Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kagami–Ogata syndrome in a patient with 46,XX,t(2;14)(q11.2;q32.2)mat disrupting MEG3

Abstract

Kagami–Ogata syndrome (KOS14) is a rare imprinting disorder characterized by a unique constellation of phenotypes including bell-shaped small thorax with coat-hanger appearance of the ribs. We encountered an African American female infant with KOS14 phenotype and 46,XX,t(2;14)(q11.2;q32.2)mat. After excluding upd(14)pat and an epimutation (hypermethylation) and a deletion affecting the maternally derived 14q32.2 imprinted region, we performed whole-genome sequencing, revealing that the translocation was generated between noncoding region at 2q11.2 and intron 6 of MEG3 at 14q32.2. Subsequent Sanger sequencing for the fusion points showed that the chromosomal fusion on the der(2) chromosome occurred between Chr2:102,193,994 (bp) and Chr14:101,314,628 (bp) in association with an insertion of 5-bp segment of unknown origin and that on the der(14) chromosome took place between Chr14:101,314,627 (bp) and Chr2:102,193,995 (bp) in association with an insertion of 1-bp segment of unknown origin (according to GRCh37/hg19). The results, together with the previous data in patients with KOS14, imply that the MEG3 disruption by 46,XX,t(2;14)(q11.2;q32.2)mat caused silencing of all MEGs including RTL1as and resultant excessive RTL1 expression, leading to the development of KOS14. To our knowledge, while Robertsonian translocations involving chromosome 14 have been reported in KOS14, this is the first case of KOS14 caused by a chromosomal translocation involving the 14q32.2 imprinted region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ogata T, Kagami M. Kagami-Ogata syndrome: a clinically recognizable upd(14)pat and related disorder affecting the chromosome 14q32.2 imprinted region. J Hum Genet. 2016;61:87–94.

    Article  CAS  Google Scholar 

  2. Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet. 2008;40:237–42.

    Article  CAS  Google Scholar 

  3. Kagami M, Matsuoka K, Nagai T, Yamanaka M, Kurosawa K, Suzumori N, et al. Paternal uniparental disomy 14 and related disorders: placental gene expression analyses and histological examinations. Epigenetics. 2012;7:1142–50.

    Article  CAS  Google Scholar 

  4. Kagami M, O’Sullivan MJ, Green AJ, Watabe Y, Arisaka O, Masawa N, et al. The IG-DMR and the MEG3-DMR at human chromosome 14q32.2: hierarchical interaction and distinct functional properties as imprinting control centers. PLoS Genet. 2010;6:e1000992.

    Article  Google Scholar 

  5. Kagami M, Kurosawa K, Miyazaki O, Ishino F, Matsuoka K, Ogata T. Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami-Ogata syndrome). Eur J Hum Genet. 2015;23:1488–98.

    Article  CAS  Google Scholar 

  6. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

    Article  CAS  Google Scholar 

  7. Suzuki T, Tsurusaki Y, Nakashima M, Miyake N, Saitsu H, Takeda S, et al. Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing. J Hum Genet. 2014;59:649–54.

    Article  CAS  Google Scholar 

  8. Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics. 2008;1:4.

    Article  Google Scholar 

  9. Tierling S, Dalbert S, Schoppenhorst S, Tsai CE, Oliger S, Ferguson-Smith AC, et al. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics. 2007;87:225–35.

    Article  Google Scholar 

  10. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 2008;24:306–16.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms Aya Kitamoto and Mr Naoki Adachi for their technical support.

Funding

This study was funded by Japan Agency for Medical Research and Development (AMED) (JP19ek0109301 to TO and JP19ek0109373 to MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ogata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omark, J., Masunaga, Y., Hannibal, M. et al. Kagami–Ogata syndrome in a patient with 46,XX,t(2;14)(q11.2;q32.2)mat disrupting MEG3. J Hum Genet 66, 439–443 (2021). https://doi.org/10.1038/s10038-020-00858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00858-x

Search

Quick links