker J. Integrating one-dimensional and three-dimensional maps of genomes. J Cell Sci. 2010;123:1979–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA. 2015;112:E6456–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hnisz D, Day DS, Young RA. Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control. Cell. 2016;167:1188–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell. 2015;163:1611–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, et al. 3D Chromosome Regulatory Landscape of Human Pluripotent Cells. Cell Stem Cell. 2016;18:262–75.

    CAS  PubMed  Google Scholar 

  33. Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell. 2019;176:520–34. e25.

    Google Scholar 

  34. Huang P, Keller CA, Giardine B, Grevet JD, Davies JOJ, Hughes JR, et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 2017;31:1704–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature. 2016;538:523–7.

    PubMed  PubMed Central  Google Scholar 

  36. He M, Li Y, Tang Q, Li D, Jin L, Tian S, et al. Genome-Wide Chromatin Structure Changes During Adipogenesis and Myogenesis. Int J Biol Sci. 2018;14:1571–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rennie S, Dalby M, van Duin L, Andersson R. Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions. Nat Commun. 2018;9:487.

    PubMed  PubMed Central  Google Scholar 

  38. Ghirlando R, Felsenfeld G. CTCF: making the right connections. Genes Dev. 2016;30:881–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kai Y, Andricovich J, Zeng Z, Zhu J, Tzatsos A, Peng W. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Nat Commun. 2018;9:4221.

    PubMed  PubMed Central  Google Scholar 

  40. Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet. 2011;43:630–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Beishline K, Vladimirova O, Tutton S, Wang Z, Deng Z, Lieberman PM. CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nat Commun. 2017;8:2114.

    PubMed  PubMed Central  Google Scholar 

  42. Lang F, Li X, Zheng W, Li Z, Lu D, Chen G, et al. CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair. Proc Natl Acad Sci USA. 2017;114:10912–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu X, Gao S, Luo H, Fan W, Guo S, Yao H, et al. 9q33.3, a stress-related chromosome region, contributes to reducing lung squamous cell carcinoma risk. J Thorac Oncol. 2014;9:1041–7.

    Google Scholar 

  44. Hanssen LLP, Kassouf MT, Oudelaar AM, Biggs D, Preece C, Downes DJ, et al. Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat Cell Biol. 2017;19:952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98:387–96.

    CAS  PubMed  Google Scholar 

  46. Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res. 2015;43:6874–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Estruch SB, Graham SA, Quevedo M, Vino A, Dekkers DHW, Deriziotis P, et al. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders. Hum Mol Genet. 2018;27:1212–27.

    CAS  PubMed  Google Scholar 

  48. Lee JY, Skon CN, Lee YJ, Oh S, Taylor JJ, Malhotra D, et al. The transcription factor KLF2 restrains CD4(+) T follicular helper cell differentiation. Immunity. 2015;42:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie Q, Peng S, Tao L, Ruan H, Yang Y, Li TM, et al. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors. J Biol Chem. 2014;289:34205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R, Ngan CY, et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature. 2013;504:306–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang J, Xu Z, Huang L, Luo H, Zhu X. Transcriptional regulation in model organisms: recent progress and clinical implications. Open Biol. 2019;9:190183.

    PubMed  PubMed Central  Google Scholar 

  53. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014;159:374–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thibodeau A, Marquez EJ, Shin DG, Vera-Licona P, Ucar D. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin. Sci Rep. 2017;7:14466.

    PubMed  PubMed Central  Google Scholar 

  55. Petersen R, Lambourne JJ, Javierre BM, Grassi L, Kreuzhuber R, Ruklisa D, et al. Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nat Commun. 2017;8:16058.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet. 2016;48:176–82.

    CAS  PubMed  Google Scholar 

  57. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–6.

    CAS  PubMed  Google Scholar 

  58. Liang B, Ding H, Huang L, Luo H, Zhu X. GWAS in cancer: progress and challenges. Mol Genet Genom. 2020. https://doi.org/10.1007/s00438-020-01647-z [Epub ahead of print].

  59. Corradin O, Cohen AJ, Luppino JM, Bayles IM, Schumacher FR, Scacheri PC. Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry. Nat Genet. 2016;48:1313–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schierding W, O'Sullivan JM. Connecting SNPs in Diabetes: A Spatial Analysis of Meta-GWAS Loci. Front Endocrinol (Lausanne). 2015;6:102.

    Google Scholar 

  61. Fadason T, Ekblad C, Ingram JR, Schierding WS, O'Sullivan JM. Physical Interactions and Expression Quantitative Traits Loci Identify Regulatory Connections for Obesity and Type 2 Diabetes Associated SNPs. Front Genet. 2017;8:150.

    PubMed  PubMed Central  Google Scholar 

  62. Miguel-Escalada I, Bonas-Guarch S, Cebola I, Ponsa-Cobas J, Mendieta-Esteban J, Atla G, et al. Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet. 2019;51:1137–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baskin R, Woods NT, Mendoza-Fandino G, Forsyth P, Egan KM, Monteiro AN. Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility. Sci Rep. 2015;5:17367.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brandt MM, Meddens CA, Louzao-Martinez L, van den Dungen NAM, Lansu NR, Nieuwenhuis EES, et al. Chromatin Conformation Links Distal Target Genes to CKD Loci. J Am Soc Nephrol. 2018;29:462–76.

    CAS  PubMed  Google Scholar 

  65. Vijayakrishnan J, Qian M, Studd JB, Yang W, Kinnersley B, Law PJ, et al. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat Commun. 2019;10:5348.

    PubMed  PubMed Central  Google Scholar 

  66. Wang DC, Wang X. Systems heterogeneity: An integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 2017;64:1–4.

    PubMed  Google Scholar 

  67. Zhu X, Luo H, Xu Y. Transcriptome analysis reveals an important candidate gene involved in both nodal metastasis and prognosis in lung adenocarcinoma. Cell Biosci. 2019;9:92.

    PubMed  PubMed Central  Google Scholar 

  68. Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020;124:109821.

    PubMed  Google Scholar 

  69. Liang X, Li D, Leng S, Zhu X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed Pharmacother. 2020;125:109997.

    CAS  PubMed  Google Scholar 

  70. Gupta A, Place M, Goldstein S, Sarkar D, Zhou S, Potamousis K, et al. Single-molecule analysis reveals widespread structural variation in multiple myeloma. Proc Natl Acad Sci USA. 2015;112:7689–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, et al. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun. 2017;8:1937.

    PubMed  PubMed Central  Google Scholar 

  72. Mourad R, Hsu PY, Juan L, Shen C, Koneru P, Lin H, et al. Estrogen induces global reorganization of chromatin structure in human breast cancer cells. PLoS ONE. 2014;9:e113354.

    PubMed  PubMed Central  Google Scholar 

  73. Taberlay PC, Achinger-Kawecka J, Lun AT, Buske FA, Sabir K, Gould CM, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence M, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature. 2015;518:360–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Barutcu AR, Lajoie BR, McCord RP, Tye CE, Hong D, Messier TL, et al. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol. 2015;16:214.

    PubMed  PubMed Central  Google Scholar 

  76. Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: Clinical implications, applications and challenges. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32762 [Epub ahead of print].

  77. Qiao Y, Shiue CN, Zhu J, Zhuang T, Jonsson P, Wright AP, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFalpha-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804–14.

    PubMed  PubMed Central  Google Scholar 

  78. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S, et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 2014;24:1854–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Litchfield K, Levy M, Orlando G, Loveday C, Law PJ, Migliorini G, et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat Genet. 2017;49:1133–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rickman DS, Soong TD, Moss B, Mosquera JM, Dlabal J, Terry S, et al. Oncogene-mediated alterations in chromatin conformation. Proc Natl Acad Sci USA. 2012;109:9083–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun J, Li W, Sun Y, Yu D, Wen X, Wang H, et al. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res. 2014;42:9588–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int. 2020;20:16.

    PubMed  PubMed Central  Google Scholar 

  84. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45:1127–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol Aspects Med. 2019;70:141–52.

    CAS  PubMed  Google Scholar 

  87. Safavi S, Forestier E, Golovleva I, Barbany G, Nord KH, Moorman AV, et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia. 2013;27:248–50.

    CAS  PubMed  Google Scholar 

  88. Sarhadi VK, Lahti L, Scheinin I, Tyybakinoja A, Savola S, Usvasalo A, et al. Targeted resequencing of 9p in acute lymphoblastic leukemia yields concordant results with array CGH and reveals novel genomic alterations. Genomics. 2013;102:182–8.

    CAS  PubMed  Google Scholar 

  89. Ha G, Roth A, Lai D, Bashashati A, Ding J, Goya R, et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res. 2012;22:1995–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Guo B, Li D, Du L, Zhu X: piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 2020. https://doi.org/10.1007/s10555-020-09863-0 [Epub ahead of print].

  91. Kamada Y, Sakata-Yanagimoto M, Sanada M, Sato-Otsubo A, Enami T, Suzukawa K, et al. Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol. 2012;96:492–500.

    CAS  PubMed  Google Scholar 

  92. Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schopflin R, et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature. 2016;538:265–9.

    CAS  PubMed  Google Scholar 

  93. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351:1454–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Northcott PA, Lee C, Zichner T, Stutz AM, Erkek S, Kawauchi D, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511:428–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, Stutz AM, et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat Genet. 2017;49:65–74.

    CAS  PubMed  Google Scholar 

  96. Wei Y, Yan Z, Wu C, Zhang Q, Zhu Y, Li K, et al. Integrated analysis of dosage effect lncRNAs in lung adenocarcinoma based on comprehensive network. Oncotarget. 2017;8:71430–46.

    PubMed  PubMed Central  Google Scholar 

  97. Zhu X, Zhang J, Fan W, Wang F, Yao H, Wang Z, et al. The rs391957 variant cis-regulating oncogene GRP78 expression contributes to the risk of hepatocellular carcinoma. Carcinogenesis. 2013;34:1273–80.

    CAS  PubMed  Google Scholar 

  98. Soh J, Cho H, Choi CH, Lee H. Identification and Characterization of MicroRNAs Associated with Somatic Copy Number Alterations in Cancer. Cancers (Basel). 2018;10:12.

    Google Scholar 

  99. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. Topologically associating domains are stable units of replication-timing regulation. Nature. 2014;515:402–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hansen AS, Cattoglio C, Darzacq X, Tjian R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2018;9:20–32.

    CAS  PubMed  Google Scholar 

  101. Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321:1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Perry MW, Boettiger AN, Bothma JP, Levine M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr Biol. 2010;20:1562–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet. 2013;93:1126–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Will AJ, Cova G, Osterwalder M, Chan WL, Wittler L, Brieske N, et al. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nat Genet. 2017;49:1539–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dathe K, Kjaer KW, Brehm A, Meinecke P, Nurnberg P, Neto JC, et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet. 2009;84:483–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun M, Ma F, Zeng X, Liu Q, Zhao XL, Wu FX, et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J Med Genet. 2008;45:589–95.

    CAS  PubMed  Google Scholar 

  107. Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008;45:370–5.

    CAS  PubMed  Google Scholar 

  108. Lohan S, Spielmann M, Doelken SC, Flottmann R, Muhammad F, Baig SM, et al. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin Genet. 2014;86:318–25.

    CAS  PubMed  Google Scholar 

  109. Birnbaum RY, Clowney EJ, Agamy O, Kim MJ, Zhao J, Yamanaka T, et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 2012;22:1059–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tayebi N, Jamsheer A, Flottmann R, Sowinska-Seidler A, Doelken SC, Oehl-Jaschkowitz B, et al. Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis. 2014;9:108.

    PubMed  PubMed Central  Google Scholar 

  111. Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161:1012–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mishra A, Hawkins RD. Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med. 2017;9:87.

    PubMed  PubMed Central  Google Scholar 

  113. Giorgio E, Robyr D, Spielmann M, Ferrero E, Di Gregorio E, Imperiale D, et al. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum Mol Genet. 2015;24:3143–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Redin C, Brand H, Collins RL, Kammin T, Mitchell E, Hodge JC, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2017;49:36–45.

    CAS  PubMed  Google Scholar 

  115. Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, et al. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours. Genome Biol. 2017;18:125.

    PubMed  PubMed Central  Google Scholar 

  116. Parker BC, Zhang W. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin J Cancer. 2013;32:594–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaye FJ. Mutation-associated fusion cancer genes in solid tumors. Mol Cancer Ther. 2009;8:1399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Surrey LF, Jain P, Zhang B, Straka J, Zhao X, Harding BN, et al. Genomic Analysis of Dysembryoplastic Neuroepithelial Tumor Spectrum Reveals a Diversity of Molecular Alterations Dysregulating the MAPK and PI3K/mTOR Pathways. J Neuropathol Exp Neurol. 2019;78:1100–11.

    PubMed  Google Scholar 

  119. Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol. 2016;70:45–53.

    CAS  PubMed  Google Scholar 

  120. Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J Mol Diagn. 2019;21:553–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu X, Lin MCM, Fan W, Tian L, Wang J, Ng SS, et al. An intronic polymorphism in GRP78 improves chemotherapeutic prediction in non-small cell lung cancer. Chest. 2012;141:1466–72.

    CAS  PubMed  Google Scholar 

  122. Chen Z, Zhang C, Wu D, Chen H, Rorick A, Zhang X, et al. Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J. 2011;30:2405–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Luo Y, Wu JY, Lu MH, Shi Z, Na N, Di JM. Carvacrol Alleviates Prostate Cancer Cell Proliferation, Migration, and Invasion through Regulation of PI3K/Akt and MAPK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1469693.

    PubMed  PubMed Central  Google Scholar 

  124. Saura C, Roda D, Rosello S, Oliveira M, Macarulla T, Perez-Fidalgo JA, et al. A First-in-Human Phase I Study of the ATP-Competitive AKT Inhibitor Ipatasertib Demonstrates Robust and Safe Targeting of AKT in Patients with Solid Tumors. Cancer Discov. 2017;7:102–13.

    CAS  PubMed  Google Scholar 

  125. Wei XX, Hsieh AC, Kim W, Friedlander T, Lin AM, Louttit M, et al. A Phase I Study of Abiraterone Acetate Combined with BEZ235, a Dual PI3K/mTOR Inhibitor, in Metastatic Castration Resistant Prostate Cancer. Oncologist. 2017;22:503–e43.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005;19:631–42.

    CAS  PubMed  Google Scholar 

  127. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang X, Qiao Y, Asangani IA, Ateeq B, Poliakov A, Cieslik M, et al. Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. Cancer Cell. 2017;31:532–48. e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Thomas JD, Longen CG, Oyer HM, Chen N, Maher CM, Salvino JM, et al. Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer. Cancer Res. 2017;77:2439–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lai KP, Huang CK, Chang YJ, Chung CY, Yamashita S, Li L, et al. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. Am J Pathol. 2013;182:460–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Grimison PS, Stockler MR, Chatfield M, Thomson DB, Gebski V, Friedlander M, et al. Accelerated BEP for metastatic germ cell tumours: a multicenter phase II trial by the Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP). Ann Oncol. 2014;25:143–8.

    CAS  PubMed  Google Scholar 

  132. Liu C, Armstrong C, Zhu Y, Lou W, Gao AC. Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget. 2016;7:32210–20.

    PubMed  PubMed Central  Google Scholar 

  133. Myung JK, Banuelos CA, Fernandez JG, Mawji NR, Wang J, Tien AH, et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest. 2013;123:2948–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gonzalez-Rubio S, Linares CI, Aguilar-Melero P, Rodriguez-Peralvarez M, Montero-Alvarez JL, de la Mata M, et al. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression. PLoS ONE. 2016;11:e0160525.

    PubMed  PubMed Central  Google Scholar 

  135. Zhang C, Liu S, Yuan X, Hu Z, Li H, Wu M, et al. Valproic Acid Promotes Human Glioma U87 Cells Apoptosis and Inhibits Glycogen Synthase Kinase-3beta Through ERK/Akt Signaling. Cell Physiol Biochem. 2016;39:2173–85.

    CAS  PubMed  Google Scholar 

  136. Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014;20:6515–22.

    PubMed  PubMed Central  Google Scholar 

  137. Quan Y, Liu MY, Liu YM, Zhu LD, Wu YS, Luo ZH, et al. Facilitating Anti-Cancer Combinatorial Drug Discovery by Targeting Epistatic Disease Genes. Molecules. 2018;23:4.

    Google Scholar 

  138. Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016;48:265–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ember SW, Lambert QT, Berndt N, Gunawan S, Ayaz M, Tauro M, et al. Potent Dual BET Bromodomain-Kinase Inhibitors as Value-Added Multitargeted Chemical Probes and Cancer Therapeutics. Mol Cancer Ther. 2017;16:1054–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Brisard D, Eckerdt F, Marsh LA, Blyth GT, Jain S, Cristofanilli M, et al. Antineoplastic effects of selective CDK9 inhibition with atuveciclib on cancer stem-like cells in triple-negative breast cancer. Oncotarget. 2018;9:37305–18.

    PubMed  PubMed Central  Google Scholar 

  141. Taylor-Kashton C, Lichtensztejn D, Baloglu E, Senapedis W, Shacham S, Kauffman MG, et al. XPO1 Inhibition Preferentially Disrupts the 3D Nuclear Organization of Telomeres in Tumor Cells. J Cell Physiol. 2016;231:2711–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods. 2016;13:919–22. https://doi.org/10.1038/nmeth.3999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fang R, Yu M, Li G, Chee S, Liu T, Schmitt AD, et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 2016;26:1345–8. https://doi.org/10.1038/cr.2016.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (81541153); Guangdong Provincial Science and Technology Programs (2016A050503046 and 2015A050502048); Southern Science and Engineering Guangdong Laboratory Zhanjiang (ZJW-2019-07); The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources (GDMUK201808); and Research Project of “Excellent Innovative Talent Support Program” of Heilongjiang University of Traditional Chinese Medicine (2018RCD13).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Likun Du or Xiao Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors consent for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tao, T., Du, L. et al. Three-dimensional genome: developmental technologies and applications in precision medicine. J Hum Genet 65, 497–511 (2020). https://doi.org/10.1038/s10038-020-0737-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0737-7

Search

Quick links